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Abstract. Opponent Modeling is one of the most attractive and practical arenas 
in Multi Agent System (MAS) for predicting and identifying the future behav-
iors of opponent. This paper introduces a novel approach using rule based ex-
pert system towards opponent modeling in RoboCup Soccer Coach Simulation. 
In this scene, an autonomous coach agent is able to identify the patterns of the 
opponent by analyzing the opponent's past games and advising own players. For 
this purpose, the main goal of our research comprises two complementary parts: 
(a) developing a 3-tier learning architecture for classifying opponent behaviors. 
To achieve this objective, sequential events of the game are identified using en-
vironmental data. Then the patterns of the opponent are predicted using statisti-
cal calculations. Eventually, by comparing the opponent patterns with the rest 
of team's behavior, a model of the opponent is constructed. (b) designing a rule 
based expert system containing provocation strategies to expedite detection of 
opponent patterns. These items mentioned are used by coach, to model the op-
ponent and generate an appropriate strategy to play against the opponent. This 
structure is tested in RoboCup Soccer Coach Simulation and MRLCoach was 
the champion at RoboCup 2006 in Germany. 

1   Introduction 

Multi Agent System is one of the sub-disciplines of artificial intelligence which was 
introduced for the purpose of defining the rules and principles for developing com-
plex systems and provides a mechanism for cooperating the agents [1], [2]. In real-
time environments, multi agent systems need agents that are able to act automatically 
as members of a team. Modeling opponent in our multi agent system environment 
predicts the future behaviors of opponent and proposes an appropriate counteraction 
[3]. RoboCup is an MAS environment and opponent modeling plays a crucial role in 
this context. In this domain, every team is defined as a group of autonomous agents 
which are connected to a server and play a simulated soccer [4]. Coach agent of the 
team, receives the complete and noiseless information from the field and in order to 
enhance the performance sends messages in format of the standard coach language, 
called CLang, to its players [5], [6]. 
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Recently emphasizing on opponent modeling, coach competition has regulation 
changed been, so that coach becomes in charge of identifying the weaknesses and 
strengths of the opponent (patterns), from other behaviors of the opponent (base strat-
egy). The 2006 coach competition rule defines pattern and base strategy as: 

Pattern: A simple behavior that a team performs which is predictable and exploitable 
for the coaches. 

Base strategy: The general strategy of the test team regardless of the pattern in it. 
To exemplify this, a pattern may be a sequence of consecutive passes between 

some particular players, clearing the ball to the outside of penalty area by defenders, 
or any different formation of players between pattern and base strategy  

Our work is focused on opponent modeling and online pattern identification. For 
this purpose, MRLCoach receives the previous plays of the opponent as two log files 
of pattern and base strategy, and by analyzing them identifies the events occurred 
such as pass, shoot, dribble, etc. Then for pattern recognition, chi-square test [7], [8], 
issued to analyze the possible relation between an event and a sequence of previously 
occurred events. The eventual model of the opponent could be a collection of multiple 
identified patterns. Now, using a radix tree [9], we compare constructed models from 
the pattern and base strategy log files and store the differences as the final model of 
the opponent in the model repository. Finally, coach makes models for each of the 
pattern and base strategy log files. Opponent Provocation could be considered as a 
new problem in MAS environment. In RoboCup coach domain, this goal means for 
each identified behavior of opponent, a strategy is constructed to activate this behav-
ior in online game. Hence Rule Based Expert System is recruited to expose the appro-
priate strategies for opponent provocation. Thereupon, in online mode, by observing 
the opponent behavior, coach looks for an appropriate strategy for it in Knowledge 
Base. Once an instance is found, it is sent to the players. In online mode, observing 
the live game, coach exposes an online model of the opponent and compares it with 
the stored models in repository. When a matching online model is identified, coach 
reports it as the current opponent model to the server. The remainder of this paper is 
organized as follows: At first, we introduce the soccer server environment, second, a 
3-tier learning architecture for predicting and exposing the opponent behavior is pre-
sented. Afterwards, we explain how rule based expert system proposes a proper strat-
egy against the opponent team and how the process of learning is accomplished in 
online game. Continuing on, section 4 presents the results of our experiments in de-
tails. The final section of this paper is devoted to the future works. 

