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Abstract. This paper addresses the formal verification of distributed
systems comprising a dynamically changing and potentially unbounded
number of processes. We employ the spotlight principle to obtain a con-
cise finitary abstraction of the system and devise an abstraction refine-
ment strategy guided by the analysis of abstract counterexamples.

It turns out that the key problem for spotlight refinement is the iden-
tification of spurious counterexamples. We observe that the problem is
in general undecidable, and provide a sound but incomplete method that
is able to solve the problem for many practically relevant systems. Our
method is driven by a three-valued satisfaction relation for temporal spec-
ifications that accounts for the fact that concrete counterexamples can
be identified in the abstracted system if they occur within the spotlight.

1 Introduction

Distributed systems comprising a dynamically changing and potentially un-
bounded number of processes naturally occur in various areas of ubiquitous
computing, ad-hoc networking and traffic management systems. For example,
processes may represent mobile devices entering a wireless network, or trains
approaching a railway controller that is responsible for granting movement au-
thorisations (as proposed e.g. in the ETCS Level 3 standard [1]). The correct
treatment of at run-time appearing and disappearing processes adds a new level
of complexity when designing safety-critical distributed systems.

The use of formal methods can help to avoid errors early in the system devel-
opment phase. Formal verification of dynamic behaviour however imposes two
challenges. Firstly, it requires an appropriate formal description of the system
behaviour. This formalism has to go beyond standard notations for reactive sys-
tems like Kripke structures [2,3], because the local states of arbitrary many alive
processes have to be representable. Secondly, automatic verification techniques
like model-checking [3] are a priori only applicable to (small) finite-state systems.
One approach to deal with this problem is to use finitary abstraction [4], that
is, to devise a finite abstraction of the system and to show that the analysis of
the abstract system is sufficient to ensure the correctness of the original system.
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This paper proposes a solution for both of these problems. Inspired by early
work in the area of first-order modal logic [5], we use first-order logical structures
as a formal representation of a global system state. These structures comprise
a set of process identities and an interpretation of predicates for these process
identities. With this, the behaviour of a dynamic system can be represented as
an infinite-state transition system over logical structures. Consequently, we use
a first-order variant of linear temporal logic for the formal requirement specifi-
cation, that is, we allow to quantify over variables denoting process identities.

By a finitary abstraction of the considered systems, we are able to use any
of the highly optimised verification engines (like VIS [6] or SPIN [7]) that are
available for finite-state systems. The employed abstraction follows the spotlight
principle [8] by representing only a finite number of processes exact and col-
lapsing the rest into one dedicated summary process. The number of concrete
processes can easily be determined by the number of variables in the requirement
specification. Formally, the abstraction yields three-valued logical structures, be-
cause the predicate interpretation for the summary process may neither become
true nor false but “maybe” in order to remain sound. The abstract system yields
a sound but incomplete overapproximation of the original system, i.e. the satis-
faction of properties transfers from the abstract to the original system, but in
general not vice versa: Not every property that is valid for the original system
can be proven in the abstraction. This entails the existence of spurious coun-
terexamples which demonstrate the violation of a property in the abstraction,
although the property actually holds for the original system. Thus, an abstract
counterexample can not be “trusted” unless it has been validated. However, due
to the heterogeneous nature of the underlying abstraction, we are also able to
obtain concrete counterexamples directly in the abstracted system, namely if
they occur within the spotlight part of the abstraction. We will formalise this
intuition in the course of this paper, again by the usage of three-valued logic.

Running Example. We use the car platooning scenario to illustrate our approach.
In this case study, cars driving on a highway are supposed to autonomously
form car platoons, i.e. series of interlinked cars driving with only little distance.
To do so, a car can merge with a car driving in front (cf. Fig. 1), and a car
being the head of a platoon can split from its followers. As cars can freely
enter and leave a highway, no finite upper bound on the number of cars can be
made.
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(a) Car u1 approaching the platoon.
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(b) Car u1 has merged with u2.

Fig. 1. Car platooning. A car at the head of a platoon is called a leader (ld), where
a single car is represented as a platoon of size one. A car driving within a platoon is
called a follower (fl). The platoon itself is organised as a doubly-linked list, where each
car has a (communication) link to its front car (fc) and a link to its back car (bc).
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Fig. 2. Spotlight abstraction (cf. Def. 2) and possible refinements

Spotlight Abstraction and Refinement. Figure 2(a) graphically represents the
logical structure according to the global state of the car platooning system in
Fig. 1(a). It comprises three process identities, u1, u2 and u3, and provides the
predicate interpretation by labelling the nodes and arcs by those predicates that
are true for these nodes. For example, the unary predicate ld is true for u1 and
u3 and false for u2, and the binary predicate fc is true only for (u2, u3).

