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Abstract. Efficient implementations of cryptosystems are important
in order to conserve resources, memory, power, etc., which will enable
resource-limited devices to compute necessary cryptographic operations.
One technique that successfully reduces the number of necessary oper-
ations is the use of a signed digit representation for the key, because
it reduces the nonzero density of the representation. One such signed
digit representation is the non-adjacent form or NAF . Moreover, one
can make more reductions in the number of nonzero symbols of the key
by expressing the key with a w-ary NAF or wNAF form. A drawback is
that one needs to parse the key twice, once to construct the wNAF rep-
resentation and the second time to perform the necessary cryptographic
operation. At Crypto 2004 [10], Okeya et. al. introduced a w-ary repre-
sentation wMOF , which possess the same nonzero density as wNAF ,
as well as an algorithm that computes wMOF in a left-to-right manner
utilizing very little memory (“memory-less”). At that time, the authors
noted that a left-to-right “memory-less” algorithm that computes wNAF
is an open problem. In this work, we define wNAF ∗, a generalization of
wNAF . Further, we construct a left-to-right “memory-less” algorithm
that computes the w-ary wNAF ∗ representation of a key and demon-
strate that wNAF ∗ is as efficient as wNAF . Our work will demonstrate
that the left-to-right wNAF ∗ recoding algorithm closely resembles the
right-to-left wNAF recoding algorithm.

1 Introduction

It is well known that if one uses a signed digit representation of the cryptographic
key then one can reduce the number of complex computations that are needed
to perform the cryptographic operation. One such signed digit representation
is the non-adjacent form or NAF . By expressing a key in NAF form, one will
reduce the number of nonzero symbols, however this will introduce signed digits.
Fortunately, in many algebraic settings an inverse is very efficient to compute.
This is especially true when using elliptic curve cryptosystems (ECC), where the
inverse (negative) of an ECC point can be trivially computed from the EC point.
When using the NAF form of a key, the computational complexity of computing
the scalar multiple kP will be very efficient, since the hamming weight of a key
in NAF form is less than the hamming weight of a key. One can make further
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reductions in the number of nonzero symbols of the key by expressing it with a
w-ary NAF or wNAF form [2]. RSA and discrete-log cryptosystems would also
benefit by expressing a key in NAF or wNAF form because of the reduction of
the hamming weight (number of nonzero bits) of the key. In order to be more
succinct, we will emphasize the use of NAF and wNAF with ECC, however our
work will impact efficient implementations of all cryptosystems.

Algorithms demonstrating how to compute the NAF form of a key can be
found in [2,12,4] and algorithms to compute the wNAF form are provided in [2,4].
In addition to NAF, there are other alternative ways to reduce the number of
nonzero symbols in the key representation by using techniques such as sliding
window with NAF [3].

At Crypto 2004 Okeya et. al. [10] introduced a left-to-right binary signed digit
recoding algorithm called Mutual Opposite Form or MOF . The goal of the au-
thors of [10] was to develop an algorithm that constructs an “efficient signed
digit representation that could be computed in a left-to-right manner without
requiring additional storage”. That is, a signed digit representation that can be
computed in a left-to-right manner on-the-fly. The importance of such a con-
struction is that as the key bits are generated (in a left-to-right manner), one
can immediately construct the signed digit representation. Further, one can im-
mediately start the computation of the cryptographic operations as the most
significant digits of the signed digit representation become available. This is a
good security practice, in that the secret key should only be available to soft-
ware modules that require it. Moreover, it is good practice to limit the number of
software modules that use/possess key. Consequently, if the cryptographic com-
putation can be computed simultaneously as the signed digits are generated, this
would limit the access of the key to software modules.

A left-to-right construction of a signed digit representation NAF was first
constructed in [5], however this construction was limited to w = 2 and the au-
thors did not provide a left-to-right algorithm of the more efficient representation
wNAF . In [10], it was noted that the construction of a memory-less left-to-right
algorithm for wNAF is an open problem. In this work, we examine the open
problem posed in [10], and provide an algorithm that can construct a left-to-right
wNAF ∗ algorithm, where wNAF ∗ is a left-to-right generalization of wNAF .

Summary of our results. We will address an open problem by defining a
signed digit representation wNAF ∗ and constructing a left-to-right “memory-
less” method for computing wNAF ∗. Our work will establish the relationship
between left-to-right w-ary signed digit recoding and right-to-left w-ary signed
digit recoding. We will also provide several algorithms, including an algorithm
that computes the ECC scalar multiple kP , processing the key k using the left-
to-right wNAF ∗ recoding.

2 Background

In [11], Reitwiesner introduced the signed digit representation referred to as
NAF. The definition that an integer k is written in NAF form is:
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Definition 1 (NAF). [2] A nonnegative integer k =
∑n−1

i=0 ki2i where ki ∈
{−1, 0, 1} is said to be in non-adjacent form (NAF) provided ki · ki+1 = 0 for
i = 0, ..., n − 2.

Reitwiesner’s algorithm [11] efficiently converted a binary number to signed-digit
NAF form using a right-to-left method, see Algorithm 1.

Throughout this paper we will abbreviate −1 as 1. The following are some
well-known results concerning the NAF form of an integer. Every positive integer
k has a unique NAF representation [1, 2]. The length of k written in NAF-form
is at most one bit longer than the length of k. In [1], it was proven that the
expected number of nonzero symbols in a NAF representation was 1/3 times the
length of k. In general, one would expect a random k to have an equal number
of 1’s as 0’s.

