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Abstract. The paper presents theoretical analysis of the extension of
the new direct solver dedicated for the fully automatic hp adaptive Fi-
nite Element Method. The self-adaptive hp-FEM generates in a fully
automatic mode (without any user interaction) a sequence of meshes de-
livering exponential convergence of the numerical error with respect to
the mesh size. The consecutive meshes are obtained by performing h, p
or hp refinements. The proposed solver constructs an initial elimination
tree based on the nested dissection algorithm executed over the initial
mesh. The constructed elimination tree is updated each time the mesh
is refined, by adding the elimination sub-tree related to the executed
refinement. We propose a new strategy for reutilization of partial LU
factorizations computed by the direct solver on the previous mesh, when
solving a consecutive mesh from the sequence. We show that the number
of LU factorizations that must be recomputed is linearly proportional to
the number of singularities in the problem.

1 Motivation and the Basic Idea of Solution

The paper presents theoretical analysis of the extension of the sequential and
parallel solvers [1], [2] dedicated for the self-adaptive hp Finite Element Method
[3], [4], [5]. The self-adaptive hp-FEM generates a sequence of approximation
spaces delivering exponential convergence of the numerical error of the resulting
approximation of the variational problem under consideration. The exponential
convergence of the error is obtained with respect to the dimension of the approx-
imation space. The self-adaptive hp-FEM starts from an initial approximation
space, constructed by utilizing a given uniform initial finite element mesh. The
first order polynomial basis function (”pyramids”) are related to vertices of the
mesh, and the higher order polynomial basis functions are related to finite ele-
ment edges and interiors [3]. The consecutive spaces from the produced sequence
are obtained by performing so-called h or p refinements. The h refinement con-
sists in breaking selected finite element into new son-elements, and adding new
basis functions related to just created elements. The p refinement consists in
adding higher order basis function associated with selected element edges or in-
teriors. The refinements performed to improve the quality of the approximation
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Fig. 1. Updating of the elimination tree when the mesh is h refined

space are selected by utilizing knowledge driven algorithm [6] based on the graph
grammar formalism.

An efficient solver must be utilized to compute coefficients of the projection
of the considered weak (variational) problem solution onto the current approxi-
mation space. The coefficients are called degrees of freedom (d.o.f.). These coef-
ficients, denoted by ui

hp, are computed by solving the system of equations

dim∑

i=1

ui
hpb (ei, ej) = l (ej) ∀j = 1, ..., dim , (1)

where dim denotes the dimension of the approximation space (number of the
basis functions), {ek}dim

k=1 denote the basis functions and b (ei, ej) and l (ej) are
matrix and right-hand-side vector entries obtained by computing some integrals
resulting from the considered problem.

Here we present a short description of direct solvers utilized by FEM. The
frontal solver browses finite elements in the order prescribed by the user, aggre-
gates d.o.f. to the so-called frontal matrix. Based on the elements connectivity
information it recognizes fully assembled degrees of freedom and eliminates them
from the frontal matrix [7]. This is done to keep the size of the frontal matrix as
small as possible. The key for efficient work of the frontal solver is the optimal
ordering of finite elements. The multi-frontal solver constructs the d.o.f. connec-
tivity tree based on analysis of the geometry of computational domain [7]. The
frontal elimination pattern is utilized on every tree branch. Finite elements are
joined into pairs and d.o.f. are assembled into frontal matrix associated with the
branch. The process is repeated until the root of the assembly tree is reached.
Finally, the common dense problem is solved and partial backward substitu-
tions are recursively executed on the assembly tree. The sub-structuring method
solver is a parallel solver working over a computational domain partitioned into
multiple sub-domains [8]. First, the sub-domains internal d.o.f. are eliminated
with respect to the interface d.o.f. Second, the interface problem is solved. Fi-
nally, the internal problems are solved by executing backward substitution on
each sub-domain. This can be done by performing frontal decomposition on each
sub-domain, and then solving the interface problem by a sequential frontal solver
(this method is called the multiple fronts solver [9]). The better method is to
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Fig. 2. Elimination tree for simple two finite elements mesh. Fully aggregated degrees of
freedom for element interiors are eliminated in parallel, the resulting Schur complement
contributions are added, and common interface problem is finally solved. The process is
followed by performing recursive backward substitutions (not presented in the picture).

solve the interface problem also by a parallel solver (this is called the direct
sub-structuring method solver). The parallel implementation of the multi-frontal
solver is called the sparse direct method solver. The MUlti frontal Massively
Parallel Solver (MUMPS) [10] is an example of such a solver.

