
Dynamic Adaptability for Smart Environments

Daniel Retkowitz and Mark Stegelmann

Department of Computer Science 3 (Software Engineering)
RWTH Aachen University

Ahornstr. 55, 52074 Aachen, Germany
{retkowitz,stegelmann}@i3.informatik.rwth-aachen.de

Abstract. Software reuse and hardware integration are key factors to
offer flexible, low-cost smart environments. Until now, we have been us-
ing a static process called the SCD-process to allow a tool-supported
realization of such smart environments. The SCD-process is comprised
of three different phases: specification, configuration, and deployment.
As an initially specified environment is expected to change during run-
time and the user may wish to influence certain aspects of the config-
uration, the static process had to be adapted. This paper describes a
new process that supports continuous specification activities and allows
for an automated adaptation of the smart home’s configuration based on
a model-driven approach. We enriched the specification of services with
binding policies and constraints to allow for a flexible reconfiguration
and a service-specific adaptation. The new configuration mechanism fa-
cilitates dynamic reconfiguration based on context information and the
extended service specification. In addition, we present a visual tool, which
is used to assist the developer and the end-user.

1 Introduction

Ambient intelligence, ubiquitous and pervasive computing, are some of the more
recent topics in computer science. Approaches in these fields aim at creating so
called smart environments by separating computing from today’s desktop PCs
to make applications and their functionalities available anywhere, independent
of PC hardware [1]. This way, users can access services wherever they are. Any
available device should be usable to realize service functionality. Devices installed
in the user’s current environment, together with mobile or wearable devices may
be used by the software.

Related to home environments, ambient intelligence is realized by so called
eHomes or smart homes. We refer to eHome systems as a combination of de-
vices and software running in such an eHome. This software is running on a
residential gateway that controls all home appliances. Top-level services are ap-
plications that offer certain functionalities to the user. Top-level services are
based on integrating services that reduce the level of abstraction down to device
driver services, which control actual hardware devices. In today’s homes, a lot of
appliances are available, but in general, these appliances are not interconnected.

R. Meier and S. Terzis (Eds.): DAIS 2008, LNCS 5053, pp. 154–167, 2008.
c© IFIP International Federation for Information Processing 2008



Dynamic Adaptability for Smart Environments 155

To facilitate comprehensive services based on multiple appliances, that offer com-
plex functionalities, it is necessary to develop flexible and adaptive software. To
achieve this goal at low overall costs, the eHome software has to be built from
standard components, that are automatically composed according to the user’s
needs and the individual home environment.

The goal of our research is to enable such low-cost eHome systems by compos-
ing eHome services from reusable software components. In our prototypes these
software components are developed according to the OSGi component model [2].
We currently employ the Equinox framework of the Eclipse platform [3] as an
OSGi runtime environment for our service bundles, as the components in OSGi
are called. The customization of the eHome software is achieved later on by
composition of the services in a process of specification, configuration, and de-
ployment. This process is called the SCD-process [4].

In [4], a tool called eHomeConfigurator is presented, which enables the SCD-
process by employing a model-driven approach based on Fujaba. Fujaba is a
tool for specifying a software’s data model and application logic using different
UML diagrams [5]. Furthermore, it allows to generate Java source code from
such a specification. In this paper, we present a redesigned SCD-process, which
is capable of handling the dynamics in smart environments and incorporates
several major improvements. We also present a newly developed tool based on
the Ecliplse platform mentioned above.

The rest of the paper is structured as follows. In Section 2 we describe a
scenario to illustrate the need for a support of dynamic changes in smart envi-
ronments. Next, in Section 3, we explain the different concepts which form the
basis of the new continuous SCD-process. After that, in Section 4, we discuss
the realization details and we show how we implemented the new concepts. Then
we present the current state of our new tool in Section 5. In the following Sec-
tion 6, a short overview of related work is given. Finally, in Section 7, we give a
conclusion and point out some open problems and future work.