Joye and Yen proposed two left-to-right binary signed-digit recording algo-
rithms in [5]. Based on Reitwiesner’s algorithm and the left-to-right addition
algorithm [9], Joye and Yen developed the first left-to-right recoding algorithm
which preserves the NAF property. Joye and Yen also developed a more effi-
cient left-to-right signed digit recoding algorithm whose output possessed the
same nonzero density properties as a NAF representation.

One can make further reductions in the number of nonzero symbols by utiliz-
ing a w-ary NAF form or wNAF . Formally the definition of wNAF is:

Definition 2 (wNAF). [4] Let w > 2 and k a positive integer. We say that
k =

∑n−1
i=0 ki2i is a wNAF representation of integer k provided (i) kn−1 �= 0, (ii)

for all nonzero ki, ki is an odd integer with |ki| < 2w−1, and (iii) at most one
of any w consecutive digits ki, ki+1, ..., ki+w−1 is nonzero.

The term 2NAF is often used to describe a NAF representation. The ratio of
nonzero symbols to symbols in a wNAF representation has been shown to be on
average 1/(w + 1) [2, 10].

At Crypto 2004, Okeya, et.al. [10] created a sparse representation of a key,
which can be constructed using a left-to-right pass through the key, utilizing little
memory. The representation they introduced was the Mutual Opposite Form
(MOF).

Definition 3 (MOF). [10] A n-bit integer is represented using the mutual op-
posite form (MOF) provided:

1. the signs of adjacent nonzero bits are opposite sign
2. the most significant bit is 1 and the least significant bit is −1, unless all

bits are zero

Okeya et. al. [10] then generalized this to construct wMOF.

Definition 4 (wMOF). [10] A signed digit representation satisfies wMOF pro-
vided

1. The most significant nonzero digit is positive.
2. All but the least significant nonzero digit x are adjoint by w − 1 zeros as
xxxx(i) if 2k−1 < |x| < 2k for 2 ≤ k ≤ w − 1 the pattern is 0...0x0...0 (k

leading zeros and w − k − 1 trailing zeros),



432 B. King

xxxx(ii) if |x| = 1 we have either the pattern x000...0 (w − 1 trailing zeros)
and the next lower nonzero digit has opposite sign to x or the pattern 0x0...0
(w − 2 trailing zeros) and the next lower digit has the same sign as x, and

xxxx(iii) if x is the least significant nonzero digit, it is possible that the number
of right-hand adjacent zeros is smaller than the stated above. It is not possible
that the last nonzero digit is a 1 following any nonzero digit.

3. Each nonzero digit is odd and less that 2w−1 in absolute value.

In [10], the authors provided an algorithm that constructs the wMOF repre-
sentation in a left-to-right manner and showed that the nonzero density of a
wMOF representation was 1/(w + 1), the same as wNAF .

The amount of precomputations represent both a computational resource re-
quirement as well as a memory requirement. Because the inverse (negative) of
the group operation in an Elliptic Curve Cryptosystem is trivial to compute,
one does not need to pre-compute nor store negative multiples of the EC point,
since the negative of an EC point can be computed requiring very little resources
and can be computed as needed. In addition to the left-to-right algorithm which
computes the wMOF representation, Okeya et. al. also constructed a left-to-
right algorithm that computes wNAF . Unfortunately their algorithm requires
additional memory and hence it is not a memoryless left-to-right algorithm. In
their left-to-right wNAF algorithm, they require O( n

w ) memory (see Table 5).
In practice since w will be constant, this is O(n) amount of memory. In our al-
gorithm that computes wNAF ∗, we require no additional memory. The nonzero
density for wNAF is the optimal value 1/(w + 1). We will establish that the
nonzero density of wNAF ∗ is also 1

w+1 and the precomputations needed by
wNAF ∗ is identical to wNAF . Reminder, other cryptosystems like RSA and
discrete-log cryptosystems would realize improved efficiency when using a key in
wNAF form.

3 NAF and NAF ∗

Algorithm 1 illustrates Reitweisner’s canonical recoding of the key k, computed
in a right to left manner. In this case k = (dn−1, dn−2, . . . , d2, d1, d0) =

∑n−1
j=0 dj ·

2j. This algorithm saves each carry cj that is produced during each iteration,
though one only needs to know the current carry-in, the current symbol di and
the lookahead symbol di+1.

Algorithm 1 can be expressed in a table format, see Table 1. Here di denotes
the current symbol, di+1 denotes the lookahead symbol and C denotes the carry-
in. The output symbol is δi. A second output symbol is C which is the carry-out
and becomes the next carry-in symbol.