A new efficient sequential and parallel solver for self-adaptive hp-FEM has
been designed [1], [2], utilizing elimination tree constructed base on the history
of mesh refinements. The elimination tree for the initial mesh is created by
utilizing nested dissection algorithm. The exemplary two finite elements mesh
with its elimination tree is presented on the first panel in Fig. 1. Each time
decision about mesh refinement is made, the elimination tree is dynamically
expanded by adding sub-tree related to the performed refinements. The example
of two h refinements performed on the initial mesh with resulting expanding of
the elimination tree is presented in Fig. 1. Thus, we can distinguish two levels
on the elimination tree. The first level is related to the initial mesh elements,
and the second level is related to refinements performed over the initial mesh.

The following observation is the key idea of the designed solver [1], [6]. The
integral b (ei, ej) is non-zero only if intersection of supports of ei and ej is not
empty. The support of a vertex basis function spreads over finite elements having
the vertex, the support of an element edge basis function spreads over two finite
elements adjacent to the edge, and finally the support of an element interior basis
function spreads only over the element. Thus, the integral b (ei, ej) is zero if basis
functions are related to distanced elements. The solver constructs first partially
aggregated sub-matrices related to single finite elements, then it eliminates these
entries that have already been fully assembled, and then it recursively merges
resulting sub-matrices and eliminates fully assembled entries until it reaches the
top of the elimination tree. Finally, it executes recursive backward substitutions,
from the root of the tree down to the leaves. The exemplary execution of the
solver on the two elements initial mesh from Fig. 1 is presented in Fig. 2.

The resulting LU factorizations computed at every node of the elimination
tree can be stored at tree nodes for further reutilization. Each time the mesh
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Fig. 3. The problem is solved over the first mesh. All LU factorizations (black and grey)
are computed. Then, the mesh is refined, and the problem is solved again. Grey LU
factorizations are reutilized from the previous mesh, but all brown LU factorizations
must be recomputed. Black LU factorizations from previous mesh are deleted.

is refined, the LU factorizations from the unrefined parts of the mesh can be
reutilized. There is a need to recompute LU factorization over the refined ele-
ments, as well as on the whole path from any refined leaf up to the root of the
elimination tree. The example of the reutilization of partial LU factorizations
after performing two local refinements is presented in Fig. 3.

2 Theoretical Analysis of the Solver Efficiency

We start this section with the sketch of the recursive solver algorithm, with
reutilizations of LU factorizations.

matrix function recursive solver(tree node)
if (tree node has no son nodes) then
eliminate leaf element stiffness matrix internal nodes;
store Schur complement sub-matrix at tree node;
return (Schur complement sub-matrix);

else if (tree node has son nodes) then
do (for each tree node son)
if (sub-tree has been refined) then

son matrix = recursive solver(tree node son);
else

get the Schur complement sub-matrix from tree node son;
endif
merge son matrix into new matrix;

enddo
decide which unknowns of new matrix can be eliminated;
perform partial forward elimination on new matrix;
store Schur complement sub-matrix at tree node;
return (Schur complement sub-matrix);

endif



Reutilization of Partial LU Factorizations 969

Computational Complexity of the Sequential, Recursive Solver With-
out Reutilization of LU Factorizations. Let us estimate first the number of
operations performed by a sequential recursive solver during forward elimination
over a square shape 2D finite element mesh with N = 2n × 2n finite elements.

