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It is common knowledge today that unrestricted access to the Internet is a secu-
rity risk. Firewalls, i. e., active network elements that can filter network traffic,
are a widely used tool for controlling the access to computers in a (sub)network
and services implemented on them. In particular, firewalls filter (based on differ-
ent criteria) undesired traffic, e. g., TCP/IP packets, out of the data-flow going
to and from a (sub)network. Of course, their intended behavior, i. e., the firewall
policy, varies from network to network according to the needs of its users. There-
fore, firewalls can be configured to implement various security policies. Since
configuring and maintaining firewalls is a highly error-prone task, the question
arises how they can be tested systematically.

Several approaches for the generation of test-cases are well-known: while
unit-test oriented test generation methods essentially use preconditions and post-
conditions of system operation specifications, sequence-test oriented approaches
essentially use temporal specifications or automata based specifications of sys-
tem behavior. Usually, firewalls combine both aspects: whereas firewall policies
are static, the underlying network protocols may depend on protocol states which
some policies are aware of. This combination of complexity and criticality makes
firewalls a challenging and rewarding target for security testing.
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Firewalls are a cornerstone of todays security infrastructure
for networks. Their configuration, implementing a firewall policy, is in-
herently complex, hard to understand, and difficult to validate.

We present a substantial case study performed with the model-based
testing tool HOL-TestGen. Based on a formal model of firewalls and
their policies in higher-order logic (HOL), we first present a derived theory
for simplifying policies. We discuss different test plans for test specifica-
tions. Finally, we show how to integrate these issues to a domain-specific
firewall testing tool HOL-TestGen/fw.
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In this paper, we present a case study for the HOL-TestGen system: we
model firewall policies as packet filtering functions or transformations over them
in higher-order logic (HOL). Thus, we can cover data-oriented as well as tempo-
ral security policies. In contrast to a previous paper [5], where the underlying
theoretical questions of this case study were settled (how can reactive sequence-
testing be realized in a unit-test framework?), we present in this paper our fire-
wall test-theory in greater detail. In particular, we present three aspects which
we consider crucial for the treatment of larger test problems: first, we show how
theory-specific rules can be safely derived, which greatly simplifies the partition
space and its computation; in our case, this applies to the simplification of poli-
cies. Second, we present ways to express test-purposes within different test-plans
of the same test specification leading to different test-cases. Third, we show how
these various forms of support may be wrapped together to build a domain-
specific extension of HOL-TestGen called HOL-TestGen/fw, i. e., a tool for
model-based firewall conformance testing.

2 Background
2.1
Isabelle [11] is a generic theorem prover; new object logics can be introduced
by specifying their syntax and natural deduction inference rules. Among other
logics, Isabelle supports HOL (called Isabelle/HOL), which we choose as basis for
HOL-TestGen.

Higher-order logic (HOL) [1, 6] is a classical logic with equality enriched
by total higher-order functions. HOL is a language typed with Hindley/Milner
polymorphism; type variables are denoted by α, β, γ, etc. HOL is more expressive
than first-order logic, since e. g., induction schemes can be expressed inside the
logic. Pragmatically, HOL can be viewed as a combination of a typed functional
programming language like SML or Haskell extended by logical quantifiers. Thus,
it often allows a very natural way of specification.

Isabelle/HOL provides also a large collection of theories like sets, lists, multi-
sets, maps, orderings, and various arithmetic theories. Furthermore, it provides
the means for defining data types and recursive function definitions over them
in a style similar to a functional programming language.

2.2 The HOL-TestGen System
HOL-TestGen is an interactive, i. e., semi-automated, test tool for specification
based tests built upon Isabelle/HOL. Its theory and implementation has been

Isabelle and Higher-Order Logic

104 A.D. Brucker, L. Brügger, and B. Wolff

This paper is structured as follows: after introducing the foundations in
Section 2 we will introduce our formal model of firewall configurations in Section 3.
Thereafter, in Section 4, we show how this model can be used for model-based
test-case generation and, moreover, build the basis for a domain specific test tool:
hol-TestGen/fw. In Section 5 we will present experimental data on several
case-studies and develop test strategies. Finally, in Section 6, we compare to re-
lated work and draw conclusions.
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test plan contains the test theory, test specifications, configurations of the test
data and test script generation commands, possibly extended by proofs for rules
that support the overall process and can be processed either in batch mode or
interactively. After test data generation, HOL-TestGen produces a test script
driving the test using the provided test harness.

