
U. Visser et al. (Eds.): RoboCup 2007, LNAI 5001, pp. 540–547, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Opponent Provocation and Behavior Classification:
A Machine Learning Approach

Ramin Fathzadeh1, Vahid Mokhtari1, and Mohammad Reza Kangavari2

1 Mechatronics Research Laboratory
Department of Computer Engineering, Islamic Azad University,

Qazvin Branch, Qazvin, Iran
{fathzadeh,mokhtari}@qazviniau.ac.ir

http://www.mrl.ir/
2 Department of Computer Engineering, Iran University of

Science and Technology, Tehran, Iran
kangavari@iust.ac.ir

Abstract. Opponent Modeling is one of the most attractive and practical arenas
in Multi Agent System (MAS) for predicting and identifying the future behav-
iors of opponent. This paper introduces a novel approach using rule based ex-
pert system towards opponent modeling in RoboCup Soccer Coach Simulation.
In this scene, an autonomous coach agent is able to identify the patterns of the
opponent by analyzing the opponent's past games and advising own players. For
this purpose, the main goal of our research comprises two complementary parts:
(a) developing a 3-tier learning architecture for classifying opponent behaviors.
To achieve this objective, sequential events of the game are identified using en-
vironmental data. Then the patterns of the opponent are predicted using statisti-
cal calculations. Eventually, by comparing the opponent patterns with the rest
of team's behavior, a model of the opponent is constructed. (b) designing a rule
based expert system containing provocation strategies to expedite detection of
opponent patterns. These items mentioned are used by coach, to model the op-
ponent and generate an appropriate strategy to play against the opponent. This
structure is tested in RoboCup Soccer Coach Simulation and MRLCoach was
the champion at RoboCup 2006 in Germany.

1 Introduction

Multi Agent System is one of the sub-disciplines of artificial intelligence which was
introduced for the purpose of defining the rules and principles for developing com-
plex systems and provides a mechanism for cooperating the agents [1], [2]. In real-
time environments, multi agent systems need agents that are able to act automatically
as members of a team. Modeling opponent in our multi agent system environment
predicts the future behaviors of opponent and proposes an appropriate counteraction
[3]. RoboCup is an MAS environment and opponent modeling plays a crucial role in
this context. In this domain, every team is defined as a group of autonomous agents
which are connected to a server and play a simulated soccer [4]. Coach agent of the
team, receives the complete and noiseless information from the field and in order to
enhance the performance sends messages in format of the standard coach language,
called CLang, to its players [5], [6].

 Opponent Provocation and Behavior Classification: A Machine Learning Approach 541

Recently emphasizing on opponent modeling, coach competition has regulation
changed been, so that coach becomes in charge of identifying the weaknesses and
strengths of the opponent (patterns), from other behaviors of the opponent (base strat-
egy). The 2006 coach competition rule defines pattern and base strategy as:

Pattern: A simple behavior that a team performs which is predictable and exploitable
for the coaches.

Base strategy: The general strategy of the test team regardless of the pattern in it.
To exemplify this, a pattern may be a sequence of consecutive passes between

some particular players, clearing the ball to the outside of penalty area by defenders,
or any different formation of players between pattern and base strategy