Figure 2(b) shows the abstraction of this structure with only u2 in the spot-
light. The truth values of the predicates are kept only among the processes in the
spotlight, i.e. the abstraction preserves that there exists a follower car with a fc
link to (at least) one abstract car. Any information about the processes in the
shadows however is neglected, i.e. any predicate yields maybe for the summary
process ⊥, as indicated by dashed lines. Hence the summary process in general
considerably overapproximates the original structure, as indicated by the gray
area exceeding the box. This coarse representation is special to spotlight ab-
straction and is the key for easily obtaining the abstract transition system. It
provides a sound abstraction, thus every temporal specification that holds for
the spotlight abstracted transition system also holds for the original transition
system. Besides overapproximating the shadows, the spotlight abstraction also
maintains an underapproximation of the original system regarding the finite set
of spotlight processes. Thus, a natural refinement of the abstraction consists of
enlarging the spotlight. In Fig. 2(c), the spotlight comprises u2 and u3, and the
abstraction now preserves the existence of a valid platoon of size two. But note
that we can only ensure the validity of this spotlight configuration if the system
run leading to Fig. 2(c) is not illegally influenced by the summary process.

In general, the overapproximative behaviour of ⊥ may result in spotlight
configurations that are not reachable in the original system. Another important
refinement is thus to eliminate spurious behaviour of the summary process, as
graphically indicated by a reduced gray area in Fig. 2(d). We will use temporal
assumptions for refining the behaviour of ⊥, stating that certain interactions of
⊥ are not possible in certain spotlight configurations. These assumptions will be
derived from the validation of abstract counterexamples that have been obtained
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for the verification of a given requirement specification. Following the discussion
above, we propose to regard the satisfaction of a temporal specification in a
three-valued fashion, namely as true if it is satisfied in all system runs, false if it
is violated in some run independent of ⊥, and unknown else. In the latter case,
we aim at concretising the abstract counterexample via spotlight extension, that
is, we try to reproduce the behaviour of ⊥ by concrete processes. For this, we
add additional spotlight processes. If the behaviour is not possible with concrete
processes, an assumption for shadow refinement has been obtained and a new
verification task is started under the refined abstraction. If the behaviour can be
validated with concrete processes, we may obtain a concrete counterexample and
are done. But it is also possible that the behaviour of the new spotlight processes
is again influenced by the abstract process, hence we may obtain another abstract
counterexample that itself has to be validated. Therefore, we successively add
concrete processes until a definite answer has been obtained.

The major contribution of this paper is an instantiation of the framework of
counterexample guided abstraction refinement [9] for spotlight abstraction, that
is, we automate the refinement of spotlight abstraction. We observe that, due
to the coarse abstraction, the validation of abstract counterexamples becomes
difficult (and undecidable in general) while the shadow refinement can be shown
to be very effective. We devise a translation from counterexamples to temporal
specifications that on the one hand allows us to validate the counterexample,
and on the other hand is a source for a refinement assumption. The translation
and refinement loop has been evaluated on the basis of a verification toolset [10]
for dynamic systems, and first experimental results are given in Sect. 5.

Related Work. In [11], spotlight abstraction is applied for the verification of
UML models, and the abstraction is manually refined by separately established
assumptions. Our approach allows us to compute such kind of assumptions au-
tomatically. [12] uses a variant of spotlight abstraction for the verification of
parameterised communication models, but they leave out abstraction refinement
as future work. [13] proposes a general strategy for spotlight abstraction refine-
ment by inferring and integrating so-called non-interference lemmata. This idea
is realised in [14] resp. [15], where two particular kinds of invariants, namely non-
interference properties resp. topology invariants, are automatically computed
and integrated into a refinement procedure. These approaches however have no
immediate potential for iteration, i.e. if the refinement by the inferred invariants
is not accurate enough to prove the specification, one remains inconclusive.

Other approaches for analysis of dynamic systems work on graph transfor-
mation systems and define tailored abstraction techniques like Partner Abstrac-
tion [16] or approximation in terms of Petri nets [17]. The latter approach also
applies a CEGAR loop to reduce spurious behaviour stemming from the merge of
graph nodes during the abstraction. However, the unique nature of the spotlight
abstraction principle requires new validation and refinement strategies.

Abstracting a set of concrete nodes to summary nodes is also the underlying
principle of parametric shape analysis [18]. Their abstraction mechanism is more
precise (and therefore more expensive) by creating multiple summary nodes for
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different equivalence classes of concrete nodes. However, concrete nodes may
migrate from one summary process to another, thereby losing their identity
(cf. [8]). In contrast, spotlight abstraction allows us to trace process identities
over the time, which enables the analysis of full temporal properties. On the
other hand, our logic is not expressive enough to reason about the shape of the
overall heap structure, because the transitive closure operator does not fit well
with spotlight abstraction.

2 Preliminaries

In general, abstraction comes hand in hand with a loss of information. To for-
mally characterise partial impreciseness, we use the framework of three-valued
logic according to Kleene [19]. Here, the boolean domain comprises three values,
namely B3 := {0, 1/2, 1}. Besides the value order ≤ on B3 × B3, we consider the
information order � on B3 × B3 defined as b1 � b2 iff b1 = 1/2 or b1 = b2.