2 Scenario

Before discussing the details of our system architecture, we will take a closer
look at an example scenario. We will see that changes appear frequently in smart
environments, which imposes certain requirements on the SCD-process.

John is coming home from work. At home, he sits down in his living room.
Since he has a music service selected in his personal profile, his favorite music
starts playing when he enters the room. After some time he walks into the kitchen
to prepare some food. The music in the living room stops playing when John
leaves the room. Once he enters the kitchen, his new location is detected by
the eHome and the music service starts playing John’s music again in his new
location using the speakers integrated in the kitchen wall. The music service
resumes playing from the last position where John was listening in the living
room. A few minutes later John’s wife Mary comes home, too. When she walks
through the living room, her personal video conferencing service notifies her



156 D. Retkowitz and M. Stegelmann

about an incoming call from Anne. She takes the call and a live picture of Anne
appears on the TV. She can hear Anne’s voice from the speakers in the living
room. Anne talks about their last joint vacation and wants to show Mary some of
the pictures she took. Mary’s video conferencing service is capable of presenting
different media data. Using her PDA, Mary selects the TV to display Anne’s
picture presentation. The pictures appear on the TV and the live picture of
Anne is reduced and displayed in the lower corner of the screen. Mary wants
John, who is still in the kitchen, to see the pictures too. So she adds the display
in the kitchen to be used for media data output of her video conferencing service.
Now the picture presentation is also displayed in the kitchen. After Mary has
seen several pictures she decides to create prints of some of them. So she picks
up her PDA again and connects the printer in the living room to her video
conferencing service. The printer is also capable of processing visual media data
and starts printing the selected pictures.

This example scenario shows some standard situations we assume in future
smart environments. To design a software system that is sufficiently flexible and
adaptable to support such scenarios, we had to come up with a novel development
process. In the next section we will describe our approach based on a modified
SCD-process in more detail.

3 System Architecture

The SCD-process as described in [4] aims at reducing development costs per
eHome by increasing the amount of possible service reuse. Thus services are de-
veloped once and enriched with a specification. This allows for a later automatic
integration of the services into different eHome configurations. The service spec-
ification describes which functionality each service provides to other services and
which functionality is required to do so.

3.1 Service Layers

We distinguish between three types of services: driver, integrating, and top-level
services. Driver services represent low-level driver software needed to access the
different hardware devices. Top-level services are applications that offer func-
tionality to the user. So called integrating services may be used to add multiple
layers of abstraction to the basic, driver-based hardware access. In many cases
the functionality that is required by a top-level service does not directly match
a functionality provided by a driver service, because both services are on very
different layers of abstraction. In such cases adequate integrating services have
to be found to adapt both layers to each other.

In Figure 1 the three types of services are shown by the example of the video
conferencing scenario from Section 2. In Figure 1(a) the Video Conferencing top-
level service is depicted, which requires several functionalities as Audio Input,
Audio Output, etc. to operate properly. For each required functionality the car-
dinality shows how many instances of this functionality are required at least



Dynamic Adaptability for Smart Environments 157

Video Conferencing

Video OutputVisual Media 
OutputTelephony

requires 0..1
requires 0..n

requires 1..1

Audio Output

requires 1..n

Audio Input

requires 1..1

(a) Top-level

VoIP

Telephony

Internet Access

requires 1..1

provides 1

(b) Integrating

DSL Modem driver

Internet Access

provides n

TV Set driver

Visual Media 
Output

provides 1

DSL ModemTV Set

controlscontrols

Video Output Audio Output

provides 1provides 1

(c) Driver

Fig. 1. Service Layers

and at most. Figure 1(b) shows an integrating service. In this example the de-
picted VoIP service is used for voice over IP telephony. Accordingly it provides
Telephony functionality and furthermore requires Internet Access, since network
access is required. Finally, in Figure 1(c) two driver services are depicted. A DSL
Modem Driver which provides Internet Access and a TV Set Driver which offers
Visual Media Output, Video Output, and Audio Output.

