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Abstract. This paper presents a model-based odometry calculation and calibra-
tion method (MBO) for quadruped robots. Instead of establishing the direct re-
lation between target and actual speeds as previous methods did, MBO sets up a
“parametric physical model” incorporating various properties of the robot and en-
vironment such as friction and inertia, through optimization with locomotor data.
Based on this optimized model, one can compute the loci of robot legs’” move-
ment by forward kinematics and finally obtain odometric readings by analyzing
the loci. Experiments on Sony AIBO ERS-7 robots demonstrate that the odom-
etry error of MBO is generally 50% less than the existing methods. In addition,
the calibration complexity is low.

1 Introduction

Odometry is very important for an autonomous robot[[I121319]], especially for the pur-
pose of determining the robot’s locomotory parameters (e.g., speed, position, orien-
tation.) between fixes which are rare or cost demanding. It is relatively simple for a
wheeled robot to calculate its odometry. The vehicle’s offset from a known starting
position can be computed with the data of encoders which monitor the wheels’ revo-
lutions and/or steering angles. Odometry calibration for wheeled robots often involves
determining the values of kinematic parameters [219] or calibrating error model [3].
However, these methods cannot be implemented directly on legged robots, which have
completely different mode of locomotion.

Two common motivations behind the current investigation into the odometry of
legged robots are: (1) the odometry should be accurate and powerful enough with re-
spect to the needs of real-world applications; (2) the odometry calibration should be
as simple as possible. There is some work on meeting these two requirements jointly.
Thomas Rofer [I1]] reports on a method for calculating odometry based on propriocep-
tion. German Team optimizes the parameters [5]] of their walking engine [4] to make
the actual walking speed as close as possible to that specified by the corresponding
walk request. The rUNSWift team establishes the relation between raw walk command
values and the corresponding actual speed values through polynomial curve fitting [6].
Lin and his colleagues propose calculating odometry for a hexapod robot from its body
pose based on the kinematic configuration of its legs [7]. Stronger and Stone put forth
a method for simultaneous calibration of action and sensor models autonomously [10].
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All the previous work can be divided into two categories: one is to directly establish
a mapping between the target and actual speeds — we call this “direct calibration”. The
other is mainly based on proprioception, we call this “indirect calibration”. With the
“direct” method try to establish a mapping from one space (target speeds) to another
space (actual speeds), one has to calibrate lots of points of the space, and another dis-
advantage is the mapping lack the information of the process of state changing from
one point to a another point. The “indirect” method uses the information of sensors,
and generates the continuous proprioceptive state, so as to avoid the negative aspects of
“direct” methods.

Based on previous work, we propose in this paper a new odometry calculation and
calibration method for quadruped robots, named MBO (model-based odometry), that is
the first “indirect calibration” based on a “parametric physical model” for quadruped
robots. Instead of establishing the direct relation, MBO sets up a “parametric physi-
cal model” incorporating both geometrical and physical properties of the robot such
as friction and inertia through optimization of a parameterized version of the “trian-
gle model” proposed in [8]] with the locomotor data of the robot. Based on this model,
MBO can figure out the loci of leg movement with forward kinematics and finally ob-
tain the odometric readings by analyzing loci. Since it is straightforward to calculate the
acceleration/deceleration of the robot’s movements at runtime, MBO provides a “finer-
granularity” odometry for quadruped robots. In addition, the calibration complexity is
rather low—only twelve walking samples are needed for optimization of the parametric
physical model, although MBO runs semi autonomously at the current stage. We imple-
mented MBO and carried out experiments on AIBO ERS-7. The results show that the
accuracy of the odometry calculated by MBO is markedly higher than that by previous
methods.

The remainder of this paper is organized as follows: Section 2 describes briefly the
principle of MBO. Section 3 explains calibration of the parametric physical model on
the AIBO platform. Section 4 discusses how to calculate odometry from loci. Section 5
presents the experimental results and the paper is concluded in Section 6.