Our work is focused on opponent modeling and online pattern identification. For
this purpose, MRLCoach receives the previous plays of the opponent as two log files
of pattern and base strategy, and by analyzing them identifies the events occurred
such as pass, shoot, dribble, etc. Then for pattern recognition, chi-square test [7], [8],
issued to analyze the possible relation between an event and a sequence of previously
occurred events. The eventual model of the opponent could be a collection of multiple
identified patterns. Now, using a radix tree [9], we compare constructed models from
the pattern and base strategy log files and store the differences as the final model of
the opponent in the model repository. Finally, coach makes models for each of the
pattern and base strategy log files. Opponent Provocation could be considered as a
new problem in MAS environment. In RoboCup coach domain, this goal means for
each identified behavior of opponent, a strategy is constructed to activate this behav-
ior in online game. Hence Rule Based Expert System is recruited to expose the appro-
priate strategies for opponent provocation. Thereupon, in online mode, by observing
the opponent behavior, coach looks for an appropriate strategy for it in Knowledge
Base. Once an instance is found, it is sent to the players. In online mode, observing
the live game, coach exposes an online model of the opponent and compares it with
the stored models in repository. When a matching online model is identified, coach
reports it as the current opponent model to the server. The remainder of this paper is
organized as follows: At first, we introduce the soccer server environment, second, a
3-tier learning architecture for predicting and exposing the opponent behavior is pre-
sented. Afterwards, we explain how rule based expert system proposes a proper strat-
egy against the opponent team and how the process of learning is accomplished in
online game. Continuing on, section 4 presents the results of our experiments in de-
tails. The final section of this paper is devoted to the future works.

2 The Environment

The RoboCup simulation league uses the Soccer Server System [4] to simulate the field
and the players. Each player has to be a unique process that connects via a standard
network protocol to the server. The players receive video and audio information every
150 msec over the network and can issue primitive actions like kick, dash, turn, turn-
neck and say every 100 msec. The server processes the actions of the players and gener-
ates new visual information. The rest of information consists of the distances and angles
to other players, the ball and landmarks. The players can only perceive objects that are
in their field of vision and both the visual information and the execution of the actions
are noisy. Additionally, the accuracy and amount of sensory information decreases with

542 R. Fathzadeh, V. Mokhtari, and M.R. Kangavari

the distance of objects. Communication between the clients is only allowed if it passes
via the server, considering the fact that bandwidth and hear range are limited.

An extra client on each team can connect as a coach, who can see the whole field
and send strategic information to clients when the play is stopped, for example for a
free-kick. In the soccer server, a coach agent has three main advantages over a stan-
dard player. First, a coach has given a noise-free omniscient view of the field at all
times. Second, the coach is not required to execute actions in every simulator cycle
and can, therefore, allocate more resources to high-level considerations. Third, in
competition, the coach has access to log-files of past games played by the opponent,
which can provide to important strategic insights.

3 Coach Framework

Coach agent behavior comprises of two phases: In Opponent Behavior Acquisition
phase, raw data is received from the environment, and events of the game are identi-
fied using statistical calculation. Then the opponent behaviors are classified as pat-
terns. In Opponent Provocation phase, pattern recognition process is expedited. Here
a rule based expert system is being used to opponent provocation. Figure 1 shows the
general architecture of coach.

Fig. 1. MRLCoach architecture: event tracking, pattern recognition, comparing models and
opponent provocation

 Opponent Provocation and Behavior Classification: A Machine Learning Approach 543

3.1 Opponent Behavior Acquisition

Before starting the game, coach is provided with a set of prepared patterns and base
strategies of the opponent's past games. By analyzing this information, coach exposes
the occurred events. Then, using the chi-square test, expected patterns in a log file are
identified. Constructed model of the opponent is a set of these patterns. This model is
compared with the model created from base strategy. Their difference is stored as a
final model of the opponent for online use. During the game, online coach receives
the match's information and analyzes play of the opponent with similar methods used
in offline phase and compares the created model with those already existing in the
repository and reports a matching one as the current opponent model to the server.

The main goal of coach is to mine the opponent behavior. For this purpose, we
classify the possible behaviors in a simulated match to different classes such as for-
mation, pass, shoot, dribble, hold, etc., some of which are divided into subclasses. For
instance, the pass class has the following 3 subclasses: direct pass, pass graph and
closed pass graph [10], [11].

The opponent modeling process is comprised by event tracking, pattern recogni-
tion and comparing models.

