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Abstract. New evolving internet technologies are extending the role of
the World Wide Web from a platform of information exhibition to a new
environment for service interactions. While new business opportunities
are brought in under this new era of internet, novel challenges are coming
out at the same time. Current technologies have been found lacking effi-
cient support for web transactions. Because transactions in the context of
web services have distinct features, such as autonomous and interactive,
the traditional automatic mechanisms of resource locking and rollback
are proved to be inappropriate. For this reason, we suggest that web
transactions are constructed through a series of compensable transac-
tions, using the concept of compensation to ensure a relatively relaxed
atomicity. This paper formally expresses the composition structures and
behavioral dependencies of compensable transactions. Based on the for-
mal description for a transaction model, we are able to further verify
its transactional behavior according to the specified requirement of re-
laxed atomicity and more precise behavioral properties with temporal
constraints.

1 Introduction

Web Services are becoming the current most promising paradigm for enabling
business interactions through the Internet. They have greatly influenced the way
for application development. Web services can be regarded as computational en-
tities, generally independent and autonomous. They are driven by XML related
technologies which make services able to be described, discovered and invoked
across the internet. Based on more and more accessible services over the Web,
there is an opportunity to provide new value-added services to customers by
combining individual services. Therefore, extensions of web service technologies
have been considered. Several proposals for describing web service composition
(XLANG, WSFL, BPEL and WSCDL) have been already put forward.

When a composite web service combines several existing services to complete
a given task, a web transaction is required to orchestrate the loosely coupled ser-
vices into a unit of work so as to guarantee a reliable execution. However, setting
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up an efficient web transaction is not a trivial task. First of all, web transactions
usually require a long time to complete, due mainly to lengthy computation
and pause for input from users, which may cause severe performance problems.
Such long lived transactions greatly increase the contention for resources and
finally lead to more deadlocks. Secondly, for a web transaction, its participat-
ing services may belong to different and even competing companies such that
services are generally independent and autonomous. In such systems, there is
no chance to intentionally block the resources residing in other services. Lastly,
web transactions usually involve communications between companies and human
beings, where the outcome of interactions cannot be physically undone. Thus,
the pure rollback mechanism is not applicable at all. Therefore, the key features
of traditional transactions become impracticable for web transactions. To solve
this problem, the degree of atomicity needs to be relaxed. A weaker notion of
atomicity based on compensation has been proposed to recover from failure.

The notion of compensation has its root to the seminal work of Sagas [8]
which is one of the first proposals for extended transactional models. A saga is a
long lived transaction which is partitioned into a set of sub-transactions. When a
sub-transaction completes, it commits prior to the completion of the whole saga.
This enables resources to be released earlier and thus reduces the possibilities of
deadlock. However, partial effects have been exposed to the outside. In this case,
each sub-transaction is associated with a compensation whose responsibility is
to semantically undo the effect of its sub-transaction. Thus, whenever a sub-
transaction aborts in the middle, the partial results made by the committed
sub-transactions will be removed by executing their compensations.

This paper suggests to construct a web transaction in terms of compensable
transactions. A compensable transaction is a new type of transaction whose
effect can be semantically undone even after it has committed. Basically, a com-
pensable transaction consists of two parts: forward flow and compensation flow.
The forward flow describes the required normal logic according to system re-
quirements, while the compensation flow is properly defined so as to undo the
effect of its forward flow semantically. Unlike the traditional ACID transactions,
a compensable transaction has distinct features. Its features allow web trans-
actions to incorporate different transactional semantics as well as different be-
havioral dependency patterns. This provides a manner to enhance the flexibility
and reliability of web transactions. In order to provide a precise description, we
adopt the novel transactional language t-calculus [14] to model the composition
structure of compensable transactions. Moreover, the behavioral semantics is
precisely defined for different transactional constructs.

Compensation is a kind of backward recovery in the presence of failure. In
order to promote the possibility of successful completion, our transaction model
also supports forward recovery so as to survive the failure caused by a certain
sub-transaction. In this case, there is no need to obey the strict requirement of
all-or-compensated. The notion of acceptable termination states (ATS) is used
to express the relaxed atomicity requirement. Given a web transaction, we are
able to verify its behavior according to the specified ATS. Further, we can also
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Fig. 1. The state transition diagram of compensable transactions

help to find inconsistencies if its behavior is proved to be invalid. In addition,
depending on particular applications for which web transactions are designed, ad-
ditional properties capable of expressing temporal constraints would be required.
Here, we propose a specification language to specify this kind of transactional
properties. The corresponding process for verifying whether these properties are
satisfied is formally presented subsequently.

This paper is organized as follows. Section 2 gives a detailed description about
compensable transactions whose execution structure is clearly depicted by a state
transition diagram. The transactional model with the corresponding language is
presented in Section 3, where related behavioral dependencies are formally spec-
ified. Section 4 presents strict solutions to the verification of web transactions
according to the specified requirements. We discuss some related work in Sec-
tion 5 and conclude this paper at last.

2 Compensable Transaction

Compensable transactions are the basic constituents for building web transac-
tions in our approach. A compensable transaction aims to do a specific task as
part of a business goal. Different from traditional transactions, a compensable
transaction can withdraw its result after its commitment in case of error. On the
transaction level, we do not model its internal operations but only deal with its
external visible aspects. We adopt the state transition diagram to describe its
behavior structure by providing a set of execution states and a set of transitions
between these states. The Figure 1 shows the state transition diagram for an
arbitrary compensable transaction.