As we do not impose an upper bound on the number of currently alive
processes, we assume an infinite set Id = {u1, u2, . . .} of process identities. By
⊥ �∈ Id we denote the summary process, and we set I⊥ := I∪̇{⊥} for any I ⊆ Id.
The actual configuration and evolution of the system will be characterised by a
number of predicates, i.e. we define a signature S = (X , PS, PL, PE) as a collec-
tion of a finite set of logical variables X , a finite set of unary state predicates PS,
a finite set of binary link predicates PL, and a finite set of evolution predicates
PE. For convenience, we set PSL := PS ∪ PL, and P := PS ∪ PL ∪ PE, and denote
the arity of a predicate p ∈ P by kp. With this, a configuration of the system
can be faithfully represented as a first-order logical structure, i.e. a tuple (U , ι)
comprising a set of currently alive processes U ⊆ Id⊥ and an interpretation of the
state and link predicates, i.e. ι yields for each p ∈ PSL a function ι(p) : Ukp ⇀ B3.
For a subset of identities I ⊆ Id⊥, we use MS(I) := {(U , ι) | U ⊆ I} to denote
the set of logical structures where at most the identities from I are present. In
the following, we will represent an interpretation ι by the tuple (ι1, ι1/2) with

ι1 := {p(u1, . . . , ukp) | ι(p)(u1, . . . , ukp) = 1}
ι1/2 := {p(u1, . . . , ukp) | ι(p)(u1, . . . , ukp) = 1/2}.

3 Dynamic Systems

The behaviour of a dynamic system can be formally characterised by a (infinitely
large) labelled transition system where the states are logical structures and the
transitions are labelled by evolution predicates. To actually model such systems,
we introduce a symbolic description of a dynamic system as a set of evolution
rules D, each of them comprising a label, a guard and a sequence of actions. The
label is a term over evolution predicates PE, i.e. it is of the form p(x1, . . . , xkp)
with xi ∈ X . The guard is a formula over state and link predicates, generated by
the grammar ψ ::= t | x1 =x2 | ¬ψ | ψ1 ∧ ψ2 where t is a term over PSL. Finally,
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an action sequence is generated by the grammar a ::= a1; a2 | t | ¬t | �x | �x.
Here, a positive term t over PSL turns the corresponding predicate to true, and a
negative term ¬t sets it to false. The action �x will create a new process denoted
by x ∈ X , and �x will kill the corresponding process. We require that each label
comprises exactly those variables that are used in its guard and in its actions.

Before defining the formal semantics, let us formalise the car platooning ex-
ample as a dynamic system Car over signature (X , PS, PL, PE) with PS = {ld, fl},
PL = {bc, fc} and PE = {new/1, merge/2, split/2}. The evolution rules are

new(x) • ¬alive(x) � �x; ld(x)
merge(x1, x2) • ld(x1) ∧ alive(x2) ∧ x1 �=x2 � ¬ld(x1); fl(x1); fc(x1, x2); bc(x2, x1)

split(x1, x2) • ld(x1) ∧ bc(x1, x2) � ld(x2); ¬fl(x2); ¬fc(x2, x1); ¬bc(x1, x2)

written in the form label • guard � actions. The first rule allows to freely create
cars as leaders, that is, any structure where some process identity u is currently
not alive (see below for the definition of alive) may evolve into a structure where
u exists and ld(u) holds. The second rule allows to merge a leader car with some
other alive car, that is, the leader becomes a follower and communication links
are established. The third rule allows a leader car to split from its back car.

Now to formally characterise when two logical structures are in transition
relation according to a dynamic system, we need to define the satisfaction of a
guard and the effect of applying actions to a logical structure. Let M = (U , ι) ∈
MS(I) be a logical structure and V ∈ ValsI(X) a valuation, i.e. a function X → I
of variables X ⊆ X to identities I ⊆ Id⊥. Then

M�p(x1, . . . , xkp)�(V) := V(x1), . . . , V(xkp) ∈ U ∧ ι(p)(V(x1), . . . , V(xkp))
M�x1 = x2�(V) := V(x1), V(x2) ∈ U ∧ V(x1) = V(x2)

M�¬ψ�(V) := ¬M�ψ�(V)
M�ψ1 ∧ ψ2�(V) := M�ψ1�(V) ∧ M�ψ2�(V)

inductively defines the (possibly three-valued) satisfaction of a guard. We de-
cided that a term can only be satisfied if all its arguments are currently alive,
that is, in U . In particular, this allows for the abbreviation alive(x) := x=x.
The action update of M = (U , ι) under valuation V is inductively defined as

M〈a1; a2; . . . ; an〉(V) := M〈a1〉(V)〈a2; . . . ; an〉(V)
M〈p(x1, . . . , xkp)〉(V) := (U , ι[p 
→ ι(p)[(V(x1), . . . , V(xkp)) 
→ 1]])

M〈¬p(x1, . . . , xkp)〉(V) := (U , ι[p 
→ ι(p)[(V(x1), . . . , V(xkp)) 
→ 0]])
M〈�x〉(V) := (U ∪ {V(x)}, ι)
M〈�x〉(V) := (U \ {V(x)}, ι)

where f [x 
→ y] denotes substitution for some function f : X → Y , i.e. it alters
the function f to yield y ∈ Y for argument x ∈ X , and f(x′) for all x′ ∈ X \{x}.