In addition to constructing a left-to-right wMOF representation, Okeya, et. al.
constructed a left-to-right NAF algorithm (see Algorithm 5 in [10]) but this con-
struction required external memory. They needed to track the number of consecu-
tive ones that are visited. Because the number of consecutive ones could be on the
order of n, at least O(log2 n) memory is needed. By applying a innovated tech-
nique we can create a left-to-right binary encoding which we call NAF ∗, which
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Algorithm 1. Reitwiesner’s canonical recoding [5, 2, 11]
1: INPUT: dn, ..., d0

2: OUTPUT: δn+1, ...., δ0

3: c0 ← 0
4: for j = 0 to n + 1 do
5: cj+1 ← �(dj + dj+1 + cj)/2�
6: δj ← dj + cj − 2cj+1

7: return δn+1δn−1 . . . δ0

Table 1. Reitwiesner’s algorithm to compute right-to-left NAF

Carry-in Current Lookahead Output
C Symbol di Symbol di+1 result δi

0 0 x δi = 0, i ← i + 1, and set C = 0
0 1 0 δi = 1, i ← i + 1, and set C = 0
0 1 1 δi = −1, set C = 1 and i ← i + 1
1 0 0 δi = 1, i ← i + 1, and set C = 0
1 0 1 δi = −1 and set C = 1 and i ← i + 1
1 1 x δi = 0 and set C = 1, i ← i + 1

Here x

represents a don’t care, it can be either 0 or 1.

requires no additional storage. We amend the definition of NAF to form our de-
finition of NAF ∗. Our technique mimics the right-to-left NAF computation. For
example when encountering a sequence 11 (in a right-to-left manner) the NAF
computation makes the replacement of 11 with 01 and a left carry of one. When
we encounter 11 in a left-to-right manner, then we have already processed the bit
prior to the sequence 11 (to the left). Since we have already processed the bits to
the left, we can only create “carries to the right”. Hence we replace 11 by 20 with
a carry-to-the right of 2 (here 2 denotes negative 2). Of course the sequence 11
represents 3=2*1+1, whereas the sequence 20 with a carry-to-the right of 2 rep-
resents 2 ∗ 2+1 ∗ 0+ 1

2 ∗ 2 = 3. It is of course straightforward to handle sequences
01, 10, and 00. What remains to be considered are the cases when we have carry-
in’s from the left, which can occur, such as in the case described above. The only
two possible carry-in symbols will be 0 and −2 = 2. Recall, we are examining cur-
rent symbol di while the lookahead symbol is di−1. The possible values that these
two consecutive symbols can represent are determined by 2 ∗ di + di−1 (integers
between 0 and 3). If we have a carry-in (from the left) of −2, then this would be
placed in the di place. This would be equivalent to a value of −2∗2 = −4, thus we
must add −4 to the possible values, resulting in a sequence of integers between −4
to −1. In NAF ∗, we use an extended set of symbols that consist of 0, ±1, and ±2.
Table 2 illustrates how we handle the cases of a left carry-in of −2 = 2. The defin-
ition of NAF ∗ is identical to that of NAF except the symbols can consist of 0, ±1,
and ±2 (whereas NAF restricts them to 0 and ±1). An integer k =

∑n−1
i=0 ki2i

is expressed in NAF ∗ form provided ki ∈ {0, ±1, ±2} and ki · ki−1 = 0 for all
i = 1, . . . , n − 1.
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The computation of the NAF ∗ recoded key can be generated using Table 2,
where the initial value for C is 0 and i = n − 1. Here the key k = dn−1 . . . d1d0.
Further, for obvious reasons we use d−1 = d−2 = 0.

Table 2. Left-to-right NAF ∗

Carry-in Current LookaHead result
C Symbol di Symbol di−1 δi

0 0 x δi = 0, i ← i − 1, and set C = 0
0 1 0 δi = 1, i ← i − 1, and set C = 0
0 1 1 δi = 2, i ← i − 1, and set C = −2

−2 0 0 δi = −2, i ← i − 1, and set C = 0
−2 0 1 δi = −1, i ← i − 1 and set C = −2
−2 1 x δi = 0, i ← i − 1 and set C = −2

Here x represents a don’t care, it can be either 0 or 1.

We now describe NAF ∗ in algorithm form. That is the following algorithm is
an implementation of Table 2.

Algorithm 2. NAF ∗

1: INPUT: dn, ..., d0

2: OUTPUT: δn, ...., δ0δ−1
3: cn ← 0
4: for j = n downto 0 do
5: cj−1 ← −2 · (�(dj + dj−1 + |cj |

2 )/2�)
6: δj ← dj + cj − 1

2 · cj−1

7: δ−1 ← c−1

8: return δnδn−1 . . . δ0δ−1

In Algorithm 2, because we execute left-to-right, carries are either −2 or 0.
This explains the use of the absolute value and the fraction 1

2 in line 5 and the
use of the fraction 1

2 in line 6.

Example 1. The following example illustrates both the NAF recoding and the
NAF ∗ recoding for a key k.

Key k xx 1 0 0 1 1 0 1 1 0 1 0 1 1 1 1 xx

NAF recoding of k xx 1 0 1 0 0 1̄ 0 0 1̄ 0 1̄ 0 0 0 1̄ xx

NAF ∗ recoding of k xx 1 0 0 2 0 1̄ 0 0 1̄ 0 1̄ 0 0 0 0 2̄
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The reason for the 2̄ symbol in the NAF ∗ recoding (see the far right symbol), is
that this occurs in the case where i = −1, i.e. δ−1 = 2̄. That is, the length of the
NAF ∗ recoded key is one symbol longer than that of the key k = dn−1, . . . , d1, d0.
Much like NAF, the recoding NAF ∗ may have a length of one symbol longer
than the length of the key but the extra symbol occurs in the far right place
(where i = −1).

