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Abstract. We present generic constructions of stateful public key en-
cryption (StPE). We build several new StPE schemes and explain exist-
ing ones using our generic constructions. Of the new StPE schemes, two
schemes are built using the “identity-based technique” whereby one can
construct public key encryption (PKE) schemes secure against chosen
ciphertext attack in the standard model from identity-based encryption
(IBE) schemes. These StPE schemes provide a positive answer to Bel-
lare et al.’s open question on whether stateful variants of PKE schemes
derived from IBE schemes exist.

1 Introduction

The main goal of the stateful public key encryption (StPE) schemes proposed by
Bellare, Kohno and Shoup [0] is to reduce the cost of public key encryption by
allowing a sender to maintain state that is reused across different encryptions.
For example, one can obtain a stateful version of the ElGamal encryption in
which a message M is encrypted to (¢g", g"* M) for public key ¢* by maintaining
the random value r and its corresponding value g as state so that ¢g" does not
need to be computed each time. (Note, however, that much more is involved in
the analysis of this scheme.)

Reducing the computational cost of public key encryption is of particular im-
portance for low-power mobile devices where computational resources are con-
strained (such as PDA and mobile phones) or sensors communicating with the
relatively powerful servers or base stations [24/15/T2]. Due to the efficiency gained
from maintaining state, StPE schemes have potential to be employed in these set-
tings. But, even in the environments that provide reasonable amount of computa-
tional resources, it is preferable to speed up public key operation, which is often
more expensive than symmetric key operation, for overall system performance.

The approach that Bellare et al. [6] adopt to construct StPE schemes is to
convert specific public key encryption schemes such as DHIES [I] and Kurosawa
and Desmedt’s hybrid encryption scheme [20] into StPE schemes. However, for
the practical reasons that speeding up public key operations is of great impor-
tance for the system performance, and new and more efficient computational
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primitives may emerge in the future, it is desirable to have some generic meth-
ods to construct StPE schemes. — The application of our generic construction
to Kiltz’s [I8] new key encapsulation mechanism, which is presented in 3] is a
good example of this argument.

Our Contributions. Regarding the issues discussed earlier we make the following
contributions in this paper:

1. We formalize the concept of “partitioned” key encapsulation mechanism
(PKEM) which is a special case of key encapsulation mechanism (KEM)
[T4] but turns out to encompass many existing schemes. Apart from the se-
curity against chosen ciphertext attack (IND-CCA) of KEM, we define some
additional security properties that we require in our constructions of StPE.
— See Section 22

2. We present two generic constructions of StPE using PKEM and symmet-
ric encryption. The first construction is shown to meet the strong security
requirement defined in [6] in the known secret key (KSK) model without
the random oracles [8]. The second construction is also shown to meet the
security requirement in the unknown secret key (USK) model depending on
the random oracles. — See Section Bl

3. We build several StPE schemes using the proposed generic constructions.
Of these schemes, two are derived from the public key encryption (PKE)
schemes constructed following the paradigm of converting identity-based en-
cryption (IBE) into IND-CCA secure public key encryption (PKE) [13] in
the standard model. We note that Bellare et al. [6] asked whether such StPE
schemes exist. — See Section [l

Related Work. Since Bellare et al. proposed the concept of StPE, to our knowl-
edge, there has been few research work directly related to StPE. In their recent
paper [25], Sarkar and Chaterjee discuss possible relation between the symmet-
ric encryption they use for their generic construction of PKE from IBE and the
symmetric encryption used in StPE. Other related work include the reuse of the
randomness in the multi-receiver public key encryption, proposed by Kurosawa
[19] and further formalized by Bellare, Boldyreva and Staddon []. (Readers are
referred to [6] for detailed discussions on the relationship between StPE and the
randomness reuse in the multi-receiver PKE.)

Organization of This Paper. In Section Bl we give definitions of all the building
blocks we need in this paper. We then describe our generic constructions of StPE
and give security analysis of them in Section Bl In Section [, we provide new
StPE schemes derived from our generic constructions.

2 Building Blocks

2.1 Stateful Public Key Encryption

In this subsection we review the definitions of StPE and its security as given

in [6].
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Definition 1 (StPE). A stateful public key encryption scheme, denoted StPE,
consists of the following algorithms:

— StPE.Setup: Taking 1* for a security parameter A\ € Zs( as input, this
algorithm generates a system parameter sp which includes A\. We write
sp « StPE.Setup(1?).

— StPE.KG: Taking sp as input, this algorithm generates a private/public key
pair (sk,pk). We write (sk, pk) < StPE.KG(sp).

— StPE.PKCk: Taking sp and pk as input, this algorithm returns 1 if the public
key pk is valid and 0 otherwise. We write 6 « StPE.PKCk(sp, pk), where
6 €{0,1}.

— StPE.NwSt: Taking sp as input, this algorithm generates a new state. We
write st < StPE.NwSt(sp).

— StPE.Enc: Taking sp, pk, st and a plaintext M as input, this algorithm out-
puts a ciphertext C' and state st which may be different from the state pro-
vided as input to this algorithm. We write (C, st) < StPE.Enc(sp, pk, st, M).

— StPE.Dec: Taking sp, sk and C' as input, this deterministic algorithm outputs
M which is either a plaintext or L (meaning “reject”) message. We write M
«— StPE.Dec(sp, sk, C).

We impose a usual consistency condition on StPE: For any sp output by
StPE.Setup, (sk,pk) generated by StPE.KG and st output by either StPE.NwSt
or StPE.Enc, if (C, st) is an output of StPE.Enc(sp, pk, st, M), StPE.Dec(sp, sk,
C)=M.