2   The Environment  

The RoboCup simulation league uses the Soccer Server System [4] to simulate the field 
and the players. Each player has to be a unique process that connects via a standard 
network protocol to the server. The players receive video and audio information every 
150 msec over the network and can issue primitive actions like kick, dash, turn, turn-
neck and say every 100 msec. The server processes the actions of the players and gener-
ates new visual information. The rest of information consists of the distances and angles 
to other players, the ball and landmarks. The players can only perceive objects that are 
in their field of vision and both the visual information and the execution of the actions 
are noisy. Additionally, the accuracy and amount of sensory information decreases with 
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the distance of objects. Communication between the clients is only allowed if it passes 
via the server, considering the fact that bandwidth and hear range are limited. 

An extra client on each team can connect as a coach, who can see the whole field 
and send strategic information to clients when the play is stopped, for example for a 
free-kick. In the soccer server, a coach agent has three main advantages over a stan-
dard player. First, a coach has given a noise-free omniscient view of the field at all 
times. Second, the coach is not required to execute actions in every simulator cycle 
and can, therefore, allocate more resources to high-level considerations. Third, in 
competition, the coach has access to log-files of past games played by the opponent, 
which can provide to important strategic insights. 

3   Coach Framework 

Coach agent behavior comprises of two phases: In Opponent Behavior Acquisition 
phase, raw data is received from the environment, and events of the game are identi-
fied using statistical calculation. Then the opponent behaviors are classified as pat-
terns. In Opponent Provocation phase, pattern recognition process is expedited. Here  
a rule based expert system is being used to opponent provocation. Figure 1 shows the 
general architecture of coach. 
 

 

 
 

Fig. 1. MRLCoach architecture: event tracking, pattern recognition, comparing models and 
opponent provocation 
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3.1   Opponent Behavior Acquisition 

Before starting the game, coach is provided with a set of prepared patterns and base 
strategies of the opponent's past games. By analyzing this information, coach exposes 
the occurred events. Then, using the chi-square test, expected patterns in a log file are 
identified. Constructed model of the opponent is a set of these patterns. This model is 
compared with the model created from base strategy. Their difference is stored as a 
final model of the opponent for online use. During the game, online coach receives 
the match's information and analyzes play of the opponent with similar methods used 
in offline phase and compares the created model with those already existing in the 
repository and reports a matching one as the current opponent model to the server. 

The main goal of coach is to mine the opponent behavior. For this purpose, we 
classify the possible behaviors in a simulated match to different classes such as for-
mation, pass, shoot, dribble, hold, etc., some of which are divided into subclasses. For 
instance, the pass class has the following 3 subclasses: direct pass, pass graph and 
closed pass graph [10], [11]. 

The opponent modeling process is comprised by event tracking, pattern recogni-
tion and comparing models. 

Event Tracking. The first step in modeling the opponent is to detect the events oc-
curred in a game. Event tracking consists of breaking problem down into two individ-
ual and multi agent behaviors [12]. For tracking these behaviors, raw data including 
play mode, positions and velocities of both the players and the ball are gathered from 
the field. Then by identifying the ball owner in every cycle, the individual behaviors, 
namely pass, shoot, dribble, hold and intercept are exploited. After identification of 
the individual behaviors, in a next higher level, multi agent behaviors such as forma-
tion, defending system, offending system and pass graphs are recognized.  

Pattern Recognition. A pattern is a sequence of events appeared in a game sufficient 
number of times, which is predictable and exploitable. In order to treat the sequence 
of events identified at the previous section as patterns, we have recruited the chi-
square test: 
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Which Oi is the observed frequency of an event, Ei is the expected frequency of an 
event and k is the number of random variables. 

As an example for recognition of pass pattern, 29 observed passes for the player 2 
are shown in the frequency table 1. 