A compensable transaction has eight states and five of them are terminal
states shown by bold ellipses in Figure 1. Initially, its state is marked as idle
and it becomes active when it is arranged for execution. Once it is active, it can
be either aborted or failed due to the presence of failure, or it finally achieves its
objective and leads to the successful state. Whenever some wrong has happened
during its execution or within other concurrent transactions, it tries to erase its
partial outcome as soon as possible. If all the partial effects have been erased, it
becomes aborted as if nothing has ever been done. Otherwise, it turns into failed
since some partial effect still exists. This case possibly results in data inconsis-
tency. Especially, the effect after completion for compensable transactions does
not remain for ever. When it has succeeded, its effect can be semantically undone
by properly defined compensation. Once the system decides to undo a successful
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compensable transaction, this transaction enters into the undoing state. During
this period, its associated compensation is executing. The final state is totally
dependent on the execution result of its compensation. When the compensation
fails in the middle, it is marked as half-compensated, otherwise as compensated.

Let T be a finite set of compensable transactions, and Σ be a finite set of
transactional states. Here, Σ is defined as:

Σ = {idl, act, suc, abt, fal, und, cmp, hap}

where they stand for the fore-mentioned eight states (idle, active, successful,
aborted, failed, undoing, compensated and half-compensated). Moreover, we let
Δ be the set of terminal states, that is:

Δ = {suc, abt, fal, cmp, hap}

An action a on T and Σ is a pair (T, σ) ∈ T × Σ, saying the transaction T
enters into the state σ. Especially, a terminal action is a special kind of action,
which is a pair satisfying (T, σ) ∈ T × Δ. Actions may follow a specified order
or conform to some other policies. Here, we propose five relations to enforce
different constraints on the occurrence of actions:

1. a < b : only a can fire b.
2. a ≺ b : b can be fired by a.
3. a � b : a is the precondition of b.
4. a ↔ b : a and b both occur or both not.
5. a � b : the occurrence of one action inhibits the other.

The first three relations specify a kind of order, whereas the last two do not.
a < b indicates a must precede b when two actions both occur. In addition, the
two actions must both appear or not, same as a ↔ b in this sense. However,
a ↔ b does not enforce any temporal constraint on actions. a ≺ b tells that
b can also be fired by other event except for a. In other words, b is able to
occur without the previous occurrence of a. a � b tells that a must occur earlier
whenever b occurs. However, the occurrence of a does not guarantee a following
occurrence of b. Finally, a � b denotes that the two actions must be mutually
exclusive. These relations have some useful and interesting properties. <, ≺ and
� are anti-symmetric and transitive. ↔ is reflexive, symmetric and transitive,
while � is irreflexive, symmetric and intransitive. Besides, there are more useful
properties when these relations are combined.

Law 1. If a < b and a ↔ c then b ↔ c

Law 2. If a < b and b ↔ c then a ↔ c

Law 3. If a < b and b ◦ c (◦ ∈ {≺, � }) then a ◦ c

Law 4. If a ◦ b (◦ ∈ {≺, � }) and b < c then a ◦ c

Law 5. If a ◦ b (◦ ∈ {<, ≺, ↔}) and b � c then a � c

Law 6. If a ◦ b (◦ ∈ {<, �, ↔}) and a � c then b � c
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Table 1. Intra-constraints of a compensable transaction

(T, idl) � (T, act) (T, act) � (T, suc) (T, act) � (T, abt) (T, act) � (T, fal)
(T, suc) � (T, abt) (T, suc) � (T, fal) (T, abt) � (T, fal) (T, cmp) � (T, hap)
(T, suc) � (T, und) (T, und) � (T, cmp) (T, und) � (T, hap)

As for an arbitrary compensable transaction T , all the actions occurring dur-
ing its execution must satisfy some constraints which are clearly shown in Ta-
ble 1. For instance, the compensation can only be activated when the transaction
T has succeeded, expressed as (T, suc) � (T, und). Besides, terminal states must
be exclusive, e.g., (T, suc) � (T, abt), (T, cmp) � (T, hap).

3 The Transactional Model

Though the structure of a compensable transaction is relatively complex, its
distinct properties provide the opportunity for engineers to resolve the perfor-
mance problem caused by web transactions. In this section, we explain how
to build reliable web transactions on the basis of compensable transactions. A
novel transactional language t-calculus is adopted to describe the composition
structure of compensable transactions. Its syntax is shown below:

S, T ::= BT | S; T | S ‖ T | S � T | S ⊗ T |
S � T | S � T | S � T | S � T

P ::= {T }

The basic transaction BT is the primary block to form a compensable transaction.
Generally, BT is composed of two activities, one denotes the forward flow while
the other one represents its compensation. More details of basic transactions can
be found in [14] but not relevant in this paper. The key point is that compensable
transactions support composition, that is, it can be constructed out of simpler ones
and still preserves the features of compensable transactions. To deal with specific
requirements of web transactions, we incorporate some distinct composition con-
structs in this transactionalmodel. These new constructs help to build a web trans-
action with a higher quality which mainly comes from three directions:

– Flexibility is enforced by allowing users to provide functionally equivalent
sub-transactions for a given objective. These equivalent transactions may
have different or even priorities. Transactions with even priorities can be
arranged to run in parallel, expressed as S ⊗ T . Otherwise, the transaction
with higher priority must be executed first, expressed as S � T . Note that
if one of these transactions completes successfully, the objective is achieved.

– Reliability is enhanced by properly dealing with partial compensations. We
have shown in Figure 1 that partial compensation will make a compensable
transaction into the half-compensated state in which data consistency does
not hold at all. In order to keep the whole system consistent, partial compen-
sation needs further treatment which is referred as exception handling. S �T
and S � T are two kinds of proposed mechanisms for exception handling.
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– Specialization is added by offering specialized compensations for specific ap-
plications. Basically, the compensation of a composite transaction is con-
structed by the accumulation of those of its sub-transactions. Concerning
the requirement of a concrete application, it is more satisfactory for devel-
opers to directly define an appropriate compensation, expressed as S � T .