The order of approximation in the interior of the element is assumed to be
equal to (p1, p2). The orders of approximation on element edges are assumed
to be equal to the corresponding orders in the interior. From this assumption
it follows that there are 2 faces with orders p1 and 2 faces with orders p2. The
total number of d.o.f. in such an element is nrdof = (p1 + 1) (p2 + 1) = O (p1p2).
To estimate the efficiency of the sequential solver, we assume that p1 = p2 =
p, e.g. by taking p = max{p1, p2}. Thus, the total number of d.o.f. satisfies
nrdof = (p + 1)2 = O(p2), while the number of interior d.o.f. can be evaluated
as interior nrdof = (p−1)2 = O(p2), and the number of interface d.o.f. satisfies
interface nrdof = 4p2 = O(p2).

The recursive solver eliminates d.o.f. related to elements interiors. The com-
putational complexity of this step is 22n × O(p6) since there are 22n such finite
elements and the internal d.o.f. elimination cost is O(p6) on every element.

Then, the solver joints elements into pairs, and eliminates d.o.f. related to
common edges. The computational complexity of this operation is 22n−1 × ((2+
4 + 1) × p)2 × (2 + 4) × p since there are 22n−1 such pairs of elements, and there
are 7 total edges within a pair, and only one edge is eliminated.

In the next step elements are joint into sets of four, and d.o.f. related to
two common edges are eliminated. The computational complexity of this step is
22n−2 × ((4×2+2)×p)2 × (4×2)×p since there are 22n−2 such sets of elements,
and there are 10 edges in every set, and only 2 edges are eliminated.

Fig. 4. Two tested meshes with uniform p = 4 and p = 5

The process is repeated until we reach the root of the elimination tree. The
total computational complexity of this process is

22n × p6 + 22n−1 × (2 + 4 + 1)2p2 × (2 + 4) × p +
∑

k=1,...,n

[
22n−2k−1 (

2 × 2k+1 + 2 × 2k + 2k
)2

p2 (
2 × 2k+1 + 2 × 2k

)
p+

(
22n−2k

(
2 × 2k + 2 × 2k + 2k

)2
p2 (

2 × 2k + 2 × 2k
)
p
)]

.
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Fig. 5. The execution time of the parallel solver over the second tested mesh

This can be estimated by utilizing the sum of the geometrical series as

T1 = O
(
22np6) + O

(
22n−1p3) + O

⎛

⎝
∑

k=1,...,n

22n+k+5p3

⎞

⎠

= O
(
22np6 +

(
22n−1 + 23n+6 − 22n+4) p3) = O(22np6 + 23np3 + 22np3) . (2)

Computational Complexity of the Sequential Solver With Reutiliza-
tion of LU Factorizations. In this section we perform the same analysis of the
computational complexity like in the previous section, but this time we assume
that the problem over the computational mesh has been already solved, and
only one element has been h refined in the direction of a mesh corner singular-
ity. In this case, there is a need to compute all LU factorizations related to the
elimination sub-tree associated with broken corner element. It is also necessary
to recompute all LU factorizations on the single path from the refined element
(represented by a leaf in the original elimination tree) up to the root of the tree.
The computational complexity over the broken element is

4 × p6 + 2 × (2 + 4 + 1)2p2 × (2 + 4) × p + (4 ∗ 2 + 2)2p2 × (4 ∗ 2) × p , (3)

since there are 4 element interiors, two single common edges and 1 twofold edge.
The computational complexity of the recomputation of the whole path from the
refined leaf up to the elimination tree root can be estimated by utilizing equation
(2) with the correction that there is only one set of elements on every level of
the tree, and without the leaf element computations, already estimated in (3).