We remark that the state generated by StPE.NwSt algorithm, the state provided
as input to the StPE.Enc algorithm and the state output by StPE.Enc algorithm
can all be different from each other. Note that StPE.PKCk is a public key verifi-
cation algorithm that checks the validity of the given public key. The level of the
validity check we require in this paper is the same as that of the simple public
key checking mechanisms, eg. checking whether some component of the given
public key belongs to the underlying (mathematical) group, which are already
exercised in practice [2IJI7].

We now review the definition of chosen ciphertext security for StPE schemes
as defined in [6].

Definition 2 (IND-CCA of StPE). Let StPE be a StPE scheme. Consider a
game played with an attacker A:

Phase 1: The game computes sp < StPE.Setup(1*),(pky, sk1) « StPE.KG(sp)
and st < StPE.NwSt(sp). (Note that (sk1, pk1) is the private/public key pair
of the honest receiver R;.) The game sends (sp, pki) to A.

Phase 2: A outputs public keys pko, ..., pk, of receivers Ra, ..., R, respec-
tively, all of which are in the range of KG(sp). (Note that A may or may not
know the private keys corresponding to the public keys pks, ..., pk,.)
Phase 3: A issues a number of (but polynomially many) queries, each of
which is responded by the game. The type of each query and the action
taken by the game are described as follows:
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e A challenge query (Mjy, M;) such that |My| = |M;|: The game picks
16 & {0,1} (Throughout this paper, we denote by s & S the assignment
of a uniformly and independently distributed random element from the
set S to the variable s), computes (C*, st) < StPE.Enc(sp, pk1, st, M),
where st denotes current state, and sends C* to A.

e Encryption queries, each of which is denoted by (i,M ) where i€ {1,...,n}:
The game computes (C, st) < StPE.Enc(sp, pk;, st, M), where st denotes
current state, and sends C' to A.

e Decryption queries, each of which is denoted by C' # C*: The game
computes StPE.Dec(sp, ski, C') and sends the resulting decapsulation
(key or L (“Reject”)) to A.

Phase 4: A outputs its guess 3’ € {0,1}.

We define A’s advantage by Advione " (A) = | Pr[8’ = 8] - 1|.
The chosen ciphertext security of StPE defined above can be considered in the
KSK (Known Secret Key) or the USK (Unknown Secret Key) models [6]. In the
KSK model, we assume that the attacker A possesses the corresponding private
(secret) keys ska ..., sk, of the public keys it outputs in Phase 2 of the attack
game. On the other hand, in the USK model, we do not need this assumption. —
Namely, in the KSK model, it is likely that the CA (Certificate Authority) is re-
quired to perform a proof of knowledge protocol to confirm whether users have cor-
responding private keys of their public keys while in the USK model, StPE.PKCk
should be run (by the game) to check whether the public keys are valid.

2.2 Partitioned Key Encapsulation Mechanism

In this subsection we define a new primitive called “partitioned key encapsulation
mechanism (PKEM)” which is a special type of normal KEM [I4]. Speaking
informally, PKEM has a property that a part of ciphertext, which does not
explicitly depend on the given public key (but depends on the system parameter
as will be defined below), can be “partitioned” from other parts of ciphertext.
Though this property seems somewhat special, we show in the later section that
many KEM schemes are in fact PKEM.

Definition 3 (PKEM). A partitioned KEM scheme, which we simply denote
by PKEM, consists of the following algorithms.

— PKEM.Setup: Taking 1* for a security parameter A € Z>¢ as input, this
algorithm generates a system parameter sp which includes . sp also defines
the key space Kx. We write sp « PKEM.Setup(1*).

— PKEM.KG: Taking sp as input, this algorithm generates a private/public key
pair (sk,pk). We write (sk, pk) «— PKEM.KG(sp).

— PKEM.Encapl : Taking sp as input, this algorithm generates the first cipher-
text vector ¢ and state information w which includes the internal randomness
used to generate 1. We write (w, 1)) < PKEM.Encapl(sp).
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— PKEM.Encap?2 : Taking sp, w, pk and v as input, this algorithm generates the
second ciphertext vector o and a key K. We write (0,K) « PKEM.Encap2(sp,
pk, w, ).

— PKEM.Decap : Taking sp, sk, 1) and ¢ as input, this algorithm outputs either
the session key K or the special symbol L. We write K < PKEM.Decap(sp,

sk, i, o).

We impose a consitency condition on PKEM: For any sp output by
PKEM.Setup, (sk,pk) generated by PKEM.KG, if (w,%) and (o, K) are out-
puts of PKEM.Encapl(sp) and PKEM.Encap2(sp, pk, w, %) respectively,
PKEM.Decap(sp, sk, ¥, o) = K. We also impose the following non-triviality
condition on (¢,0) and K: ¢ # ¢ and K # ¢ but o can be e, where £ denotes
empty string.

Note in the above definition that for the sake of convenience, we separate
PKEM.Setup from the KEM.KeyGen() algorithm given in [14] which generates
both the system parameter and the public key together. Note also that the IND-
CCA definition for PKEM is essentially no different from the usual IND-CCA
definition for KEM [I4] as an attacker does not get the state information w
during the attack. For completeness, however, we define IND-CCA of PKEMs.

Definition 4 (IND-CCA of PKEM). Let PKEM be a PKEM scheme. Con-
sider a game played with an attacker A:

Phase 1: The game computes sp «+ PKEM.Setup(1*), (pk, sk) «— PKEM.KG
(sp) and gives (sp, pk) to A.