Finally, we use {T } to stand for a complete web transaction. Once a web trans-
action completes, its effect holds for ever. An aborted web transaction looks like
doing nothing from the view of an external observer. A failed web transaction
causes some loss due to its inconsistent status. Our transactional model can not
avoid inconsistency, but it helps to reduce the possibilities of such failure.

3.1 Behavioral Dependencies

In t-calculus, each composite construct stipulates distinct behavioral dependen-
cies between compensable transactions. It specifies how simpler compensable
transactions are coupled and how the behavior of a certain compensable trans-
action influences the behavior of the other. Further, it specifies how the behav-
iors of sub-transactions determine the behavior of their composite transaction.
In the following, we formally describe the behavioral dependencies for all the
transactional constructs.
Sequential composition: S; T arranges the first transaction S to be executed
first. Only when S finishes its task, the following transaction T will be activated
to run. However, whenever T is aborted or compensated, the completed transac-
tion S would be compensated so as to remove all the partial effects. The above
description reflects the following behavioral dependencies:

(S, suc) < (T, act) (; 1)
(T, abt) ≺ (S, und) (; 2)
(T, cmp) ≺ (S, und) (; 3)

Recall that any compensable transaction satisfies some internal constraints (Ta-
ble 1), e.g., (S, suc) � (S, abt) and (T, act) � (T, suc). By using (; 1) and Law 6,
we have that (T, act) � (S, abt). Then using Law 6 and the symmetry property
of �, we get that (S, abt) � (T, suc) which says the abortion of S would never
lead to the success of T . Similarly, we can deduce more dependencies as follows:

(S, suc) � (T, α) α ∈ Δ (; 4)
(S, α) � (T, β) α ∈ {abt, fal}, β 
= idl (; 5)
(S, α) � (T, β) α ∈ {cmp, hap}, β ∈ {fal, hap} (; 6)

The last item (; 6) tells that if T is failed or half-compensated, the compensation
of the former transaction S will never be enabled. Now we are going to investigate
the relationship between the composite transaction and its sub-transactions. A
composite transaction is also a compensable transaction and its terminal state is
totally dependent on the terminal states of its sub-transactions. Here, we focus
our attention on terminal actions which are associated with terminal states. The
behavior of a composite transaction is recorded by sequences of terminal actions
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which are referred as transactional traces. For any composite transaction T , the
symbol [(T, σ)] denotes all these transactional traces which finally cause T to
end in the terminal state σ (σ ∈ Δ). Especially, if T is a basic transaction, then
it just has one single transactional trace, that is:

[(T, σ)] = {〈(T, σ)〉}

Next we define the behavior of T as the union of transactional traces for all
terminal states, denoted as �T �:

�T � =
⋃

σ∈Δ

[(T, σ)]

In the following, we will define the behavior of sequential composition in terms
of transactional traces. We write st for the concatenation of two traces s and t.
The successful completion of S; T requires both S and T to succeed.

[(S; T, suc)] = {st | s ∈ [(S, suc)] ∧ t ∈ [(T, suc)]}

Abortion of S; T is caused by either an abortion or a full compensation of S.

[(S; T, abt)] = [(S, abt)] ∪ {sts′ | s ∈ [(S, suc)] ∧ t ∈ [(T, abt)] ∧ s′ ∈ [(S, cmp)]}

The failure of S or T directly leads to the failure of S; T . Besides, the half-
compensation of S results in the same outcome too.

[(S; T, fal)] = [(S, fal)] ∪ {st | s ∈ [(S, suc)] ∧ t ∈ [(T, fal)]} ∪
{sts′ | s ∈ [(S, suc)] ∧ t ∈ [(T, abt)] ∧ s′ ∈ [(S, hap)]}

A full compensation of S; T means both sub-transactions have been compensated
utterly. Note that sub-transactions are compensated in a reverse order to their
original sequence.

[(S; T, cmp)] = {ts | t ∈ [(T, cmp)] ∧ s ∈ [(S, cmp)]}

A partial compensation of S; T is rendered by a failed compensating execution
of either sub-transaction.

[(S; T, hap)] = [(T, hap)] ∪ {ts | t ∈ [(T, cmp)] ∧ s ∈ [(S, hap)]}

Note that the occurrences of (S; T, cmp) and (S; T, hap) require a precondition
implicitly, that is, the whole transaction S; T has already completed successfully.

Parallel composition: For S ‖ T , both branches S and T are executed in
parallel. Likewise, their compensations are also activated concurrently when se-
mantic rollback is needed. If one branch aborts or fails, the other branch is willing
to disrupt its flow and yield to this failure. In other words, two branches must
both succeed or both not. The related behavioral dependencies are formalized
as follows:

(S, act) ↔ (T, act) (‖ 1)
(S, und) ↔ (T, und) (‖ 2)
(S, suc) ↔ (T, suc) (‖ 3)
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More dependencies can be deduced:

(S, α) � (T, β) α ∈ {abt, fal}, β ∈ {suc, cmp, hap} (‖ 4)
(T, α) � (S, β) α ∈ {abt, fal}, β ∈ {suc, cmp, hap} (‖ 5)

The behavior of parallel composition needs to take interleaving into considera-
tion. In the following, the symbol s � t denotes the set of transactional traces
which are combinations of s and t.
The successful completion of S ‖T achieves only when both branches succeed.

[(S ‖ T, suc)] = {r | r ∈ s � t ∧ s ∈ [(S, suc)] ∧ t ∈ [(T, suc)]}

The abortion of S ‖ T is caused by the abortion of both branches.

[(S ‖ T, abt)] = {r | r ∈ s � t ∧ s ∈ [(S, abt)] ∧ t ∈ [(T, abt)]}

The failure of either branch causes the failure of S ‖ T .
[(S ‖ T, fal)] = {r | r ∈ s � t ∧ s ∈ [(S, fal)] ∧ t ∈ [(T, abt)]}

∪ {r | r ∈ s � t ∧ s ∈ [(S, abt)] ∧ t ∈ [(T, fal)]}
∪ {r | r ∈ s � t ∧ s ∈ [(S, fal)] ∧ t ∈ [(T, fal)]}

A full compensation of S ‖ T means that both branches have been compensated
successfully. Note that both branches are compensated in parallel too.