Starting at the empty structure (∅, (∅, ∅)), the semantics of a dynamic system
is computed by iteratively applying evolution rules that are enabled, i.e. there is
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a valuation V into the infinite domain of identities Id s.t. the guard is satisfied.
Note that the evolution steps are labelled by the applied rule and the subset
of involved identities. This information will be exploited later when evaluating
temporal specifications and for performing spotlight extension as refinement.

Definition 1 (Concrete Semantics). The concrete semantics of a dynamic
system D over S, denoted [D], is the labelled transition system (S,S0,L,R) with

– states S := MS(Id) with initial state S0 := (∅, (∅, ∅)),
– labels L and transitions R := {(M, label[V ], M〈actions〉(V)) ∈ S × L × S |

∃ (label • guard � actions) ∈ D, V ∈ ValsId(X ) : M�guard�(V)}.

where p(x1, . . . , xkp)[V ] := p(V(x1), . . . , V(xkp)) for p ∈ PE. ♦

The concrete semantics induces a set of runs of a dynamic system D as follows.
A run of T = (S,S0,L,R) is an infinite sequence ((Li, Si))i∈N0 of labels Li ∈ L
and states Si = (Ui, ιi) ∈ S such that S0 = S0 and (Si, Li+1, Si+1) ∈ R for all
i ≥ 0. The runs of T are denoted by Runs(T). An example run of [Car] is

((∅, (∅, ∅))),
(new(u1), ({u1}, ({ld(u1)}, ∅))),
(new(u2), ({u1, u2}, ({ld(u1), ld(u2)}, ∅))),

(merge(u1, u2), ({u1, u2}, ({fl(u1), ld(u2), fc(u1, u2), bc(u2, u1)}, ∅))),
(split(u2, u1), ({u1, u2}, ({ld(u1), ld(u2)}, ∅))), . . .

where two cars u1, u2 appear, merge to a platoon of size two and split again.
Note that the unbounded number of processes in a dynamic system renders the

verification problem undecidable. In [20] we show how to encode the transitions
of a two-counter-machine by a set of evolution rules as introduced above. The
basic idea is to simulate an unbounded counter as a linked list of processes.

3.1 Spotlight Abstraction of Dynamic Systems

To obtain a finite representation of the infinite-state transition system, we apply
spotlight abstraction [8]. It takes a finite set of “spotlight identities” I ⊆ Id
and collapses all identities from Id \ I into the abstract identity ⊥, for which all
predicates then evaluate to 1/2 in order to obtain a sound abstraction.

Definition 2 (Spotlight Abstraction). The spotlight abstraction of a logical
structure is the function α·(·) : 2Id × MS(Id⊥) → MS(Id⊥) with αI((U , ι)) :=
(αI(U), αI(ι)) where αI(U) := (U ∩ I) ∪ {⊥} and

αI(ι)(pl)(⊥, u1) := 1/2 αI(ι)(ps)(u1) := ι(ps)(u1)
αI(ι)(pl)(u1, u2) := ι(pl)(u1, u2) αI(ι)(ps)(⊥) := 1/2

αI(ι)(pl)(u1, ⊥) := 1/2 if ∃ u′ ∈ U \ I : ι(pl)(u1, u
′), and 0 else

for ps ∈ PS, pl ∈ PL, and u1, u2 ∈ U ∩ I. ♦
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Note that a binary predicate pl for some concrete process u1 and the summary
process ⊥ becomes 1/2 if there was at least one collapsed process u′ where the
predicate was true. By this we actually lose the number of links to abstracted
processes (cf. Fig. 2(b)). The fact that the abstraction neglects all information
about the processes outside of the spotlight allows the abstract transition relation
to be easily computed. We simply restrict the set of states to finite three-valued
structures MS(I⊥), apply the action update as in the concrete semantics, and
then blur the resulting structure via the abstraction function αI from Def. 2.

Definition 3 (Abstract Semantics). The abstract semantics of a dynamic
system D ∈ DS and a set of identities I ⊆ Id, denoted [D]�I , is the labelled
transition system (S,S0,L,R) with

– states S := MS(I⊥) with initial state S0 := αI((∅, (∅, ∅)),
– and transitions R := {(M, label[V ], αI(M〈actions〉(V))) ∈ S × L × S |

∃ (label • guard � actions) ∈ D, V ∈ ValsI⊥(X ) : M�guard�(V) ≥ 1/2}. ♦

Remark 1. Let D be a dynamic system and I ⊂ Id a finite set of identities, i.e. a
finite spotlight. Then [D]�I is finite, i.e. it comprises only finitely many states. ♦

We proceed by introducing the syntax and semantics of a specification logic
for dynamic systems, and provide a generalised soundness theorem for spotlight
abstraction in terms of the information order of three-valued logic.