Phase 2: A issues decapsulation queries, each of which is denoted by (¢, o).
On receiving (¢, o), the game computes PKEM.Decap(sp, sk, 1, 0) and gives
the resulting decapsulation K (which can be 1) to A.

Phase 3: The game subsequently computes (w*,1*) <« PKEM.Encapl(sp)
and (0*, K{) < PKEM.Encap2(sp, pk, w*, ¥*). It also picks K at ran-
dom from the key space Kg. The game then picks b & {0,1} and gives
(*, 0%, Kff) to A.

Phase 4: A issues decapsulation queries, each of which is denoted by (¢, o).
A restriction here is that (¢, 0) # (¥*,0*). On receiving (¢, o), the game
computes

PKEM.Decap(sp, sk, 1) and gives the resulting decapsulation K (which can
be 1) to A. At the end of this phase, A outputs its guess b’ € {0,1}.

We define A’s advantage by Advﬂ\f&%\aA(}\) =|Prt) =b] — 3|

Proving the security of our generic construction of StPE in the KSK model
given in Section B3] requires us to define a new property of PKEM, which we
call “reproducibility” . Informally, this means that there exists a polynomial-time
algorithm that, given a PKEM-ciphertext created under some public key and
state information, and some other public/private key pair, produces another
PKEM-ciphertext valid under the other public key and the same state informa-
tion as the given ciphertext. (We note that a similar notion has been considered
in [4] in the context of multi-receiver PKE.)
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Intuitively, the reason why we require reproducibility is as follows. Given
the specific state information, the adversary in the IND-CCA game of StPE
(Definition 2]) can come up with public keys of receivers other than the target
receiver (denoted R;) and produce ciphertexts associated with these public keys
and the given state. In the KSK model, since the adversary is assumed to know
private keys, each of which corresponds to each public key, he can produce such
ciphertexts by himself. Now, a formal definition follows.

Definition 5 (Reproducibility of PKEM). Let PKEM be a PKEM scheme.
Consider a game played with an algorithm R:

Phase 1: The game computes sp < PKEM.Setup(1?*), (sk, pk) «+ PKEM.KG
(sp), (w,v) «— PKEM.Encapl(sp), (o, K) < PKEM.Encap2(sp, pk, w, ¥) and
(sk’, pk’) «— PKEM.KG(sp). It gives (sp, pk, v, o, sk, pk’) to R.

Phase 2: R outputs (¢/, K').

We define R’s advantage by
Advy pren P (A) = Pr[(o’, K') = PKEM.Encap2(sp, pk’, w, 1))].
We say that the PKEM scheme is reproducible if Advg;il\éfepr()\) =1.

Finally we define another type of security of PKEM, which is an extension of
one-wayness (OW) under key checking attack (KCA) defined in [2]. (Note that
KCA can be considered as a KEM version of the plaintext checking attack (PCA)
defined in [23].) Our extension strengthens the OW-KCA of [2] in such a way that
an attacker can freely choose a public key and include it to the “key checking”
query. A formal definition, which we call “OW-EKCA (extended key checking
attack)” is as follows.

Definition 6 (OW-EKCA of PKEM). Let PKEM be a PKEM scheme. Con-
sider a game played with an attacker A:

Phase 1: The game computes sp < PKEM.Setup(1*), (pk, sk) «+ PKEM.KG
(sp), (w*,¥*) «— PKEM.Encapl(sp) and (¢*, K*) «— PKEM.Encap2(sp, pk,
w* *), and gives (sp, pk,*,0*) to A.

Phase 2: A issues key checking queries, each of which is denoted by (pk’,
', o', K'). On receiving it, the game checks whether (¢’ 0’) encapsulates
K’ or not with respect to pk’. If it is, the game returns 1, and 0 otherwise.
— We write this checking procedure as EKCO(pk’, ¢/, ¢/, K'), which returns
1if (¢, 0’) encapsulates K’ under the key pk’ and 0 otherwise.

Phase 3: A outputs its guess K.

We define A’s advantage by Advgygk‘?,\{ACA()\) = Pr[K = K*].
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2.3 Symmetric Encryption

To construct IND-CCA secure StPE schemes, we need a somewhat strong sym-
metric encryption scheme. Note that in the usual KEM/DEM framework (DEM:
Data Encapsulation Mechanism) for hybrid encryption [14], it is sufficient that
the underlying symmetric encryption is IND-CCA in the weak sense that the
attacker does not issue queries to the encryption oracle. In contrast, we need sym-
metric encryption secure against CCA attack in which the attacker does issue
encryption queries. — A formal definition of IND-CCA for symmetric encryption
can naturally be defined and can easily be found in the literature including [14].

We remark that as mentioned in [6], the symmetric encryption schemes meet-
ing the IND-CCA definition can in fact be easily constructed, eg. using the
encrypt-then-mac composition [7] with an AES mode of operation (such as CBC)
and a MAC (such as CBC-MAC or HMAC [5]).

3 Owur Constructions

3.1 Construction in the KSK Model

Description. We assume that a PKEM scheme PKEM and a symmetric encryp-
tion scheme SYM are “compatible” meaning that the key space Kx of PKEM
is the same as the key space Kp of SYM. We use these schemes as building
blocks to construct a stateful encryption scheme StPE. Below, we describe each
sub-algorithm of StPE.

StPE.Setup is the same as PKEM.Setup, which outputs system parameter sp.
Likewise, StPE.KG is the same as PKEM.KG, which outputs (sk,pk), a pri-
vate/public key pair. StPE.PKCk simply returns 1 (and does nothing else) as
the KSK model implies that any public keys in this system are generated cor-
rectly following the algorithm StPE.KG. (Namely the entity that has generated
a public key must know the corresponding private key.)