[(S ‖ T, cmp)] = {r | r ∈s � t ∧ s ∈ [(S, cmp)] ∧ t ∈ [(T, cmp)]}

A partial compensation of S ‖ T arises from a failed compensation of either
branch.

[(S ‖ T, hap)] = {r | r ∈ s � t ∧ s ∈ [(S, hap)] ∧ t ∈ [(T, cmp)]}
∪ {r | r ∈ s � t ∧ s ∈ [(S, cmp)] ∧ t ∈ [(T, hap)]}
∪ {r | r ∈ s � t ∧ s ∈ [(S, hap)] ∧ t ∈ [(T, hap)]}

Internal choice: In some cases, only one branch is selected in accordance with
internal decisions. In the construct of S � T , only S or T will be activated:

(S, act) � (T, act) (� 1)

Further, we get that only one branch will terminate:

(S, α) � (T, β) {α, β} ⊆ Δ (� 2)

The behavior of S � T is directly defined as follows:

�S � T � = �S� ∪ �T �

Speculative choice: This construct provides a way for developers to design
two or more threads to finish one task. If one thread is aborted, the other thread
is still active trying to achieve the same target. In this construct of S ⊗T , S and
T are two sub-transactions with equivalent functions. The two sub-transactions
have even priorities and they are arranged to be executed concurrently. The
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choice is delayed when one sub-transaction has succeeded. That is, only one
sub-transaction will be finally selected to achieve its business goal. When one
sub-transaction terminates successfully, the other one cannot succeed but aborts
either internally or forcibly. Especially, if one sub-transaction fails halfway, the
other one should yield to this failure. The related behavioral dependencies are
formalized below:

(S, act) ↔ (T, act) (⊗ 1)
(S, suc) � (T, suc) (⊗ 2)
(S, suc) � (T, fal) (⊗ 3)
(T, suc) � (S, fal) (⊗ 4)

The above dependencies imply that only one sub-transaction can be compen-
sated if compensation is needed.

(S, α) � (T, β) {α, β} ⊆ {cmp, hap} (⊗ 5)

Speculative choice is a construct which behaves partially like parallel composition
by allowing concurrent executions and partially like internal choice by choosing
one sub-transaction to fulfil the objective.

The successful completion of S ⊗ T realizes when one branch succeeds and
another one aborts.

[(S ⊗ T, suc)] = {r | r ∈ s � t ∧ s ∈ [(S, suc)] ∧ t ∈ [(T, abt)]}
∪ {r | r ∈ s � t ∧ s ∈ [(S, abt)] ∧ t ∈ [(T, suc)]}

The abortion of S ⊗ T is due to the abortion of both branches.

[(S ⊗ T, abt)] = {r | r ∈ s � t ∧ s ∈ [(S, abt)] ∧ t ∈ [(T, abt)]}

Likewise, the failure of either branch will finally lead to the failure of the whole
composition S ⊗ T .

[(S ⊗ T, fal)] = {r | r ∈ s � t ∧ s ∈ [(S, fal)] ∧ t ∈ [(T, abt)]}
∪ {r | r ∈ s � t ∧ s ∈ [(S, abt)] ∧ t ∈ [(T, fal)]}
∪ {r | r ∈ s � t ∧ s ∈ [(S, fal)] ∧ t ∈ [(T, fal)]}

Since only one branch can succeed, then just the successful one will be com-
pensated. A full compensation or a partial compensation is determined by the
successful branch.

[(S ⊗ T, α)] =
{

[(S, α)] if S has succeeded
[(T, α)] if T has succeeded α ∈ {cmp, hap}

Alternative forwarding: Similar to speculative choice, this construct also pro-
vides two functionally equivalent sub-transactions to achieve one business goal.
The difference is that these two sub-transactions have distinct priorities. In addi-
tion, the one with the higher priority is executed first and the other is activated
only when the first one has been aborted. In S � T , S is planed to run first and
T is the backup of S. The related dependency is given below:

(S, abt) < (T, act) (� 1)
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Then we get the following dependencies:

(S, abt) � (T, α) α ∈ Δ (� 2)
(S, α) � (T, β) α ∈ Δ − {abt}, β ∈ Δ (� 3)

The behavior of alternative forwarding corresponds to a sequential execution.
Different from sequential composition, the right branch is enabled on abortion
instead of on success of the left branch.

The successful completion of S � T achieves when there is one branch which
succeeds eventually.

[(S � T, suc)] = [(S, suc)] ∪ {st | s ∈ [(S, abt)] ∧ t ∈ [(T, suc)]}

The abortion of S � T is caused by the abortion of its alternative T .

[(S � T, abt)] = {st | s ∈ [(S, abt)] ∧ t ∈ [(T, abt)]}

The failure of S � T is due to the failure of either branch.

[(S � T, fal)] = [(S, fal)] ∪ {st | s ∈ [(S, abt)] ∧ t ∈ [(T, fal)]}

In this construct, only one branch can succeed in the end. Thus, the definitions
of [(S � T, cmp)] and [(S � T, hap)] are as same as those for speculative choice.

Backward handling: Partial compensation leads to inconsistency which is
unwelcome by the users. The failure of a composite transaction is ultimately
caused by the half-compensated state of one of its sub-transactions provided
that basic transactions cannot fail. Backward handling S �T is such a construct
that provides a backward handler T to remedy the failure thrown by S. This
handler tries to undo all the remaining effects which are not covered by partial
compensation. The handler T is triggered on the failure of S, that is:

(S, fal) < (T, act) (� 1)

Consequently, we get that:

(S, fal) � (T, α) α ∈ Δ (� 2)
(S, α) � (T, β) α ∈ Δ − {fal}, β ∈ Δ (� 3)

Note that this construct offers a kind of backward recovery mechanism, for the
backward handler is devised to undo the remaining partial effects.
The successful completion of S � T realizes when the left branch S succeeds.