Event Tracking. The first step in modeling the opponent is to detect the events oc-
curred in a game. Event tracking consists of breaking problem down into two individ-
ual and multi agent behaviors [12]. For tracking these behaviors, raw data including
play mode, positions and velocities of both the players and the ball are gathered from
the field. Then by identifying the ball owner in every cycle, the individual behaviors,
namely pass, shoot, dribble, hold and intercept are exploited. After identification of
the individual behaviors, in a next higher level, multi agent behaviors such as forma-
tion, defending system, offending system and pass graphs are recognized.

Pattern Recognition. A pattern is a sequence of events appeared in a game sufficient
number of times, which is predictable and exploitable. In order to treat the sequence
of events identified at the previous section as patterns, we have recruited the chi-
square test:

()
∑

−
=

=
k

i

ii

E
EO
i1

2
2χ

(1)

Which Oi is the observed frequency of an event, Ei is the expected frequency of an
event and k is the number of random variables.

As an example for recognition of pass pattern, 29 observed passes for the player 2
are shown in the frequency table 1.

Table 1. Use of chi-square test in recognition of pass pattern

 Player 3 Player 4 Player 5 Total

Observed Pass (O) 4 9 16 29

Expected Pass (E) 2.9 5.8 20.3 29

(O-E)2 / E 0.417 1.765 0.910 3.092

544 R. Fathzadeh, V. Mokhtari, and M.R. Kangavari

The columns of this table contain players receiving the pass. The first and the sec-
ond rows have respectively the numbers of observed and expected passes. Based on
our experience in recognition of pass pattern, we consider the expected frequency to
be at least 70% of the total of observed passes to the player with maximum number of
receives. The total in the third row is the calculated chi-square value. Now, we should
compare the chi-square value we calculated, χ2=3.092, with the χ2 value read from the
table of χ2 [13], with n-1 degrees of freedom (where n is the number of categories
which is the number of pass receiver players, 3 in our case). So we have only 2 de-
grees of freedom. From the χ2 table, we find the critical value of 5.99 with probabil-
ity=0.05.

Because the calculated value of 3.092 is less than 5.99, our assumption is though ac-
ceptable. This means in 95% of the cases the calculation of pass pattern is significance.

Comparing Models. A model of the opponent is a set of detected patterns. We store
this model using radix tree ADT. For each of the pattern or base strategy log files, a
radix tree is created. Afterwards, it is necessary to compare these radix trees to sug-
gest the final opponent model. The difference between pattern radix tree and base
radix tree determines the final model of the opponent that is stored in a third radix
tree in model repository. Actually each node of this tree is a node existing in pattern
radix tree but not in base radix tree.

After all the possible models of the opponent are exposed from the log files in the
offline section, in the online mode, we are to identify the current model of the oppo-
nent in real-time. To accomplish this, in each game, by receiving the information
from the field, events and patterns of the opponent are identified with similar methods
used in offline; then an online model of the opponent is created. Unlike the offline
mode where model of the opponent is identified by comparing the log files of pattern
and base strategy, in online mode, a current model is compared to a collection of
previous models of the opponent. Hence, some similarities or conflicts between pat-
terns are possible. To preclude erroneous reports, our policy is to store the similar or
conflicting patterns in a specific table. To deal with these similarities or conflicts, we
carry on computations until they are distinguished. In this case, if these conflicts are
not settled until the end of the game, reporting is not allowed.

3.2 Opponent Provocation

One of the other policies applied in online section is the selection of a suitable strat-
egy to motivate the opponent players to disclose the expected patterns. For this pur-
pose, we have used rule based expert system architecture to provide a provoking
strategy for opponent players. Rule-based systems are computer systems that use rules
to provide recommendations or diagnoses, or to determine a course of action in a
particular situation or to solve a particular problem [14], [15]. To design such rule-
based architecture, the patterns identified in offline mode are considered as antece-
dents and the consequents are strategies for opponent provocation which are built
with the assistance of a human expert. We store these ordered pairs of patterns and
strategies as rules in our Strategy Library. To present an appropriate strategy, the
Forward Chaining method is used. In a way that by receiving observations from the
environment, we search in strategy library for a rule whose condition part is identical