3.2 Specification Logic for Dynamic Systems

Temporal logic [21] has become a standard formalism to reason about system
behaviour. In this paper, we use a variant of first-order linear time logic with
implicit universal quantification. The specification language over signature S =
(X , PS, PL, PE), denoted SpecsS , is defined by the grammar

φ ::= tt | t | ¬φ | φ1 ∧ φ2 | φ ≥ 1/2 | Gφ | Fφ

where t is a term over P . For example, the following specification for the Car
system states that for all cars x1, whenever x1 is in its ld (“leader”) state it has
no fc (“front car”) connection to any car x2:

φld := G (ld(x1) → ¬fc(x1, x2))

In the case of overapproximative abstraction, the satisfaction of a temporal
specification transfers from the abstract to the concrete system, i.e. D� |= φ →
D |= φ. In the case of spotlight abstraction, we observe special cases where also
the converse holds, i.e. where D� �|= φ → D �|= φ. We can easily identify these
cases by exploiting the fact that the transitions are annotated by the set of
involved identities: Any violation where ⊥ is not involved is by construction a
concrete violation in the original system. This finding leads to a new three-valued
definition of a run satisfying a temporal specification as follows, and is the basis
for identifying non-spurious abstract counterexamples.
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Definition 4 (Satisfaction Relation). Let T be a labelled transition system
over signature S. The satisfaction of φ ∈ SpecsS in a run π = ((Li, Si))i∈N0 ∈
Runs(T) under valuation V ∈ ValsId⊥(vars(φ)) is defined inductively as follows,
where ps ∈ PS, pl ∈ PL and pe ∈ PE.

π�ps(x)�i(V) := Si�ps(x)�(V) π�φ ≥ 1/2�i(V) := π�φ�i(V) ≥ 1/2

π�pl(x1, x2)�i(V) := Si�pl(x1, x2)�(V) π�¬φ�i(V) := ¬π�φ�i(V)

π�pe(x1, . . . , xkpe
)�i(V) := Li = pe(V(x1), . . . , V(ukpe

)) π�tt�i(V) := 1

π�φ1 ∧ φ2�
i(V) := π�φ1�

i(V) ∧ π�φ2�
i(V)

π�G φ�i(V) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if ∀ k ≥ i :
(
π�φ�k(V) = 1

)

0 if ∃ k ≥ i :
(
π�φ�k(V) = 0 ∧

∀ j ∈ {i . . . k} : ⊥ �∈ Lj

)

1/2 else

π�F φ�i(V) := ¬π�G ¬φ�i(V)

The satisfaction of φ in T under V is defined as the minimum over all runs:

T�φ�(V) := min{π�φ�0(V) ∈ B3 | π ∈ Runs(T)}. ♦

By this, we obtain an embedding (with respect to the information order) of
the three-valued satisfaction for the abstracted semantics into the satisfaction
for the concrete semantics. That is, whenever [D]�I�φ�(V) evaluates to a definite
value, then [D]�φ�(V) evaluates to the same value. If [D]�I�φ�(V) = 1/2, we remain
inconclusive. The following theorem formally states this property.

Theorem 1 (Embedding). Let D be a dynamic system over S and φ ∈ SpecsS .
Then

[D]�I�φ�(V) � [D]�φ�(V)

for any spotlight I ⊆ Id and valuation V ∈ ValsI(vars(φ)). ♦

Based on the satisfaction relation from Def. 4, we define the satisfaction of the
quantified specification for a dynamic system in two variants, namely for the
concrete and the abstract semantics of a dynamic system. For the latter, we
allow to fix a subset of the variables that will bind to the ⊥ identity, and we set
the range of the actual valuation function as the content of the spotlight.

Definition 5 (Quantified Satisfaction). For a dynamic system D over sig-
nature S, a specification φ ∈ SpecsS and variables X ⊆ vars(φ) we define

D�φ� := min{ [D]�φ�(V) ∈ B3 | V ∈ ValsId(vars(φ))}
D�

X�φ� := min{ [D]�ran(V)\{⊥}�φ�(V) ∈ B3 | V ∈ ValsId⊥(vars(φ)) with
V(x) = ⊥ ⇐⇒ x ∈ X}. ♦
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Note that D�φ� ∈ {0, 1}. For the abstract semantics, we compute the minimal
value according to ≤, i.e. if there is an abstract run and a valuation that yields
a definite violation, we obtain a definite violation of the quantified specification,
and if all runs under all valuations yield a definite satisfaction, we obtain a
definite satisfaction. In all other cases, we obtain the indefinite value 1/2.