Any service used in the eHome system is specified as indicated above. This
way, services can be composed by the system later on in the configuration phase
according to their specified functionalities. In the described example the Video
Conferencing service may use the VoIP service to fulfill its Telephony requirement.
The VoIP service in turn may use the DSL Modem Driver to fulfill its Internet
Access requirement.

3.2 Process Requirements

An automatic support for the SCD-process is one of the main requirements for
the application of eHome services. The user will not accept a system that requires
permanent interaction. Most of the tasks have to be performed automatically.
Ambient intelligence implies that the environment acts and reacts automatically
according to context changes. Nevertheless, the user permanently wants to be
in control of the situation, i. e. the system must not act in a way the user does
not expect. In case the system makes a decision the user does not agree with,
it should be possible to manually apply changes so that the user has means to



158 D. Retkowitz and M. Stegelmann

influence the system’s behavior. Especially when considering home environments,
these are key issues for the acceptance of eHome systems.

3.3 Continuous SCD-Process

As we have seen in Section 2, the nature of dynamics at runtime of an eHome
system can be quite diverse. To cope with the described dynamics, we redesigned
the SCD-process described in [4] to meet the new requirements discussed above.
Our approach focuses on considering runtime changes concerning user move-
ment through different locations and device mobility. Whenever changes occur
in the eHome environment, the different phases of the SCD-process have to
be re-executed to adapt the software to the new situation. Any change of the
user’s location or desires or any change of available devices implies corresponding
changes in the specification and hence also the configuration and the deployment.
We refer to the new adapted process as continuous SCD-process.

To facilitate an automated adaption of the eHome system to context changes,
the availability of certain sensor devices that allow to detect these changes is
required. The scenario presented above requires e. g. some means of automated
person and device detection. The demonstration environments described in [4]
and [6], which we use as testbeds, provide these capabilities e. g. by means of
video cameras or remote controls for the different users to log in. We assume
that appropriate technologies will be available for future eHomes at low prices.

In Figure 2, the new overall eHome process is illustrated. On the left-hand
side of the figure the service-specific part is depicted. This part consists of the
service development phase and the phase of service specification. These phases
are performed by a software developer. The resulting service components can be
used in any eHome based on our framework.

The right-hand side of Figure 2 depicts the eHome-specific part of the overall
process, i. e. the SCD-process which represents the runtime phase of the sys-
tem. For each eHome the SCD-process demands a specification of floor plans,

Continuous SCD-process
(eHome-specific)

Product Development
(service-specific)

Adaptive
Specification

(Re-)Configuration

Differential
Deployment

Specification
(extended)

Development
Execution

Fig. 2. Overall process incorporating the new continuous SCD-process



Dynamic Adaptability for Smart Environments 159

the desired top-level services, and the available devices. This is the specifica-
tion phase of the SCD-process. The division into two independent specification
phases, the product-specific service specification and the eHome-specific specifi-
cation, allows to minimize the expert knowledge required by the end-user. After
the eHome-specific specification phase the configuration phase follows next. In
this phase any changes of the specification are processed and a recomposition
of services according to their provided and required functionalities is performed.
Depending on the service specification the composition is performed automati-
cally or manually. In case a service requires manual binding, so far the user has
to create the appropriate bindings in the graphical service representation of the
visual specification tool described in Section 5 in order to start the service. In
the future, this way of interaction could be extended e. g. by offering a graphical
user interface for PDAs such that users can carry PDAs as remote controls for
their current environments. Furthermore composition constraints are checked to
keep the configuration valid. In Section 4, further details on the configuration
algorithm are presented. Finally, when the eHome software has been configured,
the configuration has to be deployed. In the deployment phase service instances
are created or destroyed according to the configuration and the bindings between
these instances are registered.