Theorem 1. The NAF ∗ algorithm, as described by Table 2, when applied to
k will produce a recoded sequence of symbols satisfying NAF ∗, such that the
sequence is equivalent to k

Proof. To establish this theorem we are left to show that after each iteration i
of applying Table 2, we have a sequence of symbols which is equivalent to the
key k. We will assume that prior to the ith iteration the result computes the key.
Prior to the ith iteration we have completed the i + 1st iteration. Thus we have
computed δn−1, . . . , δi+1, the carry C, which we will denote as CIN (since this
is the carry-in to the ith iteration), as well as the symbols di, . . . , d0 which have
not been processed. Thus

k = CIN · 2i +
n−1∑

j=i+1

δj · 2j +
i∑

j=0

dj · 2j . (1)

Now after the ith iteration we have processed di based on CIN and di−1. The
result is that we have now computed δi and COUT (the C value which is the
carry-out after the ith iteration) based on Table 2. Consider COUT · 2i−1 + δi ·
2i+

∑n−1
j=i+1 δj ·2j +

∑i−1
j=0 dj ·2j . We need to show that this value is equivalent to

equation (1). By cancelling the common terms, we are left to show CIN ·2+di·2 =
COUT + δi · 2. By examining each row of Table 2, we see that this equation is
valid for each possible input and so this establishes the theorem.

•
Observe that there is a natural mapping between the execution of the NAF algo-
rithm and the execution of the NAF ∗ algorithm. This is clearly demonstrated by
a comparison of Table 1 and Table 2. The mapping is implied by the correspon-
dence between rows of the tables. This is a one-to-one mapping such that NAF
outputs a nonzero symbol iff NAF ∗ outputs a nonzero symbol and NAF out-
puts a carry term that is nonzero iff NAF ∗ outputs a carry term that is nonzero.
By [1], the expected hamming weight of a key, of length n, recoded in NAF is
n
3 . This mapping, together with the result by [1], establishes the following.

Theorem 2. The expected hamming weight of a NAF ∗ recoded key of length
n is n

3 .

Proof. This theorem follows from the result that the expected hamming weight
of a key recoded in NAF form is n

3 , and the fact that there exists a natural
one-to-one mapping between NAF recoding and a NAF ∗ recoding (as described
above). Since the input distribution, as well as the distribution of zero vs. nonzero
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carry symbols are identical, we see that under this mapping and due to the result
by [1], the expected hamming weight of a NAF ∗ recoded key is n

3 .
•

Consequently NAF ∗ is as “efficient” as NAF except NAF ∗ allows the use of the
symbols 2 and −2. Thus when applying NAF ∗ to perform an ECC scalar multi-
ple, it appears that a precomputation of 2P will need to be performed, however
2P always must be computed. Consequently, no additional precomputation is
needed. The ECC scalar multiple algorithm is provided in the Appendix, see
Algorithm 4.

4 wNAF and wNAF ∗

The following is a right-to-left calculation for wNAF as provided in [12,10]. Note
that the term “mods”, as used in Algorithm 2, is defined as: x mods y returns
a value j such that −y/2 ≤ j < y/2 and j mod y = x mod y. For example
5 mods 16 = 5 and 11 mods 16 = −5.

Algorithm 3. wNAF [12, 10]
1: Input: width w and n-bit integer d
2: Output: wNAF δnδn−1 . . . δ0 of d
3: i ← 0
4: while d ≥ 1 do
5: if d is even then
6: δi ← 0
7: else
8: δi ← d mods 2w

9: d ← d − δi

10: d ← d/2; i ← i + 1
11: return δnδn−1 . . . δ0

Algorithm 3, which computes the wNAF recoding, can be rewritten in table
form, see Table 3. The correctness of the table can be established by consider-
ing the various cases and applying the above algorithm. We omit the proof of
correctness for the table.

4.1 wNAF ∗

We modify the NAF ∗ construction and apply techniques that mimic a right-
to-left wNAF construction to construct a wNAF ∗ definition and recoding algo-
rithm. Again as our algorithm parses the key in a left-to-right fashion we will
restrict ourselves to a carry-in of 0 or −2. Observe that in the definition of
wNAF , a nonzero integer ki is such that it is a most w − 1 bits, where the low-
bit is a one (i.e. it is an odd integer) and the high bit is zero (thus the absolute
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Table 3. Right-to-left wNAF

Carry-in Input Output
C R = (di+w−1, . . . , di+1, di) δi result
0 di = 0 δi = 0 , i ← i + 1, and C = 0
0 di = 1 and di+w−1 = 0 (δi+w−1, . . . , δi+1, δi) = (0, 0, . . . , 0, R)

i ← i + w, and C = 0
0 di = 1 and di+w−1 = 1 ∃j dj = 0 (δi+w−1, . . . , δi+1, δi) = (0, 0, . . . , 0, −(2w − R)

i ← i + w, C = 1
0 di = 1 = di+1 = . . . = di+w−1 = 1 (δi+w−1, . . . , δi+1, δi) = (0, 0, . . . , 0, −1)

i ← i + w, C = 1
1 di = 1 δi = 0 i ← i + 1, C = 1
1 di = 0 and di+w−1 = 0 (δi+w−1, . . . , δi+1, δi) = (0, 0, . . . , 0, R + 1)

i ← i + w, and C = 0
1 di = 0 and di+w−1 = 1 (δi+w−1, . . . , δi+1, δi) = (0, 0, . . . , 0, −(2w − (R + 1))

i ← i + w, C = 1

value of ki is less than 2w−1). We need to provide a recoding definition for our
left-to-right construction that mimics these properties. In our definition, if the
symbol is nonzero the left-most bit must be nonzero and the rightmost wth bit
will be zero. We now formalize the definition of wNAF ∗