The above definition requires to analyse the system under infinitely many val-
uation functions. However, we observe that dynamic systems induce transition
systems that are symmetric in identities [22], i.e. whenever a set of processes I
satisfies (violates) a specification, then any permutation on process identities σ(I)
satisfies (violates) the specification. This is because the behaviour of a process does
not depend on its actual identity. Given a specification comprising N variables, we
may reduce the number of valuations to a finite number N ′ of representative cases,
where N ′ lies in O(N !) [22]. These cases now only distinguish between the pairwise
(in-)equality of process identities. For example, for the verification of φld it is suffi-
cient to consider two valuations, e.g. [x1 
→ u1, x2 
→ u1] and [x1 
→ u1, x2 
→ u2],
because all other cases are symmetric. Note that in [23] the term Query Reduction
was coined for such kind of exact reductions.

Theorem 1 directly transfers to the quantified case when no variable in vars(φ)
evaluates to the ⊥ identity, that is, D�

∅�φ� � D�φ�. In practice, this relation is
only of interest when obtaining a definite value for the abstract system. However,
the coarse representation of the spotlight environment allows for many (spurious)
interferences with the spotlight (see an example below), hence we expect to often
obtain the inconclusive result 1/2. In the next section, we devise an iterative
algorithm to suppress these interferences.

4 Spotlight Abstraction Refinement

In the following, let D be a dynamic system over signature S and φ ∈ SpecsS .
Whenever D�

X�φ� ≤ 1/2, we can present a counterexample δ to demonstrate
the (abstract) violation. By remark 1 such a counterexample can be finitely
represented by a finite prefix of a run (possibly with a looping part as suffix, i.e.
lasso-shaped [24]). We define the set of counterexamples

δ = 〈π̄, V〉 ∈ Cex(D�
X�φ�)

where π̄ = ((Li, Si))0≤i≤n is a finite prefix of a run π ∈ Runs([D]�I) and V ∈
ValsI⊥(vars(φ)) is a valuation such that π�φ�0(V) ≤ 1/2.

A counterexample in Cex(Car�∅�G(ld(x1) → ¬fc(x1, x2))�) is δld =

〈 α{u1,u2}({⊥}, (∅, ∅)),
(new(u1), α{u1,u2}({u1, ⊥}, ({ld(u1)}, ∅))),
(new(u2), α{u1,u2}({u1, u2, ⊥}, ({ld(u1), ld(u2)}, ∅))),

(merge(u1, u2), α{u1,u2}({u1, u2, ⊥}, {fl(u1), ld(u2), fc(u1, u2), bc(u2, u1)}, ∅)),
(split(⊥, u1), α{u1,u2}({u1, u2, ⊥}, {ld(u1), ld(u2), fc(u1, u2), bc(u2, u1)}, ∅)),

[x1 
→ u1, x2 
→ u2] 〉
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This run yields a possible violation of the specification because the last evolu-
tion split(⊥, u1) yields a structure where ld(u1) ∧ fc(u1, u2), i.e. there is a leader
car with a link to a front car. The question is whether those evolution transitions
that affect the ⊥ identity correspond to real behaviour of an (abstracted) process
in the spotlight environment, or whether it is spurious behaviour stemming from
the abstraction. In this example, we can manually argue that the split(⊥, u1) is
spurious because the prefix up to this transition indicates that no car in the
spotlight environment is in a platoon with car u1. In general, we consider a
counterexample spurious if it has no concretisation, where a concretisation is
possible if we can reproduce the behaviour of ⊥ by concrete processes as follows.

Definition 6 (Concretisation). Let D be a dynamic system over signature S.
A run π = ((L′

i, S
′
i))i∈N0 ∈ Runs([D]) is a concretisation of a counterexample

δ = 〈((Li, Si))0≤i≤n, V〉 ∈ Cex(D�
X�φ�),

written π � δ, if π�φ�0(V)=0 and a monotone function f : ⊥(δ) → N exists s.t.

∀ i ∈ dom(f) : Li = L′
f(i)[Id \ ran(V) 
→ ⊥] ∧ Si = αran(V)(S′

f(i))

where ⊥(δ) denotes the interferences of the abstract process in δ, i.e. ⊥(δ) :=
{i ∈ {1, . . . , n} | ⊥ ∈ Li}. The set of concretisations of δ is defined as γ(δ) :=
{π ∈ Runs([D]) | π � δ}, and δ is called spurious, written �(δ), if γ(δ) = ∅. ♦

The function f in Def. 6 ensures that each interference of the ⊥ process is
reproduced in the concretisation run in the same order. For example, Fig. 3 shows
an abstract counterexample δfl for the specification φfl := G¬fl(x) where the only
spotlight process u merges with the abstract process ⊥. This counterexample is
concretised by the run πfl where the interference with the abstract process is
replaced by interaction with a concrete process u′.

The identification of counterexample as being spurious requires to show that
no concretisation exists, which reduces to an (in general undecidable) verification
problem of the original system (see Lemma 1 below). However, the information
contained in the counterexample allow a more specific verification task to be
constructed where all evolution steps of the abstract process are now required to
be performed by concrete processes. This provides a natural source for spotlight
extension by introducing new variables in the specification as follows.