 Opponent Provocation and Behavior Classification: A Machine Learning Approach 545

to these observations. In this case, this rule is triggered and its action part is sent to the
players as provoking strategy. Therein one of the outstanding problems of this system
is Conflict Resolution. This means that it is probable that more than one rule are quali-
fied to be fired. There are several conflict resolution strategies, such as choosing the
most recent activated, the least frequently triggered, etc. The most suitable conflict
resolution strategy is priority-based: assigning a priority value to every rule and se-
lecte the fired rule with the highest priority. In the case that several rules have the
highest priority value, a random selection is performed. To deal with this problem we
have benefited from prority-baseed conflict resolution.

With this method, coach can select the best possible strategy to provoke opponent
players. This increases the accuracy of reporting pattern and speeds up pattern recog-
nition. Figure 2 illustrates some used provocation strategies.

Fig. 2. Example of provocation strategies

What we have mentioned here about opponent provocation could be considered as
a novel approach in Opponent Modeling.

Two examples are given here to clarify the idea.

− Let's assume that the opponent pattern is offside trap. In this case, we should put
our players in offside situation. Therefore the candidate strategies which have the
properties and can be used to activate opponent behavior could be "move forward"
or "through pass". Meanwhile the game, by observing the first occurrence of off-
side trap, if the offside fact is found in strategy library, "move forward" or
"through pass" strategy is activated.

− Let the opponent behavior be a simple direct pass e.g. a pass from player 9 to play-
er 10. For this case, our strategy is "handing ball to player 9 of opponent".

Eventually these strategies are advised to players in the format of standard coach
language. This structure is completely implemented and tested at the RoboCup com-
petitions. In the following section, our experiments are explained in full detail.

4 Experimental Result

The MRL team acquired the 1st place among 10 participated teams in RoboCup 2006
competition. This competition had 3 rounds, each consisting of 4 iterations. In every
round, nearly 15 to 20 patterns are fed to the log analyzer. The participants are re-
sponsible for creating these patterns. According to coach regulation, teams should
provide at least 3 patterns for each round and active patterns for the iterations are also
selected by them. Log analyzer has an average of 5 minutes to process a pattern.

ReleaseOpp()
If (OppModel = HoldBall)

AttackBall()
If (OppModel = Pass) HandingBall()
If (OppModel = Offside) ThroughPass()

546 R. Fathzadeh, V. Mokhtari, and M.R. Kangavari

Meanwhile the game, online coach should identify and report the activated patterns
within 10 minutes. The score of a team depends on both the number of correct de-
tected patterns and the time of report. In the first round, our team placed second. After
making some slight modification to the parameters in the algorithms used to reduce
the noise, we attained the first place in the second round and could pass to the final
round without any wrong reports. Although most of the patterns in the final round
were chosen from the patterns which other teams had prepared, our team took the
greatest score. MRL detected 10 correct patterns from 18 activated patterns that equal
the sum of all identified patterns of other teams in this round. The final round results
and the ranks of teams are depicted in table 2.

Table 2. Total scores in the final round of the competition for the top 4 finishers

Team
Iteration 1
Score Rank1

Iteration 2
Score Rank2

Iteration 3
Score Rank3

Iteration 4
Score Rank4

Final
Rank

MRL 67583.59 1 40857.6 1 51311.25 1 91578.75 1 4

UT Austin 44649.99 2 -4739.40 4 9548.5 3 9543.75 2 11

Caspian 11200.0 3 -4000.0 3 15000.0 2 -8000.0 4 12

Pasargad -9282.0 4 2475.199 2 -9282.0 4 5418.0 3 13

The results of RoboCup 2006 competitions showed that MRL had well-deserved

victory for being champion. And despite of lots of similarities and conflicts between
the patterns, we had the least wrong reports number among all the teams, in the way
that in the final round from a total of 26 wrong reports just one of them was ours.