Definition 5. wNAF∗ Let w > 2 and k a positive integer. Then we say that∑n−1
i=−1 ai2i is a wNAF∗ representation of k provided k =

∑n−1
i=−1 ai2i and

(i) ai is a rational number for all i,
(ii) at most one of any w consecutive symbols ai, ai+1 . . . , ai+w−1 is nonzero,
(iii) for all i, if ai is nonzero then 1 ≤ |ai| ≤ 2,
(iv) for all i, the product ai · 2w−2 ∈ Z, and
(v) for all i, with −1 ≤ i ≤ w − 1 we have ai · 2i ∈ Z.

First observe that if a−1 �= 0 then 1 ≤ |a−1| ≤ 2 and a−1 · 2−1 ∈ Z. Since
1 ·2−1 ≤ |a−1| ·2−1 ≤ 2 ·2−1 = 1 we see that |a−1| = 2. So if a−1 �= 0 then either
a−1 = −2 or a−1 = 2.

Let us now consider ai where i ≥ w−2. Suppose ai is nonzero, without loss of
generality assume that ai > 0. Thus 1 ≤ ai ≤ 2. Then ai = 1+ ε where ε ∈ [0, 1].
Therefore we can express ai as

ai = 1 +
∞∑

j=1

ai,j
1
2j

where ai,j ∈ {0, 1} . (2)

Now ai · 2w−2 ∈ Z. Consequently,

ai · 2w−2 = 1 · 2w−2 +
w−2∑

j=1

ai,j
2w−2

2j
+

∞∑

j=w−1

ai,j
2w−2

2j

where ai,j ∈ {0, 1}. Observe that 1 · 2w−2 +
∑w−2

j=1 ai,j
2w−2

2j ∈ Z. Thus as ai ·
2w−2 ∈ Z we have

∑∞
j=w−1 ai,j

2w−2

2j is an integer. Now 0 ≤
∑∞

j=w−1 ai,j
2w−2

2j ≤ 1.
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Therefore since
∑∞

j=w−1 ai,j
2w−2

2j is an integer, there are two possible cases, it is
either 0 or 1.
Case 1. Suppose

∑∞
j=w−1 ai,j

2w−2

2j = 0. Then ai,j = 0 for all j = w − 1, . . .. So
in this case ai = 1 +

∑w−2
j=1 ai,j

1
2j .

Case 2. Suppose
∑∞

j=w−1 ai,j
2w−2

2j = 1. Then ai,j = 1 for all j = w − 1, . . . and
∑∞

j=w−1 ai,j
2w−2

2j = 1
2 + 1

4 + · · · = 1. Thus in this case
∑∞

j=w−1 ai,j
1
2j = 1

2w−2 .
Recall ai = 1 +

∑w−2
j=1 ai,j

1
2j +

∑∞
j=w−1 ai,j

1
2j , so ai = 1 +

∑w−2
j=1 ai,j

1
2j + 1

2w−2 .
We now examine this latter case, case 2, more closely. Suppose ai = 1 +∑w−2
j=1 ai,j

1
2j + 1

2w−2 . Observe that if ai,j = 1 for all j = 1, . . . , w − 2, then
ai = 2. Suppose there exists a j with 1 ≤ j ≤ w − 2 such that ai,j = 0. Since
ai = 1 +

∑w−2
j=1 ai,j

1
2j + 1

2w−2 , and there exists some ai,j equal to zero, we can
simplify this as ai = 1 +

∑w−2
j=1 bi,j

1
2j where bi,j ∈ {0, 1}. Thus there are three

possible representations for ai, either it is 0, ±2 or ±(1 +
∑w−2

j=1 bi,j
1
2j ) where

bi,j ∈ {0, 1}.
For all cases, when ai is expressed using the representation given in (2), we

see that ai,j = 0 for j = w − 1, . . .. Further, if ai �= 0, nd ai �= ±2, then
we can express ai as |ai| = (1, ai1, . . . ai,w−2, 0). Consequently either ai = 0,
ai = ±2 or it can be interpreted as a w − 1 bit rational number (either positive
or negative). The interpretation of ai as a w −1 bit rational number comes from
|ai| = (1, ai,1, . . . , ai,w−2, 0) = 1 + ai,1

2 + ai,2
22 + · · · + ai,w−2

2w−2 where ai,j ∈ {0, 1}.
Obviously the definition of wNAF ∗ mimics the definition of wNAF. That is,

one can view ai as a w-bit symbol such that if ai is non zero, and if ai �= ±2
then the high bit ai,w−1 is one (this is analogous to the case that in wNAF the
ki is odd) and the far right wth bit is zero. This implies that |ai| is between 1
and 2, such that |ai| = 1 + ai,1

2 + ai,2
22 + · · · + ai,w−2

2w−2 .
Let R be a w − 1-bit (or less) nonzero positive integer. R = rj , . . . , r1 where

rj = 1 and 1 ≤ j ≤ w − 1. Then we define Rfrac as

Rfrac = (1, rj−1 . . . , r1)frac =
j−1∑

i=0

rj−i · 1
2i

= 1 + rj−1 · 1
2

+ · · · + r1 · 1
2j−1 . (3)

4.2 wNAF ∗ Recoding Algorithm

When computing the wNAF representation of a key, we may have carry-in’s
from the right that are 0 or 1. In the left-to-right calculation of wNAF ∗ we
could have carry-in’s (from the left) of either −2 or 0. Table 4 describes how to
construct the wNAF ∗ recoding of key k. We initialize C = 0 and i = n − 1 and
process and compute each output symbol δi in a left-to-right manner. We will
continue until i < −1. It is possible that the last symbol generated δ−1 may be
nonzero.