In our construction of stateful encryption, we assume that only two types
of state exist. The first type of state is produced by StPE.NwSt, which simply
returns the output of PKEM.Encapl on input sp. This state is kept unchanged
until StPE.NwSt is invoked again to produce fresh state of the first type. The
second type of state is produced by the algorithm StPE.Enc, which appends the
first type of state output by StPE.NwSt to pk (provided as input to StPE.Enc)
and the output of PKEM.Encap2. (Note here that PKEM.Encap2 takes (sp, pk),
the state output by StPE.NwSt and a plaintext M as input.) We also assume that
pk and the output of PKEM.Encap?2 of the second type of state is modified only
by StPE.Enc. In what follows, we give algorithmic descriptions of StPE.NwSt,
StPE.Enc and StPE.Dec.

Note that by the assumptions stated earlier, there are the following cases for st
provided as input to StPE.Enc to become: 1) (w, ¢) which is output of StPE.NwSt;
2) (w, ¥, pk’, o', K') where ¢/ and K’ are the outputs of PKEM.Encap2, both of
which are created under the public key pk’ different from the public key pk
provided as input to StPE.Enc; and 3)(w, ¥, pk, 0, K') where o and K are created
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under the public key pk provided as input to StPE.Enc. Note also that for state
st = (w, ) generated by the algorithm StPE.NwSt, [StPE.Enc(sp, pk, st, M)]c
= [StPE.Enc(sp, pk, st’, M)]c for any st’ output by StPE.Enc before StPE.NwSt
is invoked to generate new state (different from st). Here, “[StPE.Enc(---)]¢”
denotes the ciphertext part of an output of StPE.Enc. — This property is used
crucially to prove the security of the proposed construction.

StPE.NwSt(sp)
(w,v) «— PKEM.Encapl(sp)
st — (w, )
Return st
StPE.Enc(sp, pk, st, M)
If st is of the form (w, 1)) or of the form (w,, pk’, o', K') such that
pk’ # pk then
(0, K) «— PKEM.Encap2(sp, pk,w, 1)
Else
Parse st as (w, ), pk, o, K)
e SYM.Enc(K, M)
C — (¢,0,¢)
st «— (w, v, pk,o, K)
Return (C, st)
StPE.Dec(sp, sk, C')
Parse C as (¢, 0,€)
K «— PKEM.Decap(sp, sk, ¥, o)
If K = 1 then return L
Else return SYM.Dec(K, ¢)

We remark that the StPE.Enc algorithm becomes highly efficient when a
sender sends encryptions to a single receiver: If the sender wants to send encryp-
tions of My, ..., M, to the same receiver whose public key is pk, he does not
have to run PKEM.Encap2 and PKEM.Key for each plaintext M; fori=1...,n
but just runs them once at the beginning and then only runs SYM.Enc on input
(K, M;) afterwards.

Security Analysis of Generic Construction. Our generic construction of StPE
seems to be reminiscent of the KEM/DEM paradigm of constructing hybrid en-
cryption given in [T4]. However, the PKEM-reproducibility that we defined in the
previous section (Definition ) and the “reuse” of a ciphertext and its correspond-
ing key of the PKEM scheme for the multiple encryptions without compromising
confidentiality due to the strong security of the SYM scheme are the features
that distinguish our generic construction of StPE from the KEM/DEM frame-
work for constructing normal hybrid encryption. We now prove the following
theorem.
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Theorem 1. In the KSK model, the proposed generic stateful public key encryp-
tion scheme StPE is IND-CCA secure if the underlying PKEM scheme PKEM
is IND-CCA secure and reproducible, and the underlying symmetric encryption
scheme SYM is IND-CCA secure. More precisely, we have

AVETHEON ) < 2AAVETRGEI ) + AQVEIEE N

where \ denotes the security parameter; A, By and By denote the corresponding
attackers.

Proof. The proof uses the technique of sequence of games [26].

— Game Gp: This game is identical to the IND-CCA game played by an

attacker A against StPE. (Readers are referred to Definition ) We re-
peat this game to clean up the notations. Let sp be a system parameter.
Let pki and sk; be public and private keys of the honest receiver respec-
tively. Let pka, ..., pk, be the public keys output by A. Let st = (w*,9*),
where (w*,¢*) «— PKEM.Encapl(sp), be the sender’s state generated by
StPE.NwSt, fixed throughout each game. We denote a challenge ciphertext
by C* = (¢¥*,0*,¢e*), where (¢*, K}) «— PKEM.Encap2(sp, pki,w*,v*) and
e* & SYM.Enc(K7, Mj) for B & {0,1}.
Now, observe that we can assume that A does not make encryption queries
of the form (i, M) for i = 2,...,n. The reason is that since A is assumed to
know sk; corresponding to its public key pk; following the KSK model, by
the reproducibility, it, given (¢*,o*, pk1), can compute (o;, K;) such that
(04, K;) «— PKEM.Encap2(sp, pk;,w*,¢*) for i = 2,...,n. Consequently,
it can compute e; < SYM.Enc(K;, M) and can create ciphertext C; =
(V*,04,e;) forall i =2, ..., n.