2 The Principle

Consider a walking engine that responds to any walking request by arranging the legs’
movements according to some preset gait loci. If the robot is driven by motors, the
robot’s architecture usually allows each joint to receive a request every 7, time and re-
turns feedback on its corresponding angles at the same frequency. According to a given
leg model, the paw positions can be calculated by forward kinematics using the joint
angles fed back by joint sensors. Moreover, a calculated locus can be simply acquired
by connecting the consecutive paw positions generated from the angles.

If a robot is held in the air while walking, its paw locus looks like the curve shown in
Fig.1. The solid line from s to e in Fig.1 presents the trajectory of support phase of a leg.
If the leg keeps in contact with the ground and has no paw slippage during the support
phase, the movement of the robot is fully determined by the locus of the support phase.
Therefore, the problem of odometry calculating is reduced into that of calculating the
actual loci of legs.
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The assumption of no slippage is problematic for real-world applications. Generally,
odometry for legged robots is error-prone due to the noises and/or uncertainty inherent
in the robots, their motion and even their environments. In order to simplify the mod-
eling, one usually neglects physical properties such as friction, weight of the robot and
its components, inertia, motor strengths, causing impaired performance in real-world
applications [4]]. As a remedy to this problem, we try to model these factors including
both geometrical and physical properties as nuch as possible. We take a parameter-
ized version of “triangle model” [§] as the starting point for our “parametric physical
model” (see Fig. 2) and optimize it with the locomotor data of the robot’s movements
in the application environment by using a genetic algorithm. The expressive power and
the adaptability of this model primarily stems from the variance of the parameters. For
example, the length of some parts of the leg would be reduced by the genetic algorithm
when the robot walks on a slipperier carpet. Due to this adaptability of the parametric
physical model, MBO can provide more accurate odometric readings, as our experi-
ments demonstrate.

3 Model Setup

There are two steps in MBO to set up a parametric physical model: (1) setting an tempo-
rary profile of the parameterized triangle model; (2) obtaining the final model through
optimization. This section describes the detailed method on the sony AIBO robotics
platform.

3.1 Parameterized Triangle Model

The AIBO robot has four legs. Each leg has three joints known as the rotator, abductor,
and knee. The most widely used model is the triangle model described in [8]], in which
the lengths and widths of the legs are both considered. The model is simple and conve-
nient to use. MBO uses the triangle model as the basis,but parameterizes it (Fig.2).
The following parameters describe in a related coordinate system whose origin is
the position of joint rotator: 1). position correction of joint rotators six parameters.
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2). length of fore and hind upper legs, L1 in Fig.2 two parameters. 3). width of fore and
hind upper legs, L3 in Fig.2 two parameters. 4). length of fore and hind upper legs, L1
in Fig.2 two parameters. 5). the rotation angle correction of joint knee,d in Fig.2. 6). the
zero correction of joint rotator, abductor and knee, three parameters.

The paw position P(x, y, z) can be determined using following transformations, writ-
ten in matrix:

Al Al AlCorrection
A2’] = [AZ] + A2C0rrecti0n] (1)
A3 A3 A3Correction
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where (4x, Ay, 4z,41)T denotes the position correction of leg joint rotator,4R the rota-
tion angle correction of the joint knee.
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Fig. 2. The triangle leg model of AIBOs. Point O is the joint rotator position. Point P is the paw
position.

3.2 Model Optimization

A position can be determined by a given sequence of all leg joints data and a given leg
model. However, the calculated position is not close sufficiently to the actual position if
the calculation is based on a pure leg model, because there are too many factors affect-
ing the accuracy, (as described in Sect.2). Therefore, MBO optimizes the initial model
described above with the locomotor data of the robot’s movements in the application
environment. For this purpose, the model is re-described by a set of parameters, denoted
M;(pi1, pia, , pin)- Thus model optimization is reduced to a search of the best set of
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parameters in an n-dimensional space. A basic genetic algorithm is implemented here
for the optimization. It first computes the displacement S; with a given model M; and
a given sequence of consecutive joints data D according to formula (B)) and determines
the fitness of a model M; according to formula @):

Si=FM; D) 3)
100 100
=010 [+ES? SH +{01 0 [+(S? SH+w 4)
0010 0010

where o denotes the variance between the displacements of fore legs and hind legs. The
method of analyzing odometry readings from loci is used here and will be described in
Sect. 4.