Table 1. Use of chi-square test in recognition of pass pattern 

 Player 3 Player 4 Player 5 Total 

Observed Pass (O) 4 9 16 29 

Expected Pass (E) 2.9 5.8 20.3 29 

(O-E)2 / E 0.417 1.765 0.910 3.092 
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The columns of this table contain players receiving the pass. The first and the sec-
ond rows have respectively the numbers of observed and expected passes. Based on 
our experience in recognition of pass pattern, we consider the expected frequency to 
be at least 70% of the total of observed passes to the player with maximum number of 
receives. The total in the third row is the calculated chi-square value. Now, we should 
compare the chi-square value we calculated, χ2=3.092, with the χ2 value read from the 
table of χ2 [13], with n-1 degrees of freedom (where n is the number of categories 
which is the number of pass receiver players, 3 in our case). So we have only 2 de-
grees of freedom. From the χ2 table, we find the critical value of 5.99 with probabil-
ity=0.05. 

Because the calculated value of 3.092 is less than 5.99, our assumption is though ac-
ceptable. This means in 95% of the cases the calculation of pass pattern is significance. 

Comparing Models. A model of the opponent is a set of detected patterns. We store 
this model using radix tree ADT. For each of the pattern or base strategy log files, a 
radix tree is created. Afterwards, it is necessary to compare these radix trees to sug-
gest the final opponent model. The difference between pattern radix tree and base 
radix tree determines the final model of the opponent that is stored in a third radix 
tree in model repository. Actually each node of this tree is a node existing in pattern 
radix tree but not in base radix tree.  

After all the possible models of the opponent are exposed from the log files in the 
offline section, in the online mode, we are to identify the current model of the oppo-
nent in real-time. To accomplish this, in each game, by receiving the information 
from the field, events and patterns of the opponent are identified with similar methods 
used in offline; then an online model of the opponent is created. Unlike the offline 
mode where model of the opponent is identified by comparing the log files of pattern 
and base strategy, in online mode, a current model is compared to a collection of 
previous models of the opponent. Hence, some similarities or conflicts between pat-
terns are possible. To preclude erroneous reports, our policy is to store the similar or 
conflicting patterns in a specific table. To deal with these similarities or conflicts, we 
carry on computations until they are distinguished. In this case, if these conflicts are 
not settled until the end of the game, reporting is not allowed. 

3.2   Opponent Provocation 

One of the other policies applied in online section is the selection of a suitable strat-
egy to motivate the opponent players to disclose the expected patterns. For this pur-
pose, we have used rule based expert system architecture to provide a provoking 
strategy for opponent players. Rule-based systems are computer systems that use rules 
to provide recommendations or diagnoses, or to determine a course of action in a 
particular situation or to solve a particular problem [14], [15]. To design such rule-
based architecture, the patterns identified in offline mode are considered as antece-
dents and the consequents are strategies for opponent provocation which are built 
with the assistance of a human expert. We store these ordered pairs of patterns and 
strategies as rules in our Strategy Library. To present an appropriate strategy, the 
Forward Chaining method is used. In a way that by receiving observations from the 
environment, we search in strategy library for a rule whose condition part is identical  
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to these observations. In this case, this rule is triggered and its action part is sent to the 
players as provoking strategy. Therein one of the outstanding problems of this system 
is Conflict Resolution. This means that it is probable that more than one rule are quali-
fied to be fired. There are several conflict resolution strategies, such as choosing the 
most recent activated, the least frequently triggered, etc. The most suitable conflict 
resolution strategy is priority-based: assigning a priority value to every rule and se-
lecte the fired rule with the highest priority. In the case that several rules have the 
highest priority value, a random selection is performed. To deal with this problem we 
have benefited from prority-baseed conflict resolution. 

With this method, coach can select the best possible strategy to provoke opponent 
players. This increases the accuracy of reporting pattern and speeds up pattern recog-
nition. Figure 2 illustrates some used provocation strategies. 

 

 

Fig. 2. Example of provocation strategies 

What we have mentioned here about opponent provocation could be considered as 
a novel approach in Opponent Modeling. 