Observe that termination is guaranteed, because k =
∑n−1

j=0 dj2j , so we inter-
pret input values d−1 = d−2 = 0 (since they do not have any assigned values,
they are correctly treated as zero). Also observe that it is possible that we have
an output result of δ−1 being nonzero (this is illustrated in the Example 2).
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Table 4. Left-to-right wNAF ∗

Carry-in Input Output
C R = (di, di−1, . . . , di−w+2, di−w+1) result
0 di = 0 δi = 0, i ← i − 1, and C = 0
0 di = 1 and di−w+1 = 0 (δi, δi−1, . . . , δi−w+2, δi−w+1) =

(Rfrac, 0, 0, . . . , 0),
i ← i − w and C = 0

0 di = 1 and di−w+1 = 1 ∃j dj = 0 (δi, δi−1, . . . , δi−w+2, δi−w+1) =
(R + 1)frac, 0, 0, . . . , 0),

i ← i − w, C = −2
0 di = 1 = . . . = di−w+1 = 1 (δi, δi−1, . . . , δi−w+2, δi−w+1) =

(2, 0, . . . , 0),
i ← i − w, C = −2

-2 di = 1 δi = 0, i ← i − 1, C = −2
-2 di = 0 and di−w+1 = 0 (δi, δi−1, . . . , δi−w+2, δi−w+1) =

(−(2w − R)frac, 0, 0, . . . , 0),
i ← i − w and C = 0

-2 di = 0 and di−w+1 = 1 (δi, δi−1, . . . , δi−w+2, δi−w+1) =
(−(2w − (R + 1))frac, , 0, 0, . . . , 0),

i ← i − w, C = −2

However if δ−1 �= 0 then δ−1 is either 2 or −2. Further δ−2 = δ−3 = ... = 0. In
Theorem 3 we show that the wNAF ∗ recoding is correct.

Example 2. We illustrate the different recodings systems for a fixedkey k. For a key
k = (1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1) =
3, 918, 617, 943.We express k utilizing the following representations:NAF, NAF ∗,
3NAF, 3NAF ∗, 4NAF, 4NAF ∗, and we provide a generalization of 4NAF ∗ which
uses integer symbols.

keyk 1 1 1 0 1 0 0 1 1 0 0 1 0 0 0 1 0 1 0 1 1 1 0 1 0 1 0 1 0 1 1 1
NAF form
of k 1 0 0 1̄ 0 1 0 1 0 1̄ 0 0 1 0 0 1 0 1̄ 0 1̄ 0 0 0 1̄ 0 1̄ 0 1̄ 0 1̄ 0 0 1̄
NAF ∗ form
of k 2 0 0 1̄ 0 2̄ 0 2 0 2̄ 0 1 0 0 0 1 0 1 0 2 0 0 1̄ 0 1̄ 0 1̄ 0 1̄ 0 0 0 2̄
3NAF form
of k 1 0 0 0 0 3̄ 0 0 0 3 0 0 1 0 0 0 1 0 0 3 0 0 0 1̄ 0 0 3̄ 0 0 3 0 0 1̄
3NAF ∗ form
of k 2 0 0 3̄

2 0 0 0 3
2 0 0 0 1 0 0 0 3

2 0 0 1̄ 0 0 0 3̄
2 0 0 3

2 0 0 1̄ 0 0 0 2̄
4NAF form
of k 0 0 0 7 0 0 0 5 0 0 0 3̄ 0 0 0 7̄ 0 0 0 5̄ 0 0 0 0 3̄ 0 0 0 5 0 0 0 7
4NAF ∗ form
of k 7

4 0 0 0 5
4 0 0 0 0 7̄

4 0 0 0 0 0 5
4 0 0 0 7

4 0 0 0 5
4 0 0 0 3

2 0 0 0 0 2̄
Modified version a

4NAF ∗ form
of k 0 0 7 0 0 0 5 0 0 0 0 7̄ 0 0 0 0 0 5 0 0 0 7 0 0 0 5 0 0 3 0 0 0 2̄
a In this representation we express entries as integers rather than rational numbers.

Observe that we do not necessarily satisfy wNAF properties.
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Theorem 3. Let Δ =
∑n−1

j=−1 δj2j be the wNAF ∗ recoding of key k then Δ = k.

Proof. Our goal is to show that after each iteration we replace key bits dj with
symbols from the wNAF ∗ recoding δj such that result after replacement still
equals k. Assume that prior to the ith iteration we have CIN ·2i +

∑i
j=0 dj ·2j +

∑n−1
j=i+1 δJ · 2j = k.

We now consider each of the seven possible cases, a case for each of the seven
rows of Table 4.

First case, suppose CIN = 0 and di = 0, then trivially after executing the ith

iteration the resulting replacement still equals k.
Now suppose CIN = 0 and di = 1 and di−w+1 = 0. Then R = di . . . di−w+1 =

1xx · · · x0. We replace
∑i

j=i−w+1 dj · 2j by Rfrac · 2i which are equal. Again
trivially after executing the ith iteration the result still equals k.