(2 + 4 + 1)2p2 × (2 + 4) × p +
∑

k=1,...,n

[(
2 × 2k+1 + 2 × 2k + 2k

)2
p2 (

2 × 2k+1 + 2 × 2k
)
p+

((
2 × 2k + 2 × 2k + 2k

)2
p2 (

2 × 2k + 2 × 2k
)
p
)]

. (4)
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Table 1. Execution time at different elimination tree nodes on two tested meshes

First mesh Second mesh
Tree level Nodes number min time [s] max time [s] min time [s] max time [s]

1 1 - 0.115 - 0.212
2 2 0.854 0.883 1.631 1.674
3 4 0.864 2.406 1.617 4.625
4 8 0.828 2.542 1.675 4.535
5 16 0.904 2.750 1.621 4.686
6 32 0.049 0.230 1.606 4.763
7 64 < 10−2 < 10−2 < 10−2 0.110

8-14 128-9216 < 10−3 < 10−3 < 10−3 < 10−3

The total computational complexity of the solver reutilizing LU factorization is
equal to the sum of (3) and (4), that is

T 1
1 = O

(
p6) + O

(
p3) + O

⎛

⎝
∑

k=1,...,n

23k+6p3

⎞

⎠

= O
(
p6 +

(
1 + 23n+6 − 26) p3) = O(p6 + 23np3) . (5)

In the case of multiple refined leaves, the pessimistic estimation is that each
leaf will generate a separate path to be totally recomputed. Thus, the total
computational complexity with r refined leafs (resulting from r

4 singularities) is

T r
1 = O

(
rp6 +

(
r + r23n+6 − r26) p3) = O(rp6 + r23np3) . (6)

We conclude this section with the comparison of the execution times of the
sequential solver with reutilization of LU factorization with respect to the se-
quential solver without the reutilization

T1

T r
1

= O

(
22n

r

)
= O

(
N

r

)
. (7)

The solver with reutilization of partial LU factorizations is O
(

N
r

)
times faster.

Complexity of the Parallel Solver Without Reutilization of LU Factor-
izations. The parallel version of the solver exchanges the partially aggregated
matrices between the same level nodes [1]. Leaves of the elimination tree are as-
signed to different processors. When traveling up the elimination tree, the local
Schur complements are sent from the second children node to the first one (to
the first processor in every set). To estimate the computational complexity of the
parallel recursive solve, we assume that the number of processors is P = 22m.

Each processor is responsible for its part of the mesh, with 22n−2m finite
elements. Thus, each processor performs

O(22(n−m)p6 + 23(n−m)p3) (8)
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operations on its part of the mesh. After this step, all computations over the
elimination tree are performed fully in parallel:

∑

k=m+1,...,n

[(
2 × 2k+1 + 2 × 2k + 2k

)2
p2 (

2 × 2k+1 + 2 × 2k
)
p+

((
2 × 2k + 2 × 2k + 2k

)2
p2 (

2 × 2k + 2 × 2k
)
p
)]

= O(p3
∑

k=m+1,n

22k) = O(p3
∑

k=1,n−m

22(m+k)) = O(22(n−m)p3) . (9)

The communication complexity involves 2(n − m + 1) parallel point to point
communications where sub-matrices related to local Schur complements are ex-
changed between pairs of tree nodes. The communication complexity is then

∑

k=m+1,n

2 × (2k × p)2 = O(p2
∑

k=1,n−m

2(m+k)) = O(22(n−m)p2) (10)

since the size of every sub-matrix is 2k × p. The total complexity of the parallel
solver without reutilization of the LU factorizations is then

TP = (22(n−m)p6 + 23(n−m)p3 + 22(n−m)p3) × tcomp + 22(n−m)p2 × tcomm (11)

with P = 22m the number of processor, and p the order of approximation.
Complexity of the Parallel Solver With Reutilization of LU Factor-
izations. In the case of the parallelization of the reutilization, the maximum
number of processors that can be utilized is equal to r, the number of elements
refined within the actual mesh. Each refinement requires the recomputation of
the whole path from the refined leaf up to the tree root, which is a purely se-
quential. If the number of processors P = 22mis larger or equal to the number of
executed refinements 22m ≥ r, then the total computational complexity can be
roughly estimated as parallel execution of r paths from a leaf to the root of the
tree, which is equal to (5). The communication complexity remains unchanged,
since there is still a need to exchange the LU factorization, even if they are taken
from local tree nodes. Thus the communication complexity is equal to (10). The
total complexity of the parallel solver with reutilization of LU factorizations is

T r
P = (p6 + 23np3) × tcomp + 22(n−m)p2 × tcomm . (12)

This is the “best parallel time” that can be obtain by the parallel solver with
reutilization of partial LU factorizations, under the assumption that we have
enough available processors (P = 22m ≥ r). In other words, it is not possible
to utilize more processors then number of refined elements r. We can compare
the execution time of the parallel solver with reutilization to the parallel solver
without the reutilization (as usually under the assumption that we have enough
processors P = 22m ≥ r).