The core of the test-case generation procedure lies in the introduction of case
splits up to a certain depth for each free or universally quantified variable in the
test specification; depth and form of the case split depend on the type of the
variable. The resulting formula is transformed into a CNF that is normalized.
The test-data generation procedure is a constraint-solving technique based on a
combination of arithmetic reasoning, simplification, and the insertion of random
values for variables occurring in the test theorem.

2.3 Firewalls in a Nutshell

In a network, e. g., based on TCP/IP, a message from A to B is encapsulated in
packets which contain the content of the message and routing information. The
routing information of a packet mainly contains its source address (where does
the packet come from), its destination address (where should the packet go to)
and the protocol (e. g., http, smtp) used on top of the transport layer.

In its simplest form, a firewall is just a stateless packet filter which simply
filters (i. e., rejects or accepts) traffic from one network to another based on
the destination address, source address and the protocol, the policy used. The
policy is the specification (usually given in a configuration file) of the firewall
that describes which packets should be accepted and which should be rejected. In
some cases, stateless filtering is not enough, some application protocols, like FTP

Fig. 1. Overview of the Standard Workflow of hol-TestGen

described elsewhere [3–5]; here, we briefly review main concepts and outline
the standard workflow. The latter is divided into four phases: writing the test
specification TS, generation of test cases TC along with a test theorem for TS,
generation of test data TD, i. e., constraint-free instances of TC, and the test
execution (result verification) phase involving runs of the “real code” of the
program under test. Figure 1 illustrates the overall workflow. Once a test theory
is completed, documents can be generated that represent a formal test plan. The
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or most of the protocols used for Internet telephony such as Voice over IP (VoIP)
have an internal state of which the firewall must be aware of. For example, some
connections are only allowed within a specific state of the protocol.

Internet (extern) Intranet (intern)

DMZ

Figure 2 illustrates a widely-used setup of a firewall, separating three net-
works: the external Internet, the internal network that has to be protected
(intranet) and a network that is somewhat in-between, the demilitarized zone
(DMZ). The DMZ is usually used for servers (e. g., the Web server and the Mail
server) that should be accessible both from the outside (Internet) and the from
internal network (intranet) and thus underlie a more relaxed policy than the in-
tranet. Table 1 shows a simple description of a firewall policy as it can be found
in configuration files. Such a policy description uses a first-fit pattern matching

source destination protocol action

DMZ intranet any deny
Internet DMZ smtp allow
Internet DMZ http allow
intranet DMZ smtp accept
intranet DMZ imaps accept
intranet Internet http accept
any any any deny

strategy, i. e., the first match overrides later ones. For example, a packet from
the Internet to the intranet is rejected (it only matches the last line of the table)
whereas an smtp-packet from the intranet to the DMZ is accepted (fourth line of
Table 1). The lines of such a table are also called rules; together, they describe
the policy of a firewall. Since we consider policy descriptions as a kind of concrete
syntax for policies, we will use these terms synonymously.

3 Modeling Firewalls in HOL

In this section, we present a formalization of firewall policies and present a formal
theory for their simplification. Our model is inspired by the abstractions used
by firewall configuration languages for TCP/IP networks, e. g., iptables (http://
www.netfilter.org). The formalization is parametrized over the representation
of network addresses for which we will discuss some alternatives in Section 4.

Fig. 2. A simple firewalling scenario

Table 1. A simple Firewall Policy
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3.1 A Formal Firewall Model

Packets and Networks. As a prerequisite for modeling firewall policies, we
need a formal model of protocols, packets and networks: we model protocols as
an abstract datatype, e. g., the most common ones are declared by:

protocol := ftp | http | voip | smtp | imap | imaps | unknown.

As we do not want to depend on a specific representation of addresses and
content, we introduce the abstract types α src and α dest of type α adr for the
source and destination addresses and β content for the content. We also introduce
a unique identifier id for each packet. Thus, the type of a packet is defined as:

(α, β) packet := id×protocol×α src×α dest×β content.