⊥S0

new(u)−−−−−→ ⊥
ld(u)

S1

merge(⊥,u)−−−−−−−→ ⊥
fl(u)

S2

fc

α{u}(·)
·[u′ �→ ⊥]

S′
0

new(u)−−−−−→
ld(u)

S′
1

new(u′)−−−−−→
ld(u)

ld(u′)S′
2

merge(u′,u)−−−−−−−→
fl(u)

ld(u′)S′
3

fc, bc

δfl =

πfl =

�

Fig. 3. Concretisation of an abstract counterexample for φfl with f(2) = 3
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Definition 7 (Counterexample Formula). Let D be a dynamic system over
S and δ = 〈((Li, Si))0≤i≤n, V〉 ∈ Cex(D�

X�φ�) a counterexample. We define the
counterexample formula of δ recursively as ϕ(δ) := ϕ(δ)1 where

ϕ(δ)i :=

⎧
⎪⎨

⎪⎩

F
(
label(Li, V , i) ∧ state(Si, V) ∧ (ϕ(δ)i+1)

)
if i ∈ ⊥(δ)

ϕ(δ)i+1 if i �∈ ⊥(δ) ∧ i ≤ n

tt else

where

label(pe(u1, . . . , ukp), V , i) := p(V−1
+ (u1, i, 1), . . . , V−1

+ (ukp , i, kp)), with

V−1
+ (u, i, j) :=

{
V−1(u) if u �= ⊥
xi,j ∈ X \ dom(V) else

and

state(S, V) :=
∧

x1∈dom(V),ps∈PS

(
val(ps(x1), S, V) ∧

∧

x2∈dom(V),pl∈PL

val(pl(x1, x2), S, V)
)

with val(t, S, V) = t if S�t�(V) = 1 and val(t, S, V) = ¬t else for any term t. By
fresh(ϕ(δ)) := vars(ϕ(δ)) \ dom(V) we denote the new variables in ϕ(δ). ♦

As an example, the counterexample δld translates to ϕ(δld) =

F
(
split(x4,1, x1) ∧ ld(x1) ∧ ¬fl(x1) ∧ fc(x1, x2)) ∧ ¬bc(x1, x2))∧

ld(x2) ∧ ¬fl(x2) ∧ ¬fc(x2, x1)) ∧ bc(x2, x1) ∧ (tt)
)

with fresh(ϕ(δld)) = {x4,1}. The translation introduces nested F (“finally”) ex-
pressions for each interference of the abstract ⊥ process. In the label translation
phase, each occurrence of ⊥ in a transition label is substituted by a fresh process
variable. The translation of the state part ensures that the configuration of the
spotlight processes is preserved in the concretisation run. We have the follow-
ing correspondence between the translation from Def. 7 and the definition of
counterexample concretisation according to Def. 6.

Lemma 1 (Counterexample Validation). Let D be a dynamic system over
signature S, φ ∈ SpecsS and δ ∈ Cex(D�

X�φ�) a counterexample. Then

�(δ) ⇐⇒ D�¬ϕ(δ) ∨ φ�. ♦

In other words, if and only if no concrete run exists that both satisfies the
counterexample formula and violates the specification, then the counterexample
is spurious. For the car platooning case study, we can verify (cf. Sect. 5) that

Car�∅�¬ϕ(δld) ∨ φld� = 1

because the counterexample formula ϕ(δld) is unsatisfiable under abstraction
with three concrete processes in the spotlight. This entails Car�¬ϕ(δld) ∨ φld� = 1
by the embedding theorem 1 and thus �(δld) by Lemma 1, i.e. δld is spurious.
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We can not yet conclude that Car�φld� holds, obviously because there may be
other counterexamples besides δld. However, the fact that a counterexample is
spurious allows us to reduce the satisfaction analysis to those runs where the
counterexample formula is definitely violated. Thus by Lemma 1, we can use the
counterexample formula as a source for shadow refinement simply by binding
the fresh variables of the counterexample formula to ⊥. By this, we eliminate
behaviour of ⊥ that was shown to be not possible with any concrete processes.
Lemma 2 (Shadow Refinement). Let D be a dynamic system over signature
S, φ ∈ SpecsS and δ ∈ Cex(D�

X�φ�) a counterexample with �(δ). Then

D�
F �ϕ(δ) ≥ 1/2 ∨ φ� � D�φ�

for F := fresh(ϕ(δ)). ♦

Applied to the case study, we check

Car�{x4,1}�ϕ(δld) ≥ 1/2 ∨ φld�

for which we obtain the result 1, intuitively because φld holds on all runs where
ϕ(δld) is definitely violated. From Lemma 2, we conclude that Car�φld� = 1.

This procedure of validation and refinement can be iterated in a standard re-
finement loop, where the iteration runs as long as we obtain an indefinite result.
We must however be prepared that a counterexample may not be (in-)validated
via a single verification run, because checking the counterexample formula ac-
cording to Lemma 1 under spotlight abstraction may not yield a definite answer.
In this case we can use the same validation and refinement procedure for the
counterexample of the counterexample formula. Algorithm 1 called check(D, φ)
implements our idea of counterexample guided spotlight abstraction refinement
by recursively calling itself for iterative counterexample validation. By the above
lemmata 1 and 2, we have that D�φ� ⇐⇒ check(D, φ).