We denote by Sy the event 5/ = 3, where (' is a bit output by A at the
end of the game. (We use a similar notation Sy, So, . .. for all modified games
G, Ga, . .. respectively). Since Gg is the same as the real attack game of the
IND-CCA of StPE, we have

— Game G;: In this game, we modify the generation of e* (a component of chal-
lenge ciphertext) of the previous game as follows: e* & SYM.Enc(K, M),
where K is the key chosen at random from Kg (= Kp) and 3 & {0,1}.
Now, in the following, we construct an oracle machine B; that breaks IND-
CCA of PKEM using A as a subroutine.

Algorithm Bj (sp, pk1)
Give (sp,pk1) to A
If A issues a challenge query (My, M;) such that |My| = |M;| then
get a challenge ciphertext/key pair (¢*, 0%, Kjf) where b & {0,1}
from the challenger; (3 & {0,1}; e* & SYM.Enc(K}, Mg);
C* — (", 0% e*); Give C* to A
If A issues an encryption query (1, M) then
e & SYM.Enc(K;, M); C — (¢*, 0%, e); Give C to A.
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If A issues a decryption query C' # C*, where C' = (¢, 0, ¢), then
If (¢, 0) # (¢¥*,0*) then query (¢, o) to the
challenger to get K = Decap(sp, sk1,,0)
If K # 1 then return SYM.Dec(K, ¢)
Else return L
Else return SYM.Dec(K}, €)
If A outputs 5’ such that 5’ = § then return &’ = 1 (b’ is By’s guess on
b)
Else return b’ = 0
First, assume that b = 1 in the above construction. In this case,
note that K7 is the right key of PKEM. Importantly, note also that
[StPE.Enc(sp, pk, st, M)]c = [StPE.Enc(sp, pk, st’, M )] ¢ for any st’ produced
by StPE.Enc before StPE.NwSt is invoked to produce new state different from
st. (Recall that “[StPE.Enc(---)]¢” denotes the ciphertext part of an output
of StPE.Enc.) Hence, the ciphertexts (*,0*,e*) and (*, 0%, e) provided as
responses to A’s challenge and encryption queries respectively and those in
the real attack game (which is Game Gg) are distributed identically. De-
cryptions are also perfectly simulated. Consequently, B; creates the same
environment as Game Gg in which A outputs its guess 4’. Hence, we have
Pr[So] = Pr[#’ = 8] = Pr[t/ = 1|b = 1]. Next, assume that b = 0 in the above
construction. Note that in this case, B; creates the same environment as this
game (Game Gp) in which K is the key chosen at random from K (= Kp).
Hence, we have Pr[S;] = Pr[#’ = ] = Pr[t/ = 1|b = 0]. Thus, we obtain

| Pr[So] — Pr[Sa]] = | Prlt/ = 1]b = 1] — Pr(b/ = 1]p = 0]
:2(\;1% —1b=1] - ;Pr[ = 1jp=0]|)
=], Py = =1+ (1~ Paly = 1/p=0)) )
=], Py = =1+, Prl =0lb=0] - )

= 2Advp brem (V).

Now, in the following, we construct an oracle machine By that breaks IND-
CCA of SYM using the attacker A as a subroutine.
Algorithm Ba(\)
Generate sp, ski and pki; Give (sp,pk1) to A
(w*,9*) «— PKEM.Encapl(sp);
(o*, K*) «— PKEM.Encap2(sp, pk;, w*, 1*);
If A issues a challenge query (My, M7) such that |My| = |M;| then
query (Mo, My) to the challenger to get e* & SYM.Enc(K(, Mg)

where (3 & {0,1}; C* — (¢*, 0%, e*); Give C* to A.
If A issues an encryption query (1, M) then
query M to the challenger to get e & Enc(Kg, M);
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C — (¢¥*,0%,¢); Give C to A.
If A issues a decryption query C' # C*, where C' = (¢, 0, ¢), then
If (¢,0) # (¥*,0*) then
K «— PKEM.Decap(sp, sk1,,0)
If K # 1 then return SYM.Dec(K, ¢)
Else return L
Else query e (which must be different from e*) to the challenger to
get d = SYM.Dec(K{, e); Return d
If A outputs 4’ then return 3’
Observe that in the above algorithm B, A is essentially conducting chosen
ciphertext attack on the symmetric encryption scheme SYM. Thus we have

1 i
‘Pr[Sl] - 2‘ < AdVZEIA ().

3.2 Construction in the USK Model

Description. Let H be a random oracle [8], whose range (output-space) is the
same as the key space Kp of the symmetric encryption scheme SYM. Assume
that there exists an algorithm PKV which checks whether public key of the given
PKEM scheme PKEM is valid. We note that PKV is not an algorithm for “prov-
ing” the possession of the corresponding private key but a simple mechanism for
validating keys or domain parameters by, eg. showing they belong to the output
space of the key generation algorithm, as described in the public key cryptogra-
phy standard such as P1363 [21I]. (Readers are particularly referred to Section
D.3.3 of the P1363 specification.)

Using the PKEM and SYM schemes and the random oracle [8] H as build-
ing blocks we construct another stateful encryption scheme StPE as follows.
StPE.Setup is the same as PKEM.Setup, which outputs sp. Also, StPE.KG is the
same as PKEM.KG, which outputs (sk, pk). We assume here that sk includes pk.
StPE.PKCk runs the algorithm PKV to check whether a given public key pk is
in {PKEM.KG(sp)}.

Like the construction of stateful encryption in the KSK model presented in
the previous section, we assume that there exist only two types of state. The
first type of state is produced by StPE.NwSt, which simply returns the output
of PKEM.Encapl on input sp. This state is kept unchanged until StPE.NwSt is
invoked again to produce fresh state of the first type. The algorithm StPE.Enc
produces the second type of state by appending the first type of state output by
StPE.NwSt to pk (provided as input to StPE.Enc) and the session key K output
by H. (Note here that H takes as input the part of the state output by StPE.NwSt,
pk and the output of PKEM.Encap2.) We also assume that pk and the output of
PKEM.Encap?2 of the second type of state is modified only by StPE.Enc.