Further, we define projectors, e. g., getId, getSrc, for accessing the different com-
ponents of a packet directly. As a next step, we model networks, or just nets,
and parts thereof (subnets). To be as abstract as possible at this stage, we model
nets as an axiomatic type class [11]. For the purpose of this paper, it suffices to
know that a net is a set of sets of addresses, i. e.,

α subnet := (α :: net) set set

where (α :: net) requires that the types we use to instantiate α are members of
the type class net. This definition allows us to model firewall policies that restrict
the traffic between subnetworks and also between single hosts (addresses). For
checking, if a given address is part of a subnet, we define the following operator:

a @ S ≡ ∃s ∈ S. (a ∈ s) with type α adr⇒ α subnet⇒ bool .

Firewall Policies. From an abstract point of view, a policy is a partial mapping
of packets to decisions, e. g., deny or accept. Moreover, the datatype

α out := acceptα | deny

allows also to model the modifications of return packets;
address-translation techniques (network address translation (NAT)) realized by
some firewalls as well. The type of a policy follows directly from this:

(α, β) policy := (α, β) packet ⇀ ((α, β) packet) out

where τ ⇀ τ ′ denotes the partial mapping (i. e., a type synonym for τ ⇒
τ ′ option). Rules and policies have the same type, i. e., we can introduce a type
synonym

(α, β) rule := (α, β) policy

Usually, firewall policies describe more fine-grained how packets are denied, e. g.,
packets can be silently discarded (often called drop) or packets can be rejected (re-
sulting in an error message on the sender side).

Our model can capture1

1
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for rules. Moreover, an override operator for partial mappings (_ ⊕ _) allows
for nicely combining several rules to a policy. For example, r1⊕ r2 combines the
rules r1 and r2 where r1 overrides (has higher precedence than) r2. We can define
several generic rule combinators at this abstract level that substantially simplify
the formalization of concrete policies. For example, the usual two “catch-all”
rules for accepting or denying all traffic are expressed as:

allowAll p ≡ Some(accept p) with type (α, β) rule, and
denyAll p ≡ Some(deny) with type (α, β) rule.

Many other combinators for restricting traffic based on its source, destination,
or protocol can already be defined on this abstraction level. A rule allowing all
packets coming from subnet s can be defined as

allowAllFrom s ≡ Some allowAll �{
p|(getSrc p)@s

}
with type (α :: net) subnet ⇒ (α, β) rule, and where _ �_ is the restriction
operator on partial mappings.

At this point, we decide for one possible packet address format, namely
IPv4 addresses together with ports. In this setting, an address consists of a unique
32 bit number, represented as four-tuple and a port:

ipv4Ip := int× int× int× int ,
port := int ,
ipv4 := ipv4Ip× port.

Based on these definitions, we can define further combinators that are specific to
TCP/IP addresses, i. e., they can accept or reject packets based on an IP address
and a port.

3.2 Modeling Our Running Example

Our abstract firewall model, presented in the last section, allows for the direct
formalization of the informal policy given in Table 1. First we have to define the
subnets of type ipv4 subnet, based on their IP address ranges, e. g.:

intranet ≡
{{(

(a, b, c, d), p
)∣∣∣ (a = 172) ∧ (b = 168)

}}
and

dmz ≡
{{(

(a, b, c, d), p
)∣∣∣ (a = 172) ∧ (b = 16) ∧ (c = 70)

}}
.

Grouping the rules of our informal policy with the same source and same desti-
nation, we define:

DmzIntranet ≡ denyAllFromTo dmz intranet

IPv4.
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InternetDMZ ≡ allowProtFromTo smtp internet dmz
⊕ allowProtFromTo https internet dmz

IntranetDMZ ≡ allowProtFromTo smtp intranet dmz
⊕ allowProtFromTo imaps intranet dmz

IntranetInternet ≡ allowProtFromTo http intranet internet

The complete policy can then be defined as follows:

policy ≡ DmzIntranet⊕ IntranetDMZ⊕ IntranetInternet
⊕ InternetDMZ⊕denyAll. (1)

This definition implies that the firewall does not take the port numbers into
account for its filtering decision. Of course there do also exist combinators for
that case and we could, alternatively, define:

IntranetInternet ≡ allowProtFromPortTo http 80 Intranet internet.