Now suppose CIN = 0 and di = 1, di−w+1 = 1 and there exists j with
i − w + 1 < j < i such that dj = 0. Then R = di . . . di−w+1 = 1x · · ·x01 · · · 1.
Thus R + 1 = 1x · · ·x10 · · · 0. In this case COUT = −2. Now (R + 1)frac · 2i +
COUT · 2i−w = Rfrac · 2i + 1 · 2i

2−w+1 + −2 · 2i−w = Rfrac · 2i =
∑i

j=i−w+1 dj · 2j .
So the use of (R + 1)frac with COUT of −2 will provide a valid replacement.

Now suppose CIN = 0 and di = 1 = . . . = di−w+1 = 1. Then R =
di . . . di−w+1 = 11 · · · 111 · · ·1. Thus R + 1 = 2w+1. Note (R + 1)frac = 2.
In this case COUT = −2. With an argument similar to the above case, the use
of (R + 1)frac with COUT of −2 will provide a valid replacement.

Now suppose CIN = −2 and di = 1. Then −2 + 1 = −1 so the use of δi = 0
and COUT = −2 will provide a valid replacement.

Now suppose CIN = −2 and di = 0 and di−w+1 = 0. Then R =
di . . . di−w+1 = 1x · · ·x0. Thus −(2w − R) represents the sum of CIN with R.
The use of −(2w − R)frac with COUT of 0 will provide a valid replacement.

Now suppose CIN = −2 and di = 0 and di−w+1 = 1. Then R =
di . . . di−w+1 = 0x · · · x1. Thus R+1 = x′x′ · · · x′0. Consequently −(2w−(R+1))
represents the sum of CIN with R producing a COUT = −2. The use of
−(2w − (R + 1))frac with COUT of −2 will provide a valid replacement.

Thus all seven cases produce a valid replacement.
•

Theorem 3 established that the wNAF ∗ representation is correct (equivalent to
k). We now discuss the “efficiency” of the wNAF ∗ recoding.

Theorem 4. The average nonzero density of a wNAF ∗ recoding is 1
w+1 .

Proof. The exists a natural mapping between wNAF and wNAF ∗. This can be
seen by examining each row of Table 3 with the corresponding row of Table 4.
Under this mapping wNAF produces a nonzero output iff wNAF ∗ produces a
nonzero output and wNAF produces a nonzero carry-out iff wNAF ∗ produces
a nonzero carry out. Since the nonzero density of wNAF is 1

w+1 (see [10]), then
the nonzero density of wNAF ∗ must be 1

w+1 .
•



wNAF ∗, an Efficient Left-to-Right Signed Digit Recoding Algorithm 441

Remark. In the appendix we illustrate how to compute the ECC scalar multiple
(see Algorithm 5 in Appendix). In our algorithm, precomputations of the form
Rfrac · P will need to take place. This can be done by using a halving a point
technique. For example, over binary elliptic curves the halving point algorithm [8]
is very efficient, see [6, 4]. However we could avoid the use of fractional symbols
and use integers (see Example 2, row labeled with a). By doing so we benefit
from the fact we have odd integers less than 2w−1 (in absolute value). Further
this generalization of wNAF ∗ will have the same nonzero density as wNAF ∗.
Thus this generalization has the same efficiency as wNAF ∗ (in the appendix we
construct the scalar multiple algorithm using this technique, see Algorithm 5).
In general, wNAF ∗ would require one more precomputation than wNAF since
2P would need to be computed and stored, but again 2P would always have to
be computed. Thus no extra precomputations are needed.

Table 5 illustrates the resource requirement of various signed digit recoding
representations. This table was provided in [10], we have added the additional
entry for the resource requirements of our algorithm wNAF ∗. Only wMOF, left-
to-right wNAF b and wNAF ∗ are left-to-right w-ary recoding. However left-to-
right wNAF b, has additional memory requirements. Most importantly wNAF ∗

is much more straightforward to implement than wMOF.

Table 5. Table of various signed digit representations as provided in [10]

Scheme Precomputations density additional memory
wNAF [12,2] 2w−2 1

w+1 O(n)
Koyama [7] 2w−1 − 1 1

w+3/2 O(n)
NAF +SW [3] 1/3(2w + (−1)w+1) 1

w+4/3−ν(w) O(n)
wMOF [10] 2w−2 1

w+1 O(w)

left-to-right wNAF b [10] 2w−2 1
w+1

O( log(w)
w

· n) when w > 2
O(log n) when w=2

wNAF ∗ 2w−2 1
w+1 O(w)

Here ν(w) = (−1)w

3·2w−2 .

5 Conclusion

We have examined an open problem concerning the creation of a left-to-right
on-the-fly implementation of wNAF by defining wNAF ∗ and creating the left-
to-right wNAF ∗ recoding algorithm. Though the wNAF ∗ recoding definition is
not the same as the wNAF definition, it closely mimics the definition. Further
the left-to-right recoding algorithm for wNAF ∗ closely mimics the right-to-left
recoding algorithm of wNAF . Our work has provided the relationship between
a right-to-left wNAF calculation and the left-to-right w-ary non adjacent form
calculation.