4 Realization

As described in [7] we pursue a model-driven approach to realize eHome systems.
Our data model, which is partially shown in Figure 3, is specified as UML class
diagram. The runtime behavior of our framework is described using so called
UML story diagrams to express the configuration logic. All defined classes and
methods are translated to compilable Java source code via Fujaba. Thus no
actual configuration code has to be written by hand.

0..1

0..n

correspondingFunction

0..n

matchedFunction

0..1

0..n

controls

0..n 1

is instanciated as

0..1

0..1

controls

0..n

1

contains

0..n 1

is instanciated as

1

0..n

is in

1

1

bindingPolicy

n

1

constraint

BindingConstraint

0..n

Service

0..1

correspondingCardinality

BindingPolicy

1= Integer: lowerLimit

RequiredServiceFunctionCardinality

1 = Integer : upperLimit

-1 = Integer : UNLIMITED

ServiceFunctionCardinality

ProvidedServiceFunctionCardinality

0..1

0..n

used

0..n

0..1

uses

ServiceObject

EnvironmentElement

0..1

0..n
refines

0..1
Function

ServiceObjectConnectionProperties

Device DeviceDefinition

Fig. 3. Part of the data model UML class diagram



160 D. Retkowitz and M. Stegelmann

4.1 Data Model

In the data model, Services are used to represent the eHome-independent
service specifications. These services are linked through ServiceFunctionCar-
dinality objects to Functions. The RequiredServiceFunctionCardinality
objects express that the service requires some functionality. ProvidedService-
FunctionCardinality objects respectively mean that the service provides some
functionality. Furthermore, lower and upper cardinality bounds are stored,
whereas lower bounds are only used for required functionalities. A driver ser-
vice additionally controls a specific DeviceDefinition.

During the eHome-specific configuration phase the specified required and
provided functionalities are used to match services. This way the needed ser-
vice runtime instances called ServiceObjects can be determined. To connect
two of these ServiceObjects, ServiceObjectConnectionProperties are used.
Top-level ServiceObjects, selected by the user, are contained in Environ-
mentElements thereby describing the ServiceObject’s location. Context-aware
[8] or so-called personal services, adapt to the user’s context, e. g. his surround-
ings. Such ServiceObjects thus are always associated to their user’s current
location.

4.2 Dynamic Service Composition

The continuous nature of the new process requires some way to determine which
match a connection between two ServiceObjects is based on. This information
is stored in the model by the matchedFunction relation from ServiceObject-
ConnectionProperties to Function. Thus it is feasible to extend and respec-
tively reduce prior compositions of ServiceObjects according to the service’s
specification.

ServiceObject

ServiceObject

Device

controls

EnvironmentElement

is instanciated in 

◀ 
co

nta
ins

ServiceObject(s)

Video Conferencing

Audio Output

requires 1..1
EnvironmentElementBindingConstraint

Service Specification Service Configuration

Audio Output Binding

EnvironmentElementBindingConstraint

Fig. 4. Abstract visualization of a binding constraint



Dynamic Adaptability for Smart Environments 161

Binding Policies. To specify for each required functionality if it should be
bound automatically or manually by the user, so-called binding policies were
introduced.

A binding policy constitutes a strategy concerning the establishment of bind-
ings for a specific Function required by a Service. We offer three types of
policies covering different configuration strategies. The automatic binding policy
manages all bindings to services providing the required function automatically.
The manual binding policy, in contrast, only allows manual binding modifica-
tions. To automatically establish bindings until the lower cardinality limit is
reached and allow manual interaction beyond that point, an automatic manda-
tories policy can be selected.

Binding Constraints. To implement a flexible concept of fine-grained, context-
aware services, binding constraints were introduced. We call a binding constraint
a declarative description of a graph pattern that has to be matched in the con-
figuration in order to establish the binding. If the configuration graph conforms
to the pattern the binding constraint is satisfied.