Algorithm 1. check(D, φ) returns B

1: let F := ∅
2: let b := D�

F �φ�
3: while b = 1/2 do
4: let δ ∈ Cex(D�

F �φ�)
5: if check(D, ¬ϕ(δ) ∨ φ) then
6: let F := F ∪ fresh(ϕ(δ))
7: let φ := ϕ(δ) ≥ 1/2 ∨ φ
8: let b := D�

F �φ�
9: else

10: b := 0
11: end if
12: end while
13: return b

As a consequence of the undecidability of the verification problem, algorithm 1
does not terminate in general. However, in each recursion depth the spotlight is
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enlarged and each iteration eliminates a new source for spurious interference. In
fact it can be shown [20] that the only source for divergence of the algorithm
is the recursive counterexample validation, whereas the iterative refinement is
guaranteed to finally terminate. We thus anticipate that the overall algorithm
terminates for a relevant class of dynamic systems, namely for those where coun-
terexamples can be (in-)validated via a finite number of concrete processes. First
promising experiments are given in the next Section.

5 Evaluation

We use an existing verification environment for dynamic systems, which has
been developed in the course of [10], for a first experimental evaluation of our
approach. The toolset comprises a compiler from XML descriptions of dynamic
systems to input languages of finite-state model-checkers, and integrates the
spotlight abstraction implementation of [25]. The experiments were performed
by the VIS 2.1 model-checker [6] on a Linux host with 3 GHz and 2 GB of RAM.
In Table 1 below, ‘rec’ denotes the actual recursion depth of algorithm 1, ‘iter’
the iteration counter in this depth, and ‘spot’ the maximal size of the spotlight,
that is, the number of concrete processes.

The upper part of Table 1 shows the verification tasks that are necessary to
verify the running example property φld for the car platooning system. As a sec-
ond experiment, we demonstrate that we are able to obtain concrete counterex-
amples under spotlight abstraction. This is of special importance as a typical
debugging application of model-checking is to check whether a certain desired
configuration is reachable. Therefore, one claims that the negation of the config-
uration is globally true and expects a counterexample. The lower part of Table 1
shows the verification tasks necessary to disprove the property φfl := G¬fl(x),
that is, to find a concrete witness for a car becoming a follower car (cf. Fig. 3).

We furthermore evaluated our approach on a case study concerning a scatter-
net formation [26] roughly following the bluetooth connection scenario. In this
protocol, mobile devices are grouped into piconets comprising one master device
and a finite set of slave devices connected in a star topology. Piconets may then
merge into scatternets where one slave device serves as a bridge, that is, it is

Table 1. Task flow of check(Car, φld) and check(Car, φfl)

rec iter task spot result time memory

0 0 Car�∅�φld� 2 1/2 (δld) 6 s 2 MB
1 0 Car�∅�¬ϕ(δld) ∨ φld� 3 1 42 s 3 MB
1 0 return 1
0 1 Car�{x4,1}�ϕ(δld) ≥ 1/2 ∨ φld� 2 1 8 s 2 MB
0 1 return 1

0 0 Car�∅�φfl� 1 1/2 (δfl) 3 s 2 MB
1 0 Car�∅�¬ϕ(δ) ∨ φfl� 2 0 (πfl) 7 s 2 MB
1 0 return 0
0 0 return 0
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a slave in two different piconets at the same time and is routing information
from one piconet to the other. The case study consists of seven evolution rules,
and the running times of the verification tasks are below two minutes each. We
needed a recursion depth of two with a maximal spotlight size of three to prove
that a device is able become a bridge device. Two iterations and a recursion
depth of one allows us to verify the safety property that a pure slave device has
a connection to exactly one master device.

6 Conclusion

We have presented an iterative refinement scheme for spotlight abstractions that
allows us to formally verify dynamic systems against first-order temporal spec-
ifications. To the best of our knowledge, this is the first iterative refinement
approach in this research direction. Although spotlight abstraction can be for-
mulated [8] as an instance of the canonical abstraction framework [18], our results
reveal a quite different nature for refinement: While predicate abstraction allows
us to identify spurious counterexamples by simulation but may diverge during
the refinement steps, spotlight abstraction shifts the problem into the validation
of counterexamples while the refinement itself can be done very effectively.

A strong point of our approach is that we may start with a minimal number of
concrete processes, and enlarge the spotlight only gradually driven by abstract
counterexamples. In doing so we keep the number of concurrent processes as
small as possible in order to avoid combinatorial explosion of the model-checking
tasks. The running times of the experiments confirm the importance of this issue.

For future work, we aim at a more in-depth investigation of termination prop-
erties of our algorithm. It will be worthwhile to integrate existing techniques for
shadow refinement [14,15] in order to reduce the number of iterations. Also, the
application of spotlight abstraction refinement in the area of heap manipulating
programs [18] is of interest (see the discussion on related work on page 24).
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