5 Conclusion and Future Work

In this paper, we presented a novel architecture for modeling the opponent in coach
competition. MRLCoach is an agent that is fully implemented and has been success-
fully tested in RoboCup competition. Providing this learning structure, MRL team
took the 1st place in RoboCup 2006 coach competition. Our unparalleled performance
in the competition has convinced us that the recipe for our success had been our capa-
bility in the handling of the noises and conflicts. Pattern categorization and noise
handling are of prominent factors in our success in the competition. The trick in ad-
vising our players to motivate the opponent players to demonstrate the patterns had
also assisted us in identifying the opponent behaviors simpler and sooner.

Opponent provocation could be considered as a novel approach in MAS for achiev-
ing a specific goal. This method can be applied to arenas such as military applications
and other adversarial domains in order to give strategies to provoke and trap the en-
emy. In the future, our study will be focused on optimization of opponent provocation
system to expedite opponent modeling and make this process more accurate.

 Opponent Provocation and Behavior Classification: A Machine Learning Approach 547

References

1. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. Prentice-
Hall, Inc. (1995)

2. Weiss, G.: Multiagent Systems a Modern Approach to Distributed Artificial Intelligence.
MIT Press (1999)

3. Riley, P.: Coaching: Learning and Using Environment and Agent Models for Advice.,
Ph.D. dissertation, School of Computer Science, Carnegie Mellon University, Pittsburgh,
PA 15213-3891 (2005)

4. Murray, J., Noda, I., Obst, O., Riley, P., Stiffens, T., Wang, Y., Yin, X.: RoboCup Soccer
Server User Manual for Soccer Server 7.07 and later (2002)

5. Riley, P., Veloso, M.: An Overview of Coaching with Limitations. In: Proceedings of the
Second Autonomous Agents and Multi-Agent Systems Conference, pp. 1110–1111 (2003)

6. Riley, P., Veloso, M.: Coaching Advice and Adaptation. In: Polani, D., Bonarini, A.,
Browning, B., Yoshida, K. (eds.) RoboCup 2003: The Sixth RoboCup Competitions and
Conferences. Springer, Berlin (2004)

7. Rohlf, F.J., Sokal, R.R.: Statistical Tables, 3rd edn. W. H. Freeman and Company, New
York (1995)

8. Banks, J., Carson, J.S.: Discrete-Event System Simulation. Prentice-Hall Inc. (1984)
9. Sedgewick, R.: Algorithms. Addison-Wesley (1983)

10. Fathzadeh, R., Mokhtari, V., Shahri, A.M.: Coaching With Expert System towards Ro-
boCup Soccer Coach Simulation. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y.
(eds.) RoboCup 2005. LNCS (LNAI), vol. 4020. Springer, Heidelberg (2006)

11. Kuhlmann, G., Stone, P., Lallinger, J.: The Champion UT Austin Villa 2003 Simulator
Online Coach Team. In: Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.) Ro-
boCup 2003: Robot Soccer World Cup VII. Springer, Berlin (2004)

12. Stone, P.: Layered Learning in Multi-Agent Systems., Ph.D. dissertation, School of Com-
puter Science, Carnegie Mellon University, Pittsburgh, PA 15213-3891 (1998)

13. Shannon, R.E.: Systems Simulation: The art and science, p. 372. Prentice Hall, Englewood
Cliffs (1975)

14. Buchanan, B.G., Shortliffe, E.H.: Rule-Based Expert Systems: The MYCIN Experiments
of the Stanford Heuristic Programming Project. Addison Wesley (1984)

15. Biondo, S.J.: Fundamentals of Expert System Technology: Principles and Concepts, Intel-
lect (1990)

	Opponent Provocation and Behavior Classification: A Machine Learning Approach
	Introduction
	The Environment
	Coach Framework
	Opponent Behavior Acquisition
	Opponent Provocation

	Experimental Result
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