Realizing a constraint for personal services is straightforward. The data model
contains all information necessary for such a pattern. An abstract visualization
of the constraint is shown in Figure 4. The binding constraint is satisfied if all
Devices that are used via the Audio Output binding are from the user’s current
location. As constraints are specified for each required Function separately the
developer may choose to omit this restriction for some functionality that does
not have to be chosen from the user’s current location. Telephony support e. g.
typically does not have to be located in the same room as the user, even for
personal services. This kind of supporting services are usually not bound to a
specific location.

Binding constraints are a fundamental concept within our approach. They can
be used to impose various effects on the dynamic composition mechanism. We
will extend this concept in the future to support further context-aware features.

4.3 Adaptive Configuration

To incorporate environment specification changes as discussed in Section 3 the
possibility to choose from different binding policies was introduced. As shown in
Figure 3, each BindingPolicy object is related to a certain RequiredService-
FunctionCardinality. These objects in turn are bound to a Function. Thus
this information can be easily derived by the binding policies’ implementations.

In Figure 5 an excerpt of the method addBinding(ServiceObject) is shown.
This method is responsible for the automatic creation of bindings between Ser-
viceObjects and is used by the automatic binding policy and by the automatic
mandatories policy. The particular method fragment depicted creates bindings
to existing service compositions that may provide the specified function. In the
topmost activity, being a so-called for-each activity, candidate ServiceObjects
meeting this requirement are determined. For this purpose, first those Services
that according to their specification may offer function are ascertained. Then



162 D. Retkowitz and M. Stegelmann

is instanciated as

correspondingFunctionmanages

serviceRoot function

Service:providingService

}provSO.isValid(){

ServiceObject:provSO

}provSO.providedInstancesLeft(function) > 0 || provSO.providedInstancesLeft(function) == ServiceFunctionCardinality.UNLIMITED{

ProvidedServiceFunctionCardinality:provCardcorrespondingCardinality

// for each valid, instantiated Service (hence: valid ServiceObject) that still does provide instances of function

]success[]failure[

]end[

]else[

]props.allConstraintsSatisfied()[

]each time[

«create»
matchedFunction

«create»
used

«create»
usesserviceObject

function

«create»

ServiceObjectConnectionProperties:props

provSO

// test if using this ServiceObject would violate a constraint

correspondingFunction

RequiredServiceFunctionCardinality:requiresservice

function

}serviceObject.connectedInstances(function) == requires.getLowerLimit(){

correspondingCardinality

// check if this did cross the validity border (added the last mandatory binding)

«destroy»

props

// this connection did not work out

Fig. 5. Activity diagram fragment of addBinding(ServiceObject)

each provSO object that is an object of such a service is examined if it is valid and
is able to provide an instance of the required function. As some functionality
required by a ServiceObject may be unavailable at times, a ServiceObject
does not always have to be valid. We define a ServiceObject to be valid if
all mandatory required functionality is provided by ServiceObjects that are
valid themselves and all binding constraints for connections between the Ser-
viceObjects are satisfied. To check the latter, the binding has to be established,
as BindingConstraints are defined for existing configuration graphs. Thus for
each of the found provSOs a ServiceObjectConnectionProperties object is
created in the left activity below. This object indicates that provSO is used to
provide function. If at least one binding constraint is violated the binding is
destroyed in the activity to the right and the next provSO is determined in



Dynamic Adaptability for Smart Environments 163

the topmost activity. Execution continues with the bottommost activity if all
constraints are satisfied. If the connection did add the last mandatory binding
the ServiceObject’s validity may have changed. The validity is thus reevalu-
ated. Else the method ends as a binding was added by the policy. If none of
the existing ServiceObjects qualifies as provider for the required Function the
left arrow marked with end is followed. The method continues by creating new
ServiceObjects of Services that may provide the function.

5 Tool Support

To provide tool support for the continuous SCD-process we created a visual spec-
ification tool (cf. Figure 6). We chose the Eclipse Graphical Editing Framework
(GEF) for implementing the user interface. GEF [9] is a framework focusing on
providing an easy way to build Eclipse-based graphical editors for existing mod-
els. As Fujaba is able to generate code for our model and the configuration logic,
GEF was a natural choice for realizing the tool.