Security Analysis of Generic Construction. We now state the following theorem
regarding the security of the construction presented above. — Due to the page
limit, the proof will be provided in the full version of this paper.
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StPE.NwSt(sp)
(w, ) — PKEM.Encapl(sp)
st — (w,9)
Return st
StPE.Enc(sp, pk, st, M)
If st is of the form (w, 1) or of the form (w,, pk’, o', K') such that
pk’ # pk then
(0, K) «— PKEM.Encap2(sp, pk,w, 1)
K — H(4, pk, o, K)
Else
Parse st as (w, 1, pk, o, K)
e SYM.Enc(K, M)
C — (¢,0,¢)
st — (w, ¥, pk,o, K)
Return (C, st)
StPE.Dec(sp, sk, C')
Parse C as (¢, 0,€)
K «— PKEM.Decap(sp, sk, )
If K = 1 then return L
FElse
K« H(y, pk, o, K)
Return SYM.Dec(K, e)

Theorem 2. In the USK model, the proposed generic stateful public key en-
cryption scheme StPE described above is IND-CCA secure if the underlying hash
function H is modeled as random oracle; the underlying PKEM scheme is OW-
EKCA secure; and the underlying SYM scheme is IND-CCA secure. More pre-
cisely, we have

AVEEEOA0) < AdvEHERT ) + AdvERRE ),

where A denotes the security parameter; A, By and Bs denote the corresponding
attackers as defined in Section [2

4 Applications

4.1 A StPE Scheme Based on the Identity-Based Technique by
Boyen, Mei and Waters

One of interesting applications of our generic constructions is to build StPE
based on the identity-based technique which converts IBE schemes into (possibly
efficient) IND-CCA secure PKE schemes in the standard model [I3]. (Recall
that Bellare et al. [6] asked whether the PKE schemes constructed in this way
have stateful variants.) Among various identity-based techniques available in
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the literature, we select, due to their efficiency, one of Boyen, Mei and Waters’
presented in [I1], and Boneh and Katz’s one presented in [I0], both of which are
essentially yielded from the Boneh-Boyen selective-ID IBE [9].

We now describe a PKEM scheme derived from Boyen et al.’s KEM scheme
in [I1], which we denote by BMW. Readers are referred to Appendix for the
application of our generic construction of StPE to Boneh and Katz’s identity-
based technique [10].

Description of BMW PKEM. By simply rearranging Boyen et al.’s KEM scheme,
one can obtain BMW as follows. On input 1*, BMW.Setup picks groups G and G
of prime order ¢, generated by g and h respectively. It then constructs a bilinear
map e : G x G — Gy. It picks a collision resistant hash function Hy : G — Z,.
Finally it returns sp = (A, ¢, g, h, G, G,Gr, e, H,). BMW.KG(sp) selects « & Zq
and [ < h®, and computes Z < e(g,!). (Note that [ € (G) It then picks x pid Zq

and y & Zq, and computes u < ¢g* and v « gY. It chooses a random seed s
and returns sk = (pk,l, x,y) and pk = (s, Z,u,v). The rest of the algorithms are
described as follows:

BMW.Encapl(sp) BMW.Encap2(sp, pk,r,v9)  BMW.Decap(sp, sk, v, o)

P Ly —gt we H(y) w — H (1))
Return (r,) oc—uv", K «— Z" W« x +yw (mod q)
Return (o, K) If 4 = o then

K «— e(¢,1); Return K
Else return L

Note that in the above description r denotes state information (represented
by w in Definition [3]). Hereinafter, we use r to denote state information.

StPE from BMW PKEM. In [I1], the BMW scheme is shown to be IND-CCA
secure assuming that the Decisional Bilinear Diffie-Hellman (DBDH) problem is
intractable. We now prove that it satisfies reproducibility (Definition [H) as well.

Lemma 1. BMW PKEM is reproducible.

Proof. Let sp = (A, q, g9, h,G,G, Gr,e,H) be a system parameter. Let sk =
(I,z,y) and pk = (s, Z,u,v), where | = h® for random a € Z;, u = ¢g* and v =
g¥, be private and public keys respectively Suppose that another private/public
key pair (sk’,pk’) such that sk’ = (l’ 2’ y") and pk’ (s', 7' ,u',v"), where
I = h® for random o € Zg, v = g® and V' = ¢¥, is generated. Also, let
(,0) = (g",u"v™) for random r € Z,, where w = Hs(¢)), and K = Z".

Given (sp, pk, ¢, o, sk’, pk’), one can compute w' «— Hgy (1); o' — P* Ty’

K' e(w, /) and outputs (¢/,K’). Note that ¢ = ¢’ = gr(@'+v “’) =
Y7 YW — 5/ agsuming that w’ =2/ +y'w’ (mod ¢). Note also that( Wav'™ o)
is a Diffie-Hellman tuple, and that K’ = e(y,l') = e(g,l')" = Z’T. Thus,
(o', K') = PKEM.Encap2(sp, pk’,r, v).
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Now, assume that the key space of g of the BMW scheme is the same as that
of the symmetric encryption scheme, which we denote by SYM. (Note that this
can easily be achieved by providing the key K to the key derivation function
(KDF) [14]. If the KDF is secure in the sense of “indistinguishability” as defined
in [I4] and the original KEM is IND-CCA, the resulting KEM scheme is also
IND-CCA, which can easily be shown.) Then, if the SYM scheme is IND-CCA
secure, by the result of Theorem [l the StPE scheme based on BMW PKEM is
IND-CCA secure in the KSK model without the random oracles.