[(S � T, suc)] = [(S, suc)]

The abortion of S � T is caused by the abortion of the left branch S or the
successful completion of the handler T .

[(S � T, abt)] = [(S, abt)] ∪ {st | s ∈ [(S, fal)] ∧ t ∈ [(T, suc)]}
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The failure of S fires the activation of T and the thrown failure can be thoroughly
cleared only when the handler T succeeds. Hence, either failure or abortion of T
will cause the final failure of the whole composition S � T .

[(S � T, fal)] = {st | s ∈ [(S, fal)] ∧ t ∈ [(T, abt)] ∪ [(T, fal)]}

Since only the success of the left branch S leads to the successful composition of
S � T , the compensation result is totally dependent on the compensation of S.

[(S � T, cmp)] = [(S, cmp)] [(S � T, hap)] = [(S, hap)]

Forward handling: This is another manner to deal with partial compensation
apart from backward handling. In S � T , T is the forward handler to fix the
failure thrown by S. Different from backward handling, this construct adopts the
forward recovery mechanism trying to fulfill the business goal in the presence of
failure. In other words, if the forward handler completes, the whole composition
is regarded as success though some error has occurred previously. Likewise, this
handler T can only be activated by the failure of S:

(S, fal) < (T, act) (� 1)

Consequently, we get that:

(S, fal) � (T, α) α ∈ Δ (� 2)
(S, α) � (T, β) α ∈ Δ − {fal}, β ∈ Δ (� 3)

The successful completion of S � T realizes when either branch succeeds.

[(S � T, suc)] = [(S, suc)] ∪ {st | s ∈ [(S, fal)] ∧ t ∈ [(T, suc)]}

The abortion of S � T is caused by the abortion of S.

[(S � T, abt)] = [(S, abt)]

The abortion of T means the handler does nothing essential and thus the previous
failure has not been resolved at all. Then either failure or abortion of T will make
the whole composition S � T into the failed state.

[(S � T, fal)] = {st | s ∈ [(S, fal)] ∧ t ∈ [(T, abt)] ∪ [(T, fal)]}

Since both branches can lead to the success of S �T , we should first judge which
branch has succeeded and then be sure whose compensation is activated while
undoing. Hence, the definitions of [(S � T, cmp)] and [(S � T, hap)] are as same
as those for speculative choice.
Programmable compensation: Primarily, the compensation is attached
through the transactional pair which is a central construct to compose activities
[14]. As for a composite transaction, the developers sometimes need to program
a new compensation so as to satisfy a specific application requirement. Thus, the
construct of S �T is added to meet this demand. Formerly, the compensation of
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S is constructed by the accumulation of those of its sub-transactions. Here, T is
the newly programmed compensation for S, while the original accumulated one
is simply discarded. When S has completed, its new compensation T is waiting
to be enabled so that the effect of S can be semantically removed in case some
error occurs later:

(S, suc) � (T, act) (� 1)

By using the transitive property of � and dependencies listed in Table 1, we
have that:

(S, suc) � (T, α) α ∈ Δ (� 2)

In our model, compensation is also a compensable transaction. Thus we allow
this kind of composition, such as S � (T1 � T2) in which S has two alternative
compensations. Moreover, the actions (T, cmp) and (T, hap) have no chance to
take place since compensation for compensation will never be used.

The behavior of S�T is quite simple, S decides whether the whole composition
is successful, aborted or failed. Whereas the new compensation T determines
whether the whole composition is compensated completely or partially.

[(S � T, α)] = [(S, α)] α ∈ {suc, abt, fal}
[(S � T, cmp)] = [(T, suc)]
[(S � T, hap)] = [(T, α)] α ∈ {abt, fal}

3.2 A Case Study

Now let us presents a real web transaction dedicated to the processing of cus-
tomer orders. This description is carried out by compensable transactions il-
lustrated in Figure 2. Firstly, an order request from a customer is accepted and
this step is compensated by notifying the customer this request is canceled. Then
money will be deducted from the credit card providing that the credit check-
ing has passed. Afterwards, all the ordered items are packed for shipment and
this step is compensated by unpacking. Simultaneously with packing items, the
seller books shippers for delivery. In this example, we make an assumption that
this seller has only two shippers (shipper A and shipper B) to contact with.
Shipper A is cheaper but hard to book whereas shipper B is more expensive
but always available. For the sake of saving money, shipper A is preferred and
shipper B is booked only when shipper A is unavailable. At last, the selected
shipper is responsible for delivering these items. Note that if the customer can-
cels the order during processing, the compensation for completed parts will be
activated. When the compensation cannot properly undo the partial effects, the
seller would ask for extra indemnities from the customer which is transacted by
backward handling.

The transactional flow described above is not always satisfactory. Sometimes,
the customer needs the goods urgently because of his timing requirement. How-
ever, the process of credit checking may cost so much time that transportation
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OrderTrans = {(ProcessRequest;OrderProcess) � GetIndemnity}
OrderProcess = PayByCard; (PrepareOrder‖ContactShipper);DeliverOrder

ProcessRequest = AcceptOrder � CancelOrder

PayByCard = (CheckCredit; DeductMoney) � RefundMoney

PrepareOrder = PackItems � UnpackItems

ContactShipper = BookShipperA � BookShipperB

Fig. 2. Transaction for order fulfillment

will be delayed. In this case, the seller would like to deal with payment in parallel
with packing items. On the other hand, in order to be more reliable, sometimes
transporting items by more than one shipper would be a better solution. Over-
all, the transactional flow designed in hand should satisfy specific application
requirements. In the following section, we will introduce two kinds of repre-
sentations to express application requirements. Further we will propose strict
solutions to the verification of web transactions.