4 Odometry Calculation

The purpose of MBO is to obtain the odometric readings for the robot through calcu-
lating its paw loci by forward kinematics based on the optimized physical model. The
robot’s movement is completely determined by the movement of its support legs. From
the loci of all legs, one can deduce the support legs and swing legs and calculate the
odometric readings for the robot.

The detailed method of odometry calculation depends on the robot and its walking
type. In this paper, we assume that the quadruped robot uses the trot gait which lifts the
two diagonally opposite legs alternately [8].

Support Legs Calculation. A pair of diagonal legs are in contact with the ground as
support legs and the other two legs swing in the air at any given time. Even though the
robot may not have static balance and a third leg may fall on the ground, the effect of the
third leg is ignored here for sake of simplicity. The two diagonal legs whose positions
are lower are taken as the support ones.One plane can be determined by three arbitrarily
chosen legs, the remaining leg is below or above the plane. If the remaining is under the
plane, the supports legs are the diagonal legs which are composed by it and otherwise
are the other pair.

Translation and Rotation Calculation. A robot walks by lifting the two pairs of diag-
onally opposite legs alternately. Each pair of diagonal legs swing in the air for a moment
and then stay touching ground . The translation of the robot is calculated according to
the movement of the legs that are touching the ground. Let R;,,; and R,,; denote the
translation and rotation of the robot, respectively; fi.uns and Ay, denote the displace-
ment of fore and hind support leg, respectively; P () and P;(f) projective pointson x y
plane of the fore and hind support leg’s paw position at time ¢.

The translation is computed by following rules:i. if support legs do not change from
time ¢ 1 to time ¢, then, fiuus = Pp(t 1) Pp(t), hipans = Pt 1) Pp(t), Riyans =
(firans + hurans) /2. 11. if support legs have changed form time ¢ 1 to time #,then R;.qns = 0.

The rotation is computed by following rules: i. if support legs do not change from
time ¢ 1 to time ¢, then set vector [ = Py(t 1) Pu(t 1) ,vectorc = P(t) Pp(?).
The rotation of robot is equal to the angle between vector [ and vector c. ii. if support
legs have changed form time ¢ 1 to time ¢, then R,,, = 0.
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5 Experiments

The experimental platform is the sony AIBO-ERS7.The parametric physical model is
optimized using 12 samples in Table 1.

Table 1. Training samples for setting up the parametric physical model in the experiments

walk type  Ci(x,y,6) of samples,T; = 5s number of sample

forward {(200, 0, 0), (300, 0, 0)} 4
backward  {( 250,0,0)} 2
sidewalk  {(0,200, 0)} 2
rotation {(0,0,130), (0,0, 180)} 4

These experiments are to compare the accuracy of MBO with that of German Team
2004.Both odometric readings returned by German Team 2004 and MBO are recorded
and the actual displacement of the robot is measured manually. Equation (6) in Sect.3
is adopted here to evaluate the errors.We use a external camera to capture the position
and orientation of the robot. The average error of position and orientation are +2cm and
+5 degree.

Experiment 1. First, we test the errors caused by executing a single instruction each
time, with each of these instructions sampled twice or thrice. The experiment results
are shown in Table 2, which show that the odometrical readings returned by MBO are
always closer to the measurements and is robust to the different actions.