3.3 Simplifying Firewall Policies

The presented formalization of firewall policies is obviously not a canonical one,
i. e., the same policy can be represented by many (syntactically) different maps.
As an example, consider the following equivalence:

denyAllFromTo X Y ⊕ denyAll = denyAll

where X and X are variables that are implicitly universally quantified, i. e., this
equivalence holds for all possible values of X and Y . This observation leads
to the idea of using rewriting techniques for simplifying firewall policies while
preserving their semantics. For this purpose, we developed a set of equivalence
rules that can be used by the built-in simplifier of the underlying Isabelle system.
In more detail, the simplifier is configured to use such equivalences over the policy
combinators as rewrite rules (from left to right). As we provide a large set of
policy combinators, we also need a quite large set of equivalences over them.
Thus, we can only summarize the rule set here.

One category of such equivalences are the ones handling global coverage, as
the example above. Other such examples include the following:

allowProtFromTo p X Y ⊕ allowAllFromTo X Y = allowAllFromTo X Y.

Another category of equivalences reduces the number of individual rules as it
summarizes similar rules like in the following example:

allowProtFromTo p A B ⊕ allowProtFromTo q A B
= allowProtsFromTo {p, q}AB.
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Together with several theorems about the associativity and commutativity of
disjunct rules, we can derive a powerful policy simplification theory within the
framework. E.g., our example policy can be simplified from seven to four indi-
vidual rules. In detail, the policy gets simplified to

allowProtsFromTo {smtp,http} internet dmz
⊕ allowProtsFromTo {smtp, imaps} intranet dmz
⊕ allowProtFromTo http intranet internet
⊕ denyAll.

The representation of a firewall policy (i. e., the selection of basic rules) influences
both the runtime performance of a firewall and the decision during test-case
generation. The simplifier-set presented in this section is aimed at reducing the
number of decision points and thus makes the policy easier to test (see Section 5),
i. e., results in smaller sets of test cases. On the other hand, the introduction of
additional decision points (e. g., allowing to throw packets away earlier during
the matching phase) can increase the overall performance of a firewall. Of course,
such an optimization needs to take knowledge about the traffic into account and
thus cannot be automated as easily.

4 Testing Firewall Policies

4.1 Testing Stateless Firewalls

The test specification for the stateless firewall case is now within reach: basically,
we just state that the firewall under test (fut) has the same filtering function
behavior as our combined policy from Definition 1:

fut(x) = policy(x)

However, this test specification is too general as we are only interested in a
subset of the possible packets. The main reason is that firewalls sit between the
subnets and therefore do not observe all the traffic. In particular, they will not
observe packets with the source and destination within the same subnet.

Using a general logic as underlying framework, we can easily constrain the
test space accordingly. If we want to test the firewall depicted in Figure 2, we
use the auxiliary predicate:

notInSameNet x ≡ (srcOf x @ internet −→ ¬ destOf x @ internet)
∧ (srcOf x @ intranet −→ ¬ destOf x @ intranet)
∧ (srcOf x @ dmz −→ ¬ destOf x @ dmz)

This predicate of type packet→ bool checks if the source and the destination of
a packet are not within the same subnet. The test specification is revised to:

notInSameNet (x) −→ fut(x) = policy(x)
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Depending on the test purpose, other constraints for the test specification are
possible. For example, we might focus on test-data which represent packets sent
to one single host, or only test-data for specific protocols. Thus, there may be
different test specifications expressing different test purposes for the same policy.
Distinguishing test purposes is especially useful for networks with firewalls at
different points still enforcing one global policy.

After writing the test specification, some theorem proving techniques are
necessary to bring the test theorem into a form which is suitable for the test-case
generation; as these techniques are always the same for the default applications,
this can be done fully automatically. In more detail, this includes the unfolding
of the policy and of the rules. Technically, one can either unfold the constraints
of the test specification before or after the test-case generation. In the first case,
the undesired cases will not be generated while in the latter case they will be
discharged later.