4 Verification

In this section, we mention two notions for specifying application requirements.
One is referred as acceptable termination states (ATS) as a correctness criteria to
specify relaxed atomicity requirements. Another one is a specification language
used for expressing temporal constraints with regard to transactional properties.

4.1 Acceptable Termination States

Let T.σ (σ ∈ Δ∪{idl}) represent the final state σ of the compensable transaction
T . Especially, T.idl denotes that T terminates without activation. As for a web
transaction {T }, a termination state of {T } is described by a set of final states
of its sub-transactions {T1.σ1, T2.σ2, . . . , Tn.σn}, where Ti is a sub-transaction of
T . For example, given a transaction T = {(T1 � T2); T3}, one of its termination
states is {T1.fal, T2.suc, T3.idl}. It says that T terminates when T1 fails and T2
succeeds without activating T3.

Let Ω be the set of transactions in which the designer is interested when in-
vestigating the termination states. Each transaction in Ω can be a composite
transaction. Further, we require that for two arbitrary transactions S, T ∈ Ω,
T cannot be the sub-transaction of S and vice versa. An acceptable termination
state of a web transaction {T } is a termination state limited to Ω in which the de-
signer expect to see {T } ends without raising any inconsistency. In other words,
an acceptable termination state is a termination state in which this transaction
finally succeeds or aborts but not fails. The set of all acceptable termination
states specified by the designer is denoted as ATS.

Let �T.σ� be the set of termination states in which T ends in σ. A web
transaction {T } is invalid if there is a termination state belonging to ATS which
cannot make {T } successful or aborted.
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Definition 4.1. A web transaction {T } is said to be valid according to its ac-
ceptable termination states ATS if and only if ATS ⊆ �T.suc� ∪ �T.abt�
It is worth noting that it is much better if there are more termination states in
which {T } cannot fail except for those in ATS. In order to verify a valid web
transaction, we should know the values of �T.suc� and �T.abt�. As mentioned
before, the transactional behavior is recorded by transactional traces. Now we
transform transactional traces to termination states such that �T.σ� can be
derived from [(T, σ)]. Five steps need to be done in sequence:

1. While computing transactional traces, every interested transaction does not
expand. That is, [(T, σ)](T ∈ Ω) is defined as {〈(T, σ)〉} without considering
its sub-transactions.

2. If there are two actions related to one transaction in a transactional trace,
the first one is removed while the latter one is preserved.

3. For any transactional trace t, its element (S, σ) is removed if S is not in Ω.
New element (S, idl) is inserted if S is in Ω but not mentioned in t.

4. Elements of a transactional trace are actions with the form of (T, σ), while
elements of a terminate state are states with the form of T.σ. Thus the form
of elements should be changed from (T, σ) into T.σ.

5. Elements in a transactional trace are ordered but elements in a termination
state are not. Finally, we extract the order information from traces by turning
sequences into sets.

When a transaction T is compensated, some transactional traces contain two
actions about T . The first action is (T, suc) and the following action is either
(T, cmp) or (T, hap). The second step above is intended to remove the first action
which is actually an interim state.

So far, we are able to compute �T.σ� (σ ∈ Δ) for any T . Further, we need one
more definition to help compute �T.idl�:

�T.idl� = {{T.idl}} T ∈ Ω
�T.idl� = {s ∪ t | s ∈ �T1.idl� ∧ t ∈ �T2.idl�} T /∈ Ω ∧ T = T1�T2

The operator � here and below denotes an arbitrary operator in t-calculus.
Restricted by behavioral dependencies, not all pairs of final states can exist
simultaneously. For instance, T1 � T2 does not have such a termination state
{T1.suc, T2.abt}, since (T1, suc) and (T2, abt) are exclusive derived from (� 3).

Definition 4.2. Suppose T = T1 � T2 and T1, T2 are not expanded 1, T1.σ1 and
T2.σ2 are said compatible with regard to � if and only if ∃σ • {T1.σ1, T2.σ2} ∈ �T.σ�
When a web transaction is proved to be invalid, we further provide a solution to
help designers to find the possible reason for this problem. Let A represent the
set of termination states in ATS but not in �T.suc� ∪ �T.abt�. Apparently, A is
not empty when the web transaction {T } is invalid. We try the two steps below
to locate the error.
1 While computing �T.σ� for a composite transaction T with its sub-transactions T1, T2

not expanded, we temporarily set Ω to be {T1, T2}. Thus, �T.σ� just includes the sets
with two elements denoting the final states of T1, T2 respectively.
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||

GetIndemnity

ProcessRequest

PayByCard

ContactShipper

DeliverOrder

n2 n3

n4 n5

n6 n7

n8 n9

n11

n1

PrepareOrdern10

Fig. 3. The syntax tree of order transaction

1. Firstly, construct a syntax tree according to the structure of {T }. This is a
binary tree and the contents of its nodes are either operators in t-calculus
or transactions in Ω. All these transactions in Ω lie in the leaves of this
tree.2 Every node n relates to a compensable transaction denoted by T(n).
For a leaf node n, T(n) is equal to its content. For a non-leaf node m with
an operator �, T(m) is equal to T(m1) � T(m2), in which m1, m2 are its
children nodes.

2. Secondly, try to traverse this tree in post-order. Given a termination state θ,
for any tree node n, its related transaction T(n) has a final state denoted by
	(n, θ). While visiting a leaf node n, for each θ in A, 	(n, θ) is computed and
it is equal to T(n).σ which is an element of θ. While visiting a non-leaf node
m with an operator � and two children nodes m1, m2, for each θ in A, we
need to check whether the two states 	(m1, θ) and 	(m2, θ) are compatible
with regard to �. If something incompatible is found, it means this operator
is wrongly written and the process of traverse is stopped. Otherwise, let
	(m, θ) equal to T(m).σ where {	(m1, θ), 	(m2, θ)} ∈ �T(m).σ� for each θ
in A. After that the next node in post-order is visited until there is a node
associated with an improper operator.