4.2 A StPE Scheme Based on the Identity-Based Technique by
Boneh and Katz

Another StPE scheme based on the identity-based technique can be built using
our generic construction. This time the underlying PKEM scheme is derived
from Boneh and Katz’s [10] identity-based technique. By BK, we denote this
PKEM scheme.

Description of BK PKEM. On input 1%, BK.Setup first picks groups G and
G of prime order ¢, where G is generated by ¢. It then constructs a bilinear
map e : G x G — Gy. It selects a pseudorandom generator G : G; — {0,1}*, a
second-preimage resistant hash function H : {0, 1} — {0,1}'?® and a message
authentication scheme MAC=(7,V). - 7 and V are tagging and verification algo-
rithms respectively. Finally it returns sp = (X, q,9,G, Gy, e,¢(g,9), G, H, MAC).
BK.KG(sp) picks oy & ZLg, aia & Zq and x & Zgq; computes g1 «— g, g2 — g2,
g3 — ¢° and Z < e(g,9)*®. It chooses a hash function h from a family of
pairwise independent hash functions. It returns sk = (a1, ag,x, h) and pk = (g1,
92, g3, Z, h). The rest of the algorithms are described as follows:

BK.Encapl(sp) BK.Encap2(sp, pk, r, 1) BK.Decap(sp, sk, v, o)

r& Lq; » — g" s & {0,1}*8 Parse o as (p,0,¢,7);

Return (r, ) ki — h(s); K & Kx t & Zg (Klls) — 6@
p—H(s); 0 — gsgs” Gle(prrertloateng=t g))
¢ —G(Z") & (K]|s) ki — h(s)
T T(ki,(¥,0,9)) If V(k1,(¥,0,¢),7) = 1 and
0.<_(p797¢77-) H(s):pthen
Return (o, K) return K

Else return L

StPE from BK KEM. We first prove that BK has the reproducibility (Definition ).
Lemma 2. BK PKEM is reproducible.

Proof. Let sp = (A, ¢,9,G,Gq,e,¢e(g,9), G, H MAC) be a system parameter as
defined earlier. Let sk = (a1, g, z, h) and pk = (g1, 92, g3, Z, h), where g1 = g**,
g2 = g*%, g3 = ¢*, Z = e(g,9)*" and h is drawn from a family of pairwise
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independent hash functions, be private and public keys respectively. Suppose
that another private/public key pair (sk’, pk’) s/uch that s%;’ = (a’l,a’?,ax’,h’)
and pk/ = (9/17 9/27 gé’ Zl? h’/)v where gll = g™, gé = 9”2, 91/3 =9, Z' =
e(g, g)o‘/l"”l and A’ is drawn from a family of pairwise independent hash functions,
is generated. Also, let ) = ¢" and o = (p, 0, ¢, 7), where p = H(s), 6 = g5g5",
¢ = GZ") @ (K||s) and 7 = T (k1,(¢,0,0)), where k1 = h(s), for random
r€Zg, s€{0,1}* and K € K.

Given (sp,pk, 1,0, sk’,pk’), one can compute s’ & {0,1}48; o' «— H(s');
0 — g KOS K ¢ = Gle(b9)™™) @ (K||); by — 1(s); 7/
T (K, (v,0",¢")) and output o’ = (p', 6, 7') and K'.

Note that @' = 2= ? = grozgre'H(s") — (g0)7(g4)" () Note also that
e(,g))" = e(g,g})™ = Z'. Tt is clear that 7’ is valid. Thus, (¢/,K’) =
BK.Encap2(sp, pk’, r, ).

Note that the above BK PKEM scheme is derived simply from the Boneh and
Katz’s PKE scheme (converted from selective-ID IBE) by providing a random
key instead of a plaintext as input to the encryption algorithm (and separating
the ciphertext part which depends on the system parameter only). One can easily
show that if Boneh and Katz’s PKE scheme is IND-CCA secure relative to the
DBDH problem, which is actually shown in [T0], the BK KEM scheme is also
IND-CCA secure assuming that the DBDH problem is hard. Now, assume that
the key space of Kx of the BK scheme is the same as that of the symmetric
encryption scheme SYM. Then, if the SYM scheme is IND-CCA secure, by the
result of Theorem [ the StPE scheme from BK PKEM is IND-CCA secure in
the KSK model without random oracles.

4.3 A StPE Scheme from Kiltz’s KEM Scheme

One can also apply the generic construction presented in Section Bl to the KEM
scheme proposed by Kiltz [18] very recently. Next, we describe the PKEM version
of this scheme, which we denote by KI.

Description of KI PKEM. On input 1*, Kl.Setup picks a group G of prime order ¢,
generated by g. It then picks a target-collision resistant hash function H : G — Z,
and a key derivation function KDF. Finally it returns sp =(\, ¢, g, G, H, KDF).
KI.KG(sp) picks x & Zq and y & Zg4, and computes u «— ¢* and v «— ¢g¥. It
returns sk = (z,y) and pk = (u,v). The rest of the algorithms are described as
follows:

KI.Encapl(sp) KI.Encap2(sp, pk, r, 1) Kl.Decap(sp, sk, v, o)
r & Ty e g teHE); o — (u'v) t —H(y)
Return (r,v) K «— KDF(u") K «— KDF(y®)
Return (o, K) If p**tY = &
Return K

Else return L
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StPE from KI PKEM. We prove that the above KI PKEM scheme satisfies the
reproducibility.