Two examples are given here to clarify the idea. 

− Let's assume that the opponent pattern is offside trap. In this case, we should put 
our players in offside situation. Therefore the candidate strategies which have the 
properties and can be used to activate opponent behavior could be "move forward" 
or "through pass". Meanwhile the game, by observing the first occurrence of off-
side trap, if the offside fact is found in strategy library, "move forward" or 
"through pass" strategy is activated. 

− Let the opponent behavior be a simple direct pass e.g. a pass from player 9 to play-
er 10. For this case, our strategy is "handing ball to player 9 of opponent". 

Eventually these strategies are advised to players in the format of standard coach 
language. This structure is completely implemented and tested at the RoboCup com-
petitions. In the following section, our experiments are explained in full detail. 

4   Experimental Result 

The MRL team acquired the 1st place among 10 participated teams in RoboCup 2006 
competition. This competition had 3 rounds, each consisting of 4 iterations. In every 
round, nearly 15 to 20 patterns are fed to the log analyzer. The participants are re-
sponsible for creating these patterns. According to coach regulation, teams should 
provide at least 3 patterns for each round and active patterns for the iterations are also 
selected by them. Log analyzer has an average of 5 minutes to process a pattern. 

ReleaseOpp()
If (OppModel = HoldBall) 

AttackBall() 
If (OppModel = Pass)   HandingBall() 
If (OppModel = Offside)  ThroughPass() 



546 R. Fathzadeh, V. Mokhtari, and M.R. Kangavari 

Meanwhile the game, online coach should identify and report the activated patterns 
within 10 minutes. The score of a team depends on both the number of correct de-
tected patterns and the time of report. In the first round, our team placed second. After 
making some slight modification to the parameters in the algorithms used to reduce 
the noise, we attained the first place in the second round and could pass to the final 
round without any wrong reports. Although most of the patterns in the final round 
were chosen from the patterns which other teams had prepared, our team took the 
greatest score. MRL detected 10 correct patterns from 18 activated patterns that equal 
the sum of all identified patterns of other teams in this round. The final round results 
and the ranks of teams are depicted in table 2. 

Table 2. Total scores in the final round of the competition for the top 4 finishers 

Team 
Iteration 1 
Score Rank1 

Iteration 2 
Score Rank2 

Iteration 3 
Score Rank3 

Iteration 4 
Score Rank4 

Final 
Rank 

MRL 67583.59 1 40857.6 1 51311.25 1 91578.75 1 4 

UT Austin 44649.99 2 -4739.40 4 9548.5 3 9543.75 2 11 

Caspian 11200.0 3 -4000.0 3 15000.0 2 -8000.0 4 12 

Pasargad -9282.0 4 2475.199 2 -9282.0 4 5418.0 3 13 

 
The results of RoboCup 2006 competitions showed that MRL had well-deserved 

victory for being champion. And despite of lots of similarities and conflicts between 
the patterns, we had the least wrong reports number among all the teams, in the way 
that in the final round from a total of 26 wrong reports just one of them was ours. 

5   Conclusion and Future Work 

In this paper, we presented a novel architecture for modeling the opponent in coach 
competition. MRLCoach is an agent that is fully implemented and has been success-
fully tested in RoboCup competition. Providing this learning structure, MRL team 
took the 1st place in RoboCup 2006 coach competition. Our unparalleled performance 
in the competition has convinced us that the recipe for our success had been our capa-
bility in the handling of the noises and conflicts. Pattern categorization and noise 
handling are of prominent factors in our success in the competition. The trick in ad-
vising our players to motivate the opponent players to demonstrate the patterns had 
also assisted us in identifying the opponent behaviors simpler and sooner. 

Opponent provocation could be considered as a novel approach in MAS for achiev-
ing a specific goal. This method can be applied to arenas such as military applications 
and other adversarial domains in order to give strategies to provoke and trap the en-
emy. In the future, our study will be focused on optimization of opponent provocation 
system to expedite opponent modeling and make this process more accurate. 
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