The test-case generation procedure, possibly followed by a simplification, pro-
duces after about 45 minutes running-time on a modestly equipped workstation,
a list of 258 test-cases, among them the following two:

1. A test-case where a packet to the intranet must be denied by the firewall if
the protocol is neither imap nor smtp:

X2 = 172 −→ X3 6= 168 X1 6= imap X1 6= smtp

fut(X4, X1, ((X2, X3, X5, X6), X7), ((172, 168, X8, X9), X10), X11)
= Some deny

Here, the assumptions represent constraints for the concrete values chosen
for the variables. In particular, the first part of the assumptions guarantees
that the test-data generated from this test-case have a source network that
is not equal to the destination network.

2. A test-case where the firewall should accept an smtp packet from the intranet
to the dmz:

fut(X12, smtp, ((172, 168, X13, X14), X15), ((172, 16, 70, X16), X17), X18)
= Some(accept(X12, smtp, ((172, 168, X13, X14), X15),

((172, 16, 70, X16), X17), X18))

We proceed with the test-data generation, which generates a constraint-free,
ground instance of each test-case by random-constraint-solving. Unlike other
examples, this step is quite trivial in our case and the computation time is
negligible compared to the time used in the test-case generation. The procedure
basically has to guess concrete values for the variables of the test-cases. Some
of them are constrained (e. g., X1 above), others are completely unconstrained
(e. g., X12 above). Here is a sample of the generated test-data:

1. fut(12,http, ((7, 13, 12, 0), 6), ((172, 168, 2, 1), 4), content) = Some deny
2. fut(8, smtp, ((172, 168, 12, 13), 12), ((172, 16, 70, 10), 6), content)

= Some(accept(8, smtp, ((172, 168, 12, 13), 12), ((172, 16, 70, 10), 6), content))
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4.2 Testing Stateful Firewall Policies

For protocols like FTP, a stateless firewall can only provide a very limited form
of network protection. The reason for this is, that FTP is based on a dynamic
negotiation of a port number which is then used as channel to communicate
the file content between the sender and the receiver. Thus, a stateful firewall
is needed to observe the inner state of the port negotiation. Testing stateful
firewalls, where the filter functions change, requires test-sequence generation
also supported by HOL-TestGen.

The detailed model of a stateful firewall and protocols is presented in [5]. The
basic idea is to keep the definition of policy but extend the model by a state,
which consists of a pair of a history of accepted packets and the current policy.
A state transition is a mapping from the packet that fired the transition and the
current state to a new state. A state machine which models a specific stateful
protocol can then be defined using predefined combinators.

In the stateful case, the test-data are lists of packets. The test specification
can then be combined with the stateless case, e. g., perform a stateless testing
before and after successful execution of the file transfer protocol (FTP). Clearly,
the role of test purposes is even more important here.

4.3 Network Models

Besides the network model presented in Section 3.1, there are two notable alter-
natives; in the sequel, we evaluate them with respect to the generation time and
test-case numbers.

A possible abstraction from the network represen-
tation is to model subnets as elements of a finite datatype. This reads as follows:

datatype networks = dmz | intranet | internet

This model, built with ports or without, reduces the task of the test-case gener-
ation drastically; instead of case-splits for four independent Integers, only one is
introduced. However, this representation abstracts away the possibility of single
hosts since an additional random number generator at the level of the test-driver
will be necessary to replace abstract networks against concrete addresses. Thus,
different instances for one single host will be generated at runtime of the test.

Although typically represented as a
four-tuple of (mathematical) Integers, an IP address is technically simply a 32-bit
bitvector. A replacement is straightforward: subnets are expressed as ranges of
Integers. This formalization is compromise between the other two: the possibility
to model single hosts is kept while the representation is simplified drastically.
We provide a conversion between these two representations.

The test data can be fed into a real firewall test driver. To sum up, a classical
unit test scenario is adequate for stateless packet filters.

Networks as a Datatype.