When applying the wNAF ∗ representation to the key k in the computation
of the ECC scalar multiple, it at first appears to require the use of halving of a
point computation [8], which is very efficient. However it is possible to modify
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our algorithm to create integer symbols, yet still reaping the same efficiency as
wNAF ∗. Our algorithm provides the optimal nonzero density (which implies
less additions need to take place) while also maintaining the optimal minimal
amount of precomputations (as illustrated in Table 5).
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Appendix

We have modified the algorithm from Table 2 slightly to provide a more straight-
forward implementation of the algorithm, collapsing more than one case (i.e.
more than one row of Table 2) into one logical statement.

We have modified the algorithm from Table 4 slightly to provide a more
straightforward implementation of the algorithm, collapsing more than one case
(i.e. more than one row of Table 2) into one logical statement, this is provided in
Algorithm 5. In Algorithm 6, we have modified Algorithm 5, so that the symbols
produced will be integers. We are using a technique illustrated in Example 2,
row denoted by a and then incorporate this technique to compute the scalar
multiple of an EC point.
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Algorithm 4. Using NAF ∗ to compute the scalar multiple in a left-to-right
fashion
1: INPUT: k = dn−1, ..., d0, and base point P belonging to elliptic curve
2: OUTPUT: kP
3: Compute 2P and store it
4: c ← 0
5: Q ← O { O is the point of infinity}
6: j ← n − 1
7: while j ≥ 0 do
8: if 2 ∗ dj + c = 0 then
9: Q ← 2Q {the next carry-in is the same as the previous carry-in}

10: else
11: Q ← 2Q
12: Q ← Q + (c + dj + dj−1)P
13: if exactly one of c, dj , dj−1 is nonzero then
14: c = 0
15: else
16: c = −2
17: j ← j − 1

{Comment we now handle the case if δ−1 is nonzero}
18: if c �= 0 then
19: Q ← Q + (c/2)P
20: return Q
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Algorithm 5. Computing the EC scalar multiple using the wNAF ∗ algorithm
1: INPUT: k = dn−1, ..., d0, and base point P belonging to elliptic curve
2: OUTPUT: kP
3: FORALL nonzero w bit integers with a leading one and trailing zero r =

(1, x1, . . . , xw−2, 0)
4: Compute rfracP and store in table
5: Compute 2P and store in table
6: c ← 0
7: Q ← O { O is the point of infinity}
8: j ← n − 1
9: ρ ← −1

10: while j ≥ 0 do
11: r = (dj , dj−1, . . . , dj−w+1)
12: if 2 ∗ dj + c = 0 then
13: Q ← 2Q, j ← j − 1
14: else
15: if c = 0 then
16: if dj �= dj−w+1 then
17: t ← rfrac

18: else
19: t ← (r + 1)frac

20: c = −2
21: else
22: if dj = dj−w+1 then
23: t ← −(2w − r)frac

24: c = 0
25: else
26: t ← −(2w − (r + 1))frac

27: if j ≥ w then
28: Q ← 2wQ
29: Q ← Q + tP {use precomputed table to find tP}
30: j ← j − w
31: else
32: ρ ← j
33: j ← j − w
34: if 0 ≤ ρ < w then
35: Q ← 2ρQ
36: Q ← Q + tP {use precomputed table to find tP}
37: else
38: if j = −1 and c = −2 then
39: Q ← Q + −P
40: return Q
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Algorithm 6. Modified version of scalar multiple calculation using wNAF ∗ and
integer constants
1: INPUT: k = dn−1, ..., d0, and base point P belonging to elliptic curve
2: OUTPUT: kP
3: FORALL nonzero w − 1 (or less) bit odd integers r
4: Compute r · P and store in table
5: Compute 2P and store in table {This was actually done some time in line 2}
6: c ← 0
7: Q ← O { O is the point of infinity}
8: j ← n − 1
9: ρ ← −1

10: τ ← 0
11: while j ≥ 0 do
12: Q ← 2τ Q
13: r = (dj , dj−1, . . . , dj−w+1)
14: if 2 ∗ dj + c = 0 then
15: Q ← 2Q, j ← j − 1, τ ← 0
16: else
17: if c = 0 then
18: if dj �= dj−w+1 then
19: Let τ denote the least significant nonzero bit of r (label the LSB of a w

bit integer as the 0 bit)
20: t ← (r/2τ )
21: else
22: Let τ denote the least significant nonzero bit of r + 1 (label the LSB of

a w bit integer as the 0 bit)
23: t ← (r + 1)/2τ

24: c = −2
25: else
26: if dj = dj−w+1 then
27: Let τ denote the least significant nonzero bit of 2w − r (label the LSB of

a w bit integer as the 0 bit)
28: t ← −(2w − r)/2τ

29: c = 0
30: else
31: Let τ denote the least significant nonzero bit of 2w − (r + 1) (label the

LSB of a w bit integer as the 0 bit)
32: t ← −(2w − (r + 1)/2τ

33: if j ≥ w then
34: Q ← 2w−τ Q
35: Q ← Q + tP {use precomputed table to find tP}
36: j ← j − w
37: else
38: ρ ← j
39: j ← j − w
40: if 0 ≤ ρ < w then
41: Q ← 2ρ−τ Q
42: Q ← Q + tP {use precomputed table to find tP}
43: Q ← 2τ Q
44: else
45: if j = −1 and c = −2 then
46: Q ← Q + −P
47: return Q
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