The Service Editor shown in the left screenshot of the figure is used by the
service developer. Here services, functions, device definitions, and their rela-
tions can be modeled as described in Section 4. In the right screenshot the

Fig. 6. Screenshots of the visual specification tool



164 D. Retkowitz and M. Stegelmann

Environment Editor is depicted. It is used for the specification phase of the
continuous SCD-process. Environments and locations can be created to specify
floor plans. Afterwards, the hardware devices may be placed and desired top-
level services can be selected and associated to the prior defined locations. The
tool palette of the Service Editor allows users to specify what service objects
should be used as personal services and what devices they currently carry. To
manually link service objects to each other or to some devices the user may also
use the tool palette. After each change in the editor the configuration code is
executed to reconfigure the runtime graph accordingly. The amount of required
user interaction can be reduced if person and device detection and localization
is available. Corresponding context changes can then be automatically detected.
For the future we plan to integrate user profiles, such that desired services can
be automatically inferred from the profile data.

The Service Editor depicts the service specifications for the scenario detailed
in Section 2. Each service is specified along with its required and provided func-
tions. In addition, driver services are linked to their respective devices. Binding
policies and binding constraints can be chosen for each required functionality.
This is shown in the properties view visible at the bottom of the left screenshot.

The right screenshot visualizes the configuration at the end of the example
scenario. Mary resides in the living room. John is in the kitchen. The compo-
sition is a result of the successive environment changes and the user-generated
specification changes described.

6 Related Work

As mentioned before there is a lot of research activity going on in the field of am-
bient intelligence and the related topics. Some of this research focuses on smart
environments. Nevertheless there are numerous other areas of application. Re-
lated to software engineering, the concepts of software components and services
are addressed frequently.

In [10], Cervantes and Hall discuss the concepts of service and component ori-
entation and a service-oriented component model which is used in their project,
called Gravity. The authors’ initial goal, which is detailed in [11], is to provide an
automatic service dependency management framework for user-oriented appli-
cations. As these applications are composed of services that continuously arrive
or depart during runtime, the applications constantly have to be reassembled.
Gravity allows to eliminate dependency management code needed to deal with
such compositional issues using a tool called Service Binder. The Service Binder
prototype is realized for the OSGi framework. Using XML descriptors similar
to our service specifications each OSGi component is enriched with meta-data
descriptions of its required and provided services. Cardinalities and static or dy-
namic policies can be specified to define the runtime reconfiguration behavior.
The continuous SCD-process, we described in this paper, also aims at dynamic
recomposition. Yet, the composition behavior defined by binding policies and
binding constraints differs from the policies of the Gravity project. In contrast



Dynamic Adaptability for Smart Environments 165

to our approach, no means of user interaction are provided by Gravity. This is an
important aspect of our approach as the user has to be in control of the system
even if the process should be executed as automated as possible. For each com-
ponent instance the Service Binder creates instance managers that locally try
to maintain the instance’s validity according to the respective instance descrip-
tor. In contrast, our graph-based approach relies on a centralized composition
mechanism that may leverage local as well as global context information. This
includes locations of persons, services, and devices. Context-restrictions based
on the model may be described as binding constraints.

In [12], Botarro and Gérodolle describe several extensions to the original Ser-
vice Binder addressing some of its limitations, like service selection ambiguity
for equivalent service providers, support for context-awareness, and remote dis-
tribution of services. The Extended Service Binder introduces service provider
rankings based on dynamic properties and transparent service access to remote
services to the original concept. At the moment, we are exploring approaches that
may help reducing selection ambiguity based on semantic service description.