IPv4 Addresses as one single Integer.
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4.4

So far, we presented a theory of networks, protocols and policies together with
their use for generating test-cases. As HOL-TestGen is built on the framework
of Isabelle with a general plug-in mechanism, HOL-TestGen can be customized
to implement domain-specific, model-based test tools in its own right. As an
example for such a domain-specific test-tool, we developed HOL-TestGen/fw
which extends HOL-TestGen by:

1. a theory (or library) formalizing networks, protocols and firewall policies,
2. domain-specific extensions of the generic test-case procedures (tactics), and
3. support for an export format of test-data for external tools such as [13].
Figure 3 shows the overall architecture of HOL-TestGen/fw.

5 Evaluation and Discussion
In this section, we report on experiments with HOL-TestGen/fw in several case
studies. We will discuss the influence of different model parameters (e. g., network
models, complexity of policies) on the number of test-cases and generation time.
We conclude with a comparison of different test-strategies.

firewall policy

hol-TestGen

export module

policy
theory

policy
tactic
library

test data test driver

(Test Result)
Test Trace

firewall under testhol-TestGen/fw

Fig. 3. The hol-TestGen/fw architecture

In fact, item 1 defines the formal semantics (in HOL) of a specification lan-
guage for firewall policies; see Section 3 for details. On the technical level, this
library also contains simplification rules together with the corresponding setup
of the constraint resolution procedures.

With item 2 we refer to domain-specific processing encapsulated the general
HOL-TestGen test-case generation. Since test specifications in our domain have
a specific pattern consisting of a limited set of predicates and policy combinators,
this can be exploited in specific pre-processing and post-processing of an opti-
mized version of the procedure, now tuned for stateless firewall policies. More-
over, there are new control parameters for the simplification (see Section 3.3).

With item 3, we refer to an own XML-like format for exchanging test-data
for firewalls, i. e., a description of packets to be send together with the expected
behavior of the firewall. This data data can be imported in a test-driver for
firewalls, for example [13]. This completes our toolchain which, thus, supports
the execution of test data on firewall implementations based on test cases derived
from formal specifications.
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5.1 Case Studies
In the following, we will briefly summarize the results of the following scenarios:

Personal Firewall: We model a firewall running on a workstation, i. e., we
only have two subnets, one representing the Internet and one representing a
single workstation. This scenario is often called a personal firewall. A simple
default policy for this model is to deny all traffic from the Internet to the
workstation and to allow all traffic in the other direction.

Simple DMZ: A standard setup (similar to the example introduced in Sec-
tion 2) with one internal network (intranet) that cannot be accessed from the
Internet and one demilitarized zone which contains the servers that should
be accessible from both the Internet and the intranet.

DMZ: We extend the “Simple DMZ” scenario by one crucial detail: the policy of
each server in the DMZ is specified individually. Technically, this corresponds
to the introduction of sub-subnets.

ETH: We model a firewall that is used in the computer science department at
ETH Zurich: a real world example “as is.” This example demonstrates that
our approach is applicable for real world scenarios.

5.2 Influence of the Policy Size
We used the “Personal Firewall” case study for investigating how the size of a
policy influences the number of test-cases and the overall time needed for calcu-
lating them. In this experiment, we keep the network setting and the network
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model fix, and vary the policy by successively adding (non-overlapping) rules
opening new ports from the workstation to the Internet.

Figure 4a suggests that both the number of test-cases and the time increases
substantially with respect to the number of rules in a policy for two subnets.

5.3 Influence of the Number of Networks

By successively extending the “Personal Firewall” case study with additional
workstations (subnets) using the same basic policy for every workstation (deny
all traffic from the other networks to the workstation and allow all traffic from
the workstation to the other networks), we studied how the number of networks
influences the number of test-cases needed for testing the scenario thoroughly.

Figure 4b suggests that the number of subnets and hosts has a significant
influence on the number of test-cases.

5.4 Influence of Policy Simplification

As we have seen, the complexity of a policy (number of rules) has a great conse-
quence on the number of test-cases needed for full coverage of the specification.
For justifying our policy simplification strategy, we compared the number of
test-cases for several case studies (see Figure 4c).

In particular, the ETH Zurich firewall example shows that the effect of sim-
plification for real-world scenarios can be dramatic. Of course, as explained in
Section 3.3, our policy simplification can increase the network latency of deployed
policies; and of course, not every policy can be simplified.