Table 2. Results of experiment 1

instruction measured displacement  displacement error rate rate proportion
(C,T) displacement  of GT04 of MBO of MBO (MBO/GT04)

{(300,0,0),6000}  (2050,90,5) (1850,0,0) (2046,-58,-2.7)  0.08 0.74
(2060,200,10) (1850,0,0) (2040,67,0.4) 0.08 0.53
{(300,0,60),6000} (110,80,415)  (21,0,364) (129,72,414.2) ~ 0.005 0.04
(-80,100,420) (21,0,364) (91,92,412.6) 0.04 0.32
{(-250,0,0),6000} (-1050,-40,0)  (-1500,0,0) (-1198,-45,-0.7) 0.14 0.32
(-1080,0,-10)  (-1500,0,0) (-1180,-52,-5.9) 0.11 0.27

{(0,200,0),4000}  (0,870,10) (0,811,0) (-45,850,3.5) 0.09 0.70
(-50,860,7) (0,811,0) (-62,833,12.5)  0.07 0.63
{(0,0,130),4000} (-40,80,470)  (0,0,524) (2,12,475.2) 0.02 0.18
(10,10,475) (0,0,524) (-37,-1,441) 0.07 0.76
(-10,15,445)  (0,0,511) (-30,3,443) 0.007 0.05

Experiment 2. Let the robot start at point (0,0,0), perform one of the following se-
quences of instructions, and then stop: ¥;={{(150,0,0),500}, {(200,0,0),500}, {(250,0,0),
5004, {(300,0,0),500}}; ¥>={{(300,0,0),1000}, {(250,0,0),500}, {(200,0,0),500}, {(150,0,
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0),500}}; ¥3={{(0,0,100),500}, {(0,0,130),500}, {(0,0,160),500}, {(0,0,190),500}}; ¥Y4=
{{(0,0,200),1000}, {(0,0,170),500}, {(0,0,140),500}, {(0,0,110),500}}; ¥s={{(200,0,0),
2000}, {(200,0,60),2000}, {(200,0,0),2000}, {(200,0,-60),2000}}.

W,is an accelerating process in x-axis direction and ¥, a decelerating process after a
sudden start . W3 and ¥4 are similar to ¥, and ¥, , respectively, but in ¢ direction. The
results (Table 3) show that MBO is more accurate than German Team 2004 except in
the case W4, where both methods are equally good. It is worth noting that odometrical
readings returned by MBO for rotation is much better. ¥s is used to test the odometry
accuracy when the robot moves along a curve and MBO is also better in this case.
Moreover, the actual trajectory caused by ¥s is approximated by fitting a smooth curve
over several manually measured points that the robot passes, as shown in Fig. 3. The
shape of the trajectory generated by MBO is much closer to the actual one than that
generates by German Team 2004. To sum up, the accuracy of MBO improves by at
least 50% in most cases.
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Fig. 3. The trajectories of Vs

6 Conclusions

The original notion of odometry calculation for quadruped robots basically concerns
the relation between the output (the odometric readings) and the input (the actual mo-
tion data) of a movement. As far as we know, all previous methods of the odometry
calculation for quadruped robots are technically based on this notion in the sense that
some direct relations between the target and actual speed are established and employed
to tell the odometric readings. An alternative approach is proposed in this paper. In-
stead of establishing the direct relation, MBO sets up a “parametric physical model”
incorporating various properties of the robot and even the environment such as friction
and inertia. Based on this model, MBO deduces the loci of leg movements by forward
kinematics and obtains the odometric readings by analyzing loci in execution time.

We described the major steps and tested the performance of this method on the AIBO
platform with a generally applicable methodology. MBO fits the quadruped robot whose
swing phase occupies not greater than 50% of its whole gait trajectory. The experiments
showed the calibration complexity is as low as only twelve samples, covering 4 basic
motions—straight forward, straight backward, pure sideways walking, and pure rota-
tion. The error is 50% less than existing methods and the error rate is below 8% for
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most motion types. MBO does not demand additional sensors, and it only employs the
feedback of the leg joint sensors while returning odometric readings online. Another
feature of MBO is that the instantaneous speed of the robot offered by MBO is very
sensitive with steadily lower error. This would provide a new opportunity for more pre-
cise motion control of legged robots[[7]].

For that purpose, we need to work further on the prediction based on the odometry.
In addition, achieving the fully autonomous odometry calibration is a most important
future work. This implies that we need some on-line and on-board optimization methods.
Another interesting problem concerns the choice of types and number of training samples
for building an optimal “parametric physical model”, especially when “mixed motions”
(e.g., moving forward and sideways at the same time [3]) are considered more thoroughly.
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