In [13,14], Broens et al. propose a middleware called Context-Aware Com-
ponent Infrastructure (CACI) that allows transparent binding management for
personalized mobile component-based applications. The authors distinguish be-
tween context producing entities (e. g. GPS receivers, RFID beacons) and context
consuming entities (e. g. context-aware applications). Bindings between these are
called context bindings, and they are established dynamically and maintained at
runtime. Using the CACI Component Description Language (CCDL), develop-
ers may define which context bindings are required by their application. Every
context binding is specified with several parameters including a binding policy.
The policy may be set to be either dynamic, semi-dynamic, or static. A dynamic
policy indicates that the binding is to be updated if better context producers be-
come available at runtime. Semi-static context bindings are only replaced if the
context producer gets unavailable. Static bindings are only bound once. Com-
pared to our binding specification approach CCDL lacks the possibility to specify
if a context producing entity should be bound automatically or if user interaction
is desired. In fact, no manual modifications can be applied by the user. No tool
is provided for visualization and interaction.

In [15], the authors present an approach to behavioral service composition
that is based on semantic web services. The user’s needs are specified as so
called abstract user tasks. Abstract user tasks do not refer to actual component
instances. To realize these tasks, a matching algorithm is applied to compose
semantic web services, which implement a certain behavior. Both abstract user
tasks and semantic web services are specified as OWL-S processes. These process
definitions are modeled as finite state automata, which are used by the match-
ing algorithm to reconstruct the abstract user tasks based on available service
behavior. In our approach, we do not consider service behavior to perform the
matching. Instead we focus on context information, user interaction, and espe-
cially the reconfigurability of service compositions. In the approach discussed
above, no reconfiguration issues are addressed.



166 D. Retkowitz and M. Stegelmann

7 Conclusion and Outlook

Smart homes require flexible and adaptive software composed from standard
components. To offer smart home software to end-users at a reasonable price,
the individual eHome-specific software is composed from these components at
runtime. Service composition is a complex task, which has to be solved by a
service gateway capable of managing, running, and adapting compositions au-
tomatically. If the end-user is bothered with technical configuration tasks in
everyday life, smart homes will not be accepted by the general public. However,
users want to be in control of their environments. Therefore, complementary
means of user interaction have to be offered.

In this paper we described a dynamic process for composing standard service
components, such that the resulting compositions meet the individual require-
ments for specific eHomes. The continuous SCD-process is capable of handling
the dynamics occurring during runtime of eHome systems. To automate service
composition, a detailed service specification has to be provided. We achieve this
by specifying binding policies and binding constraints. This allows the service
developer to define an adequate composition behavior for each specific service.
We described a dynamic reconfiguration mechanism and how we implemented
the according algorithm in a model-driven approach. Finally, we gave a short
overview of a new tool supporting the eHome development process.

Currently, we are adapting the final deployment phase of the SCD-process to
connect our tool to the eHomeSimulator [6], which is a virtual eHome environ-
ment we use as a testbed. This enables us to simulate environments containing
numerous different devices and to evaluate more complex scenarios and the dy-
namic behavior at runtime. So far, preliminary tests indicate that the adaptive
recomposition at runtime does not produce any significant performance over-
head in comparison to the prior static approach used in [4]. In the near future,
we will carry out a more extensive performance analysis to evaluate complex
scenarios with a larger number of simultaneous users. We currently also work
on further extensions of the service specification. Especially the specification of
service functionalities using semantic labels is to be extended, to better support
the matching algorithm and to allow for a more flexible service composition in
heterogeneous environments. Other future extensions could be automated sup-
port for conflict resolution, optimization of the global configuration with respect
to resource usage or other parameters, and also support for service versioning
and updating at runtime.