Lemma 3. KI PKEM is reproducible.

Proof. Let sp = (A, q,9,G,H,KDF) be a system parameter. Let sk = (x,y) and
pk = (u,v), where u = g* and v = g¥. Suppose that another private/public key
pair (sk’, pk’) such that sk’ = («/,y') and pk’ = («/,v’), where v’/ = ¢* and
v = g¥', is generated. Also, let (,0) = (¢", (u'v)"), where t = H(¢)).

Given (sp, pk, ¥, 0, sk’ pk'), one can compute o/ «— = V", K’ — KDF(1)*"),
where t = H(1)), and output (¢/, K’). Note that o/ = g"(@"t+v') = (g='tgv'yr =
(w't")". Thus, (¢/, K') = PKEM.Encap2(sp, pk’, r, v).

Tt is shown in [I§] that the above KI PKEM scheme is IND-CCA secure assuming
that the Gap Hashed Diffie-Hellman (GHDH) problem is hard and the underlying
hash function H is target-collision resistant.

Thus, assuming that the key space of Kx of the KD scheme is the same as
that of the symmetric encryption scheme SYM and the SYM scheme is IND-CCA
secure, the StPE scheme based on KI PKEM is IND-CCA secure in the KSK
model without the random oracles, by the result of Theorem [

4.4 A StPE Scheme from the Diffie-Hellman KEM Scheme

The stateful version of DHIES [I] proposed in [6] can actually be explained using
our generic construction presented in Section We now present a PKEM
version of the Diffie-Hellman KEM, which we denote by DH as follows.

Description of DH PKEM. On input 1*, DH.Setup picks a group G of prime order

q, generated by g¢. It then returns sp = (A, ¢, g, G). DH.KG(sp) picks x pid Z4 and
computes y < g*. It returns sk = x and pk = y. The rest of the algorithms are
described as follows:

DH.Encapl(sp) DH.Encap2(sp, pk,r, ) DH.Decap(sp, sk, ¥, o)
r& Zy; b —g" o « ¢ (empty string) K« ¢®
Return (r,) K «—y" Return K

Return (o, K)

StPE from DH PKEM. We prove that the above DH PKEM scheme is OW-
EKCA secure (Definition [6).

Lemma 4. DH PKEM is OW-EKCA secure assuming that Gap Diffie-Hellman
(GDH) problem [22] is intractable.

Proof. Assume that an GDH attacker B is given an instance (), q,G, g, g%, g°).
B sets sp = (\,q,9,G), pk =y = ¢°, ¥* = g% and 0* = ¢ (empty string). B
gives (sp, pk,*,0*) to an OW-EKCA attacker A. Whenever A issues an EKCA
query (pk',¢',¢’, K'), B forwards the query to its DDH oracle and sends back the
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response DDH,(pk’, ', K') to A. (Note here that the DDH oracle DDHg4(-, -, -)
returns 1 if a given tuple is (g*, g, g*") for u,v € Z; and returns 0 otherwise.)
When A outputs it guess K, B returns it.

Hence, assuming that the key space of Kk of the DH scheme is the same as
that of the symmetric encryption scheme SYM and the SYM scheme is IND-
CCA secure, the StPE scheme based on DH is IND-CCA secure in the USK and
random oracle model, by the result of Theorem [2

5 Discussions

It is clear that the StPE schemes built from BMW PKEM in the Section L] and
BK PKEM in Appendix are more efficient than the original PKE schemes
based on the identity-based techniques presented in [11] and [10] respectively
since the PKEM ciphertext (¢, 0) and the key K are reused across encryptions
directed to one receiver whose public key is pk. The proven security of these
schemes ensures that reusing one instance of internal randomness appeared in
the “state” across multiple receivers do not compromise the confidentiality. More-
over, the proof of security does not depend on the random oracles.

We note that the stateful version of the Kurosawa-Desmedt PKE scheme
presented in [6] cannot be explained using our generic construction since the un-
derlying PKEM defined in the same way as [20] is not IND-CCA secure as shown
in [16]. However, we remark that by defining an extension of our approach based
PKEM called “Tag-PKEM” (similar to Tag-KEM [3]), which provides a tag as
input to PKEM.Encap2, one could analyze the stateful version of the Kurosawa-
Desmedt PKE scheme in [6]. But we realize that a definition of IND-CCA of
Tag-PKEM needs to allow an attacker to have access to a new kind of encapsu-
lation oracle which returns outputs of PKEM.Encap2 computed under the same
internal state but different tags. Note that this oracle is required to simulate
the encryption oracle of StPE, when it is queried by (1, M), ..., (1, M,,), whose
responses should be encryptions of M, ..., M, under the same state. (In the
IND-CCA definition of stateless PKE, this special type of oracle is not required.)
Consequently, one cannot “reuse” the results of the security analysis of various
Tag-KEMs available in the literature, as they need to be analyzed under this
new security definition which is stronger than the normal IND-CCA definition
of Tag-KEM given in [3].

Finally, we remark that along with the efficiency issue pointed out in [@],
there is also a technical reason why constructing stateful versions of the RSA
(or possibly usual integer factorization based schemes) is not very feasible: The
reproducibility of PKEM (Definition [{) or OW-EKCA (Definition [@]) is indeed
strong property that many integer factorization based encryption schemes in
which different receivers should have different modulus to guaranteer security
are not likely to satisfy. Nevertheless, more elaboration on this issues would be
an interesting area of research.
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