TP

T r
P

= O
(
22(n−m)

)
= O

(
N

22m

)
= O

(
N

P

)
≤ O

(
N

r

)
. (13)

The parallel solver with reutilization is O
(

N
r

)
times faster than the parallel

solver without the reutilization.
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3 Test Results

We conclude the presentation with two numerical experiments, presented in Fig.
4. The goal of these experiments is to illustrate the limitation of the scalability of
the solver by the sequential part of the algorithm - the longest path from the root
of the elimination tree down to the deepest leaf. For more numerical experiments
executed for much larger problems, with more detailed discussion on the per-
formance of the solver, as well as for the detailed comparison with the MUMPS
solver, we refer to [1]. Both numerical experiments have been performed for the
3D Direct Current (DC) borehole resistivity measurement simulations [11]. The
3D problem has been reduced to 2D by utilizing the Fourier series expansions
in the non-orthogonal system of coordinates. We refer to [11] for the detailed
problem formulation. The first mesh contains 9216 finite elements with polyno-
mial order of approximation p = 4, and 148, 257 d.o.f. The second mesh contains
9216 finite elements with polynomial order of approximation p = 5, and 231, 401
d.o.f. Both meshes have been obtained by performing two global hp refinements
from the initial mesh with 32 × 18 = 576 finite elements with polynomial order
of approximation p = 2 or p = 3, respectively. There are necessary 10 nested
dissection cross-sections of the initial mesh, since 32 × 18 ≤ 25 × 25. Thus, the
depth of the initial elimination tree is 10. Each global hp refinement consists
in breaking each finite element into 4 son elements and increasing polynomial
order of approximation by 1. Thus, each global hp refinement adds 2 levels to
the elimination tree, so the total number of levels in the elimination tree is 14.
Table 1 contains the total number of nodes at given elimination tree level, as
well as the minimum and maximum Schur complement computation times for
nodes located at given level of the elimination tree. The time of computing the
entire path of partial LU factorization from a tree leaf up to the elimination
tree root varies from 4 sec. to 9 sec. on the first mesh and from about 10 sec.
up to 17 sec. on the second mesh. The execution time of the sequential solver
with reutilization of LU factorizations over r times refined mesh will be within
(4 × r, 9 × r) sec. over the first and (10 × r, 17 × r) sec. over the second mesh.
The execution time of the parallel solver with reutilization of LU factorizations
over r times refined mesh will be within (4, 9) sec. over the first and (10, 17) sec.
over the second mesh, if there are more processors than refined elements. We
present also in Fig. 5 the execution time of the parallel solver over the first mesh
with N = 231, 401 unknowns, for increasing number of processors. We observe
that the parallel solver execution time is limited by the maximum time required
to solve the entire path, which is about 9 second in this case.

4 Conclusions

We proposed a new algorithm for the sequential and parallel solver, that al-
lows for significant reduction of the solver execution time over a sequence of
meshes generated by the self-adaptive hp-FEM. The solver reutilized partial LU
factorizations computed in previous iterations over unrefined parts of the mesh.
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Every local h refinements requires a sequential recomputation of all LU factor-
ization on a path from the refined leaf up to the root of the elimination tree. The
maximum number of processors that can be utilized by the parallel solver with
reutilization is equal to the number of refined elements. Both, the sequential
and parallel solver with reutilization is O

(
N
r

)
faster than the solver without the

reutilization, where N is number of elements and r is number of refinements.
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