Next, we take the example in Figure 2 to explain our method for locating the
problem. Suppose the designer is interested in these sub-transactions below:

Ω = {ProcessRequest, PayByCard, PrepareOrder}
∪ {ContactShipper, DeliverOrder, GetIndemnity}

The syntax tree for OrderT rans is given in Figure 3. It has eleven nodes marked
by n1, n2, . . . , n11. All the leaves denote the interested sub-transactions. While
traversing the tree in post-order, the nodes are visited in the following order:

n4, n8, n10, n11, n9, n6, n7, n5, n2, n3, n1

2 If the transactions in Ω cannot cover all the leaves, the designer should provide more
information by enlarging the elements of Ω until all the leaves can be covered.
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For simplicity, we assume A just includes one termination state:

θ = {ProcessRequest.cmp, PayByCard.abt, PrepareOrder.abt}
∪ {ContactShipper.abt, DeliverOrder.idl, GetIndemnity.idl}

When visiting the first four nodes in post-order, we get their related transactions
and states as follow:

T(n4) = ProcessRequest 	(n4, θ) = ProcessRequest.cmp
T(n8) = PayByCard 	(n8, θ) = PayByCard.abt
T(n10) = PrepareOrder 	(n10, θ) = PrepareOrder.abt
T(n11) = ContactShipper 	(n11, θ) = ContactShipper.abt

Node n9 is equipped with a parallel operator. The transaction related to n9 is:

T(n9) = T(n10) ‖ T(n11) = PrepareOrder ‖ ContactShipper

It is not difficult to prove that 	(n10, θ) and 	(n11, θ) are compatible with regard
to this parallel operator by figuring out �T(n9).abt�:

�T(n9).abt� = {{PrepareOrder.abt, ContactShipper.abt}}

Thus, we get that: 	(n9, θ) = T(n9).abt. The next node n6 is associated with a
sequential operator and the transaction related to n6 is: T(n6) = T(n8); T(n9).

In the case, the states T(n8).abt (i.e., 	(n8, θ)) and T(n9).abt (i.e., 	(n9, θ))
are proved to be incompatible with regard to the sequential operator. It is easy
to predict this result because in the sequential composition S; T , T does not
have the chance to be activated without mentioning the possibility of abortion
when S is aborted. Thus, we find that this sequential operator attached to n6
is wrongly written. In fact, the designer here expects the credit check to be
performed in parallel not in sequence with preparing order because such check
normally succeeds. Moreover, the seller in this case has more time to process
order so as not to delay the transportation unnecessarily.

4.2 Verifying Temporal Constraints

In order to express more specific transactional properties with temporal con-
straints, we devise a specification language whose syntax is given below:

ψ ::= � a | a ≺ b | a � b | a < b | a ↔ b | a � b
¬ψ | ψ ∧ ψ | ψ ∨ ψ

where a, b are terminal actions. Except for these five relations (<, ≺, �, ↔, �),
one more unitary relation � is introduced. � a says that a will definitely occur
in the future.

Let M be the set of all terminal actions, and M∗ be the set of all finite
sequences (including 〈〉) which are formed from elements of M . For a trace s,
s[i] denotes the ith element. From another view, a formula ψ can be regarded
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�� a� = {s : M∗ | ∃i • s[i] = a}
�a ≺ b� = {s : M∗ | ∀i • (s[i] = a ⇒ ∃j • (j > i ∧ s[j] = b))}
�a � b� = {s : M∗ | ∀i • (s[i] = b ⇒ ∃j • (j < i ∧ s[j] = a))}
�a < b� = {s : M∗ | ∃i, j • (i < j ∧ s[i] = a ∧ s[j] = b) ∨ ∀i • (s[i] 
= a ∧ s[i] 
= b)}
�a ↔ b� = {s : M∗ | ∃i, j • (s[i] = a ∧ s[j] = b) ∨ ∀i • (s[i] 
= a ∧ s[i] 
= b)}
�a � b� = {s : M∗ | ∃i • s[i] = a ⇒ ∀j • s[j] 
= b}
�¬ψ� = M∗ − �ψ�
�ψ1 ∧ ψ2� = �ψ1� ∩ �ψ2�
�ψ1 ∨ ψ2� = �ψ1� ∪ �ψ2�

Fig. 4. Interpretations over traces for formulae

as a set of transactional traces defined by the function �·�, whose definition is
inductively given in Figure 4. Given a transaction T and a property ψ, the
designer expects to verify whether ψ is satisfied by a specific behavior [(T, σ)]
for a concrete state σ (σ ∈ Δ).

Definition 4.3. ψ holds for [(T, σ)] (written as [(T, σ)] |= ψ) if and only if
[(T, σ)] ⊆ �ψ�.

The problem is that the number of traces in �ψ� is too large due to a large amount
of elements in M . To improve this, we reset M for each formula ψ and make it
be the set of actions only mentioned by ψ. In addition, we need to restrict the
traces of [(T, σ)] to the actions in M . For a trace s, we use the expression s � M
to denote a new trace formed from s simply by omitting all actions outside M .
Thus, the traces from [(T, σ)] restricted to M is defined as follows:

[(T, σ)]↓M= {t | ∃s • (t = s � M ∧ s ∈ [(T, σ)])}

Then the verification process can be improved by getting rid of actions indepen-
dent of properties.

Theorem 4.1. Let M be the set of actions occurring in ψ. [(T, σ)] |= ψ holds if
and only if [(T, σ)]↓M⊆ �ψ�.

Example: Given a simple transaction T = (T1; T2) � T3 and a specified property
ψ = (T1, hap) ≺ (T3, suc), we require to check whether [(T, abt)] |= ψ holds.