5.5 Influence of the Network Model

5.6 Discussion
Figure 4 summarizes the different scenarios; the details of all case studies appear-
ing in this section and all measured data are part of thehol-TestGendistribution

For investigating the influence of the network model (see Section 4.3) on the
number of test-cases, we used three typical models and compared the number of
generated test-cases for each model. Not surprisingly, Figure 4d reveals that the
choice of the network model is most relevant. The choice to model an address
as a four-tuple of Integers is on the one hand very nice as it is the closest one
to the real-world representation. The costs, however, are substantial: in case of
both dmz examples, we stopped the computation after 6 hours with no result.
Furthermore, we get a lot of additional test-cases which are probably in most sce-
narios superfluous. The possibility to model subnets as a datatype is clearly the
simplest one and also significantly reduces computation time. However, we loose
the possibilities to model hierarchical network topologies directly. For example,
addressing single hosts, as in the dmz example, requires special handling in the
definition of the notInSameNet predicate. Therefore, we prefer the option of rep-
resenting addresses by a single Integer: with only a little more complexity than in
the datatype case, we keep the same expressive power as in the four-tuple case.
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A classical goal of test-case generation is to minimize the number of test-
cases. On the one hand, as the test-data generation itself needs only to be done
once for every policy, one could argue that the time needed for computing the
test-cases is not that important. On the other hand, von Bidder [13] reports
that even only replaying test-data on a real firewall implementation already
takes substantial time. Therefore, optimizing the set of test-cases is important,
while preserving good test-coverage. Based on this experiments, we suggest to
follow different test strategies, depending on the concrete test purpose:

– Our experience shows that testing, with complete decision coverage, of poli-
cies that are highly-optimized in terms of network latency, seems to be very
expensive. As a compromise, we suggest to simplify the policy for testing
purposes and to generate test-cases with respect to this simplified policy.
While this approach still guarantees path coverage with respect to the spec-
ification, it does not cover all paths of the implementation. Nevertheless, by
increasing the number of test-data chosen for every test-case, the coverage
of the implementation could be increased. Overall, this approach results in
a combination of model-based testing and random testing.

– For highly critical applications it might be worthwhile to install several fire-
walls with small policies that can be tested thoroughly. Moreover, as every
firewall can be optimized for the small number of networks it connects, we
expect a performance gain on the implementation level. Of course, installing
several firewalls increases at least the initial costs; as maintaining small poli-
cies is much easier, we would expect that the total cost of ownership of such
a setting is, at maximum, only a little worse than one centralized firewall.
In fact, a similar setting was chosen for the network of ETH Zurich, where
every research group has its own firewall.

6 Conclusion and Related Work

6.1 Related Work

Firewall testing is a widespread research topic which reflects their importance
in todays security infrastructures. Whereas we focus on conformance testing,
many research approaches are focused on vulnerability and policy-independent
implementation testing. Surprisingly, we did not find any work on random testing
the conformance of a firewall with respect to a policy; this is in stark contrast
to software testing where random testing has gained a certain popularity.

Several approaches for specification-based testing of firewalls have been pro-
posed. For example, El-Atawy et al. [7, 8] present a policy segmentation tech-
nique where a policy is represented as a tree. They also give some measurements

(http://www.brucker.ch/projects/hol-testgen/). The presented case stud-
ies have demonstrated that our tool is well applicable to real world scenarios.

to the segments such that important segments can be tested more rigorously.
They also present a policy generation technique. Jürjens and Wimmel [9] pro-
pose a specification-based testing of firewalls which employs a formal model of
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the network and automatically derives test-cases. It does however not really
describe in which way these test-cases are generated. Furthermore, it does not
support an ordering of the firewall rules. Bishop et al. [2] describe a formal model
of protocols in HOL. Their level of abstraction is however much lower than ours
and is therefore less suited for testing of policy conformance. Marmorstein and
Kearns [10] propose a policy-based host classification which can be used to detect
errors and anomalies in a firewall policy. Senn et al. [12, 13] propose a simple
language for specifying firewall policies and a framework for testing firewalls
at the implementation level. While the framework