References

1. Weiser, M.: The Computer for the 21st Century. Scientific American 265(3), 66–75
(1991)

2. The OSGi Alliance: OSGi Service Platform Core Specification. Release 4 (August
2005), http://www.osgi.org/osgi_technology/download_specs.asp#Release4

3. des Rivières, J., Wiegand, J.: Eclipse: A platform for integrating development tools.
IBM Systems Journal 43(2), 371–383 (2004)

http://www.osgi.org/osgi_technology/download_specs.asp#Release4


Dynamic Adaptability for Smart Environments 167

4. Norbisrath, U., Mosler, C.: Functionality Configuration for eHome Systems. In:
Proceedings of the 16th International Conference on Computer Science and Soft-
ware Engineering, CASCON 2006, ACM Digital Library (2006)

5. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story Diagrams: A new Graph
Rewrite Language based on the UnifiedModeling Language. In:Ehrig, H., Engels, G.,
Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764, pp. 296–309.
Springer, Heidelberg (2000)

6. Armac, I., Retkowitz, D.: Simulation of Smart Environments. In: Proceedings of
the IEEE International Conference on Pervasive Services 2007 (ICPS 2007), pp.
257–266. IEEE Press, Los Alamitos (2007)

7. Norbisrath, U., Armac, I., Retkowitz, D., Salumaa, P.: Modeling eHome systems.
In: MPAC 2006: Proceedings of the 4th International Workshop on Middleware for
Pervasive and Ad-Hoc Computing (MPAC 2006), 6 pages. ACM Press, New York
(2006)

8. Abowd, G.D., Dey, A.K., Brown, P.J., Davies, N., Smith, M., Steggles, P.: Towards
a Better Understanding of Context and Context-Awareness. In: Gellersen, H.-W.
(ed.) HUC 1999. LNCS, vol. 1707, pp. 304–307. Springer, Heidelberg (1999)

9. Moore, B., Dean, D., Gerber, A., Wagenknecht, G., Vanderheyden, P.: Eclipse
Development using the Graphical Editing Framework and the Eclipse Modeling
Framework, 1st edn. IBM (Redbooks) (February 2004)

10. Cervantes, H., Hall, R.S.: Automating Service Dependency Management in a
Service-Oriented Component Model. In: Crnkovic, I., Schmidt, H., Stafford, J.,
Wallnau, K. (eds.) Proceedings of the 6th ICSE Workshop on Component-Based
Software Engineering (CBSE6), pp. 379–382 (May 2003)

11. Hall, R.S., Cervantes, H.: Gravity: supporting dynamically available services in
client-side applications. In: ESEC/FSE-11: Proceedings of the 9th European Soft-
ware Engineering Conference held jointly with 11th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pp. 379–382. ACM Press,
New York (2003)

12. Bottaro, A., Gérodolle, A.: Extended Service Binder: Dynamic Service Availability
Management in Ambient Intelligence. In: FRCSS 2006: Future Research Challenges
for Software and Service (April 2006)

13. Broens, T.H.F., van Halteren, A.T., van Sinderen, M.J.: Infrastructural Support for
Dynamic Context Bindings. In: Havinga, P., Lijding, M., Meratnia, N., Wegdam,
M. (eds.) EuroSSC 2006. LNCS, vol. 4272, pp. 82–97. Springer, Heidelberg (2006)

14. Broens, T.H.F., Quartel, D.A.C., van Sinderen, M.J.: Towards a Context Binding
Transparency. In: Pras, A., van Sinderen, M. (eds.) EUNICE 2007. LNCS, vol. 4606,
pp. 9–16. Springer, Heidelberg (2007)

15. Mokhtar, S.B., Georgantas, N., Issarny, V.: Ad Hoc Composition of User Tasks in
Pervasive Computing Environments. In: Gschwind, T., Aßmann, U., Nierstrasz, O.
(eds.) SC 2005. LNCS, vol. 3628, pp. 31–46. Springer, Heidelberg (2005)


	Dynamic Adaptability for Smart Environments
	Introduction
	Scenario
	System Architecture
	Service Layers
	Process Requirements
	Continuous SCD-Process

	Realization
	Data Model
	Dynamic Service Composition
	Adaptive Configuration

	Tool Support
	Related Work
	Conclusion and Outlook



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /MTEX
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