First, we compute the behavior of T provided it is aborted.

[(T, abt)] = {〈(T1, abt)〉, 〈(T1, suc), (T2, abt), (T1, cmp)〉}
∪ {〈(T1, suc), (T2, abt), (T1, hap), (T3, suc)〉}
∪ {〈(T1, fal), (T3, suc)〉, 〈(T1, suc), (T2, fal), (T3, suc)〉}

This property only refers to two actions and we get that:

M = {(T1, hap), (T3, suc)}
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Then we limit the traces of [(T, abt)] to the set of M :

〈(T1,abt)〉�M = 〈〉
〈(T1,fal),(T3,suc)〉�M = 〈(T3, suc)〉
〈(T1,suc),(T2,abt),(T1,cmp)〉�M = 〈〉
〈(T1,suc),(T2,fal),(T3,suc)〉�M = 〈(T3, suc)〉
〈(T1,suc),(T2,abt),(T1,hap),(T3,suc)〉�M = 〈(T1,hap),(T3,suc)〉

Consequently, we have that

[(T, abt)]↓M= {〈〉, 〈(T3, suc)〉, 〈(T1, hap), (T3, suc)〉}

At last, we convert the property to a set of traces:

�ψ� = {s : M∗ | ∀i • (s[i] = (T1, hap) ⇒ ∃j • (j > i ∧ s[j] = (T3, suc)))}
= {〈〉, 〈(T3, suc)〉, 〈(T1, hap), (T3, suc)〉}

Obviously, [(T, abt)]↓M⊆ �ψ� holds for this example.
A complex formula ψ possibly makes �ψ� much bigger, which increases the

difficulty of verification. A practical solution is that we change the formula into
the disjunctive normal form as follows:

ψ = ψ1 ∨ ψ2 ∨ · · · ∨ ψn

Apparently, �ψi� (1 ≤ i ≤ n) is smaller than �ψ�. If we can verify that one
sub-formula is satisfied, the whole formula holds obviously.

Theorem 4.2. Suppose ψ = ψ1 ∨ ψ2 ∨ · · · ∨ ψn. [(T, σ)] |= ψ if [(T, σ)] |=ψ1 ∨
[(T, σ)] |=ψ2 ∨ · · · ∨ [(T, σ)] |= ψn.

5 Related Work

Due to limitations of classical transactions, some models have adopted the con-
cept of compensation to satisfy the autonomy requirement in distributed environ-
ment. Elmagarmid et al. [5] supported mixed transactions allowing compensable
and noncompensable sub-transactions to coexist. Levy et al. [11] proposed a for-
mal model to unify the two dual methods of compensation and retry. In their
work, a whole transaction was modeled as a static partial order of steps. A new
approach called XIP [17] was proposed to present an optimistic commit protocol
to enable the Internet transaction semantics. In contrast with these works, we
develop a formal language to explicitly model the logical precedence, causality
and synchronization constraints among compensable transactions.

In recent literatures, process calculus is adopted extensively to formalize long-
lived transactions. Several proposals [1,10,15] took the well-known π-calculus as
a starting point and extended it with some transactional features. Another lan-
guage cCSP [3] as an extension of CSP supports automatic compensation on
transactional failure. It is equipped with a simple operational semantics [4] and
this semantics is made executable by encoding the rules in Prolog. Bruni et al. [2]
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have developed a sagas calculus with similar operators to cCSP. The difference is
mainly that while considering parallel execution, cCSP encourages synchronized
compensation whereas sagas calculus supports distributed compensation. None
of these transactional languages treats compensations as compensable transac-
tions like t-calculus [14] we proposed earlier does. The operational and algebraic
semantics of t-calculus was studied and a kind of linking theory has been estab-
lished [13,12]. Unlike our previous works, this paper specifies web transactions
by investigating compensable transactions in a higher level of granularity. In
addition, the semantics of each transactional construct is explored in a differ-
ent way by formally describing its behavioral dependencies. Moreover, this work
proposes strict solutions to verify transactional behavior.

With regard to verification, there are already a series of work focusing on
analyzing and verifying web service properties. Foster et al. [6] discussed a model-
based approach to verify web service compositions, in which implementations
were mechanically translated to FSP to perform an equivalence trace verification
process. Temporal logics for compositional reasoning about web service interfaces
have been proposed in [18]. Nakajima used model checking to analyze web service
flow by translating BPEL descriptions into Promela [16]. The interactions of
composite web services were analyzed by modeling them as conversations [7].
Service processes were first translated into guarded automata and then verified
using SPIN. Pu et al. [9] adopted a similar approach to use the model checker
UPPAAL to verify BPEL programs including timed properties. However, we find
no relevant work on verifying web transactions with the feature of compensation.
This paper is the first attempt in this area to the best of our knowledge.

6 Conclusion

Web transactions in this paper are built upon a set of compensable transactions
which help to ensure a relatively relaxed atomicity. Compensable transactions
support composition in different manners, aiming to enhance the reliability and
flexibility of web transactions. Distinct transactional constructs correspond to
different behavioral dependencies which have been explored from two aspects.
On the one hand, the dependency between two sub-transactions on the same
syntactic level is described by a series of relations between actions. On the other
hand, the dependency among a composite transaction and its sub-transactions
is defined in terms of transactional traces. Transactional traces are more precise
than relations of actions, since they can assist designers to track the behavior of
a whole web transaction.

The formal description of web transactions helps to clarify ambiguous concepts
and it provides the basis for the following process of verification. At first, this paper
has provided a method to verify web transactions according to the relaxed atom-
icity requirement. Besides, the problem can be located if inconsistency exists. Af-
terwards, a specification language has been proposed for specifying temporal con-
straints about compensable transactions. The verification process is further opti-
mized by restricting actions of interest and partitioning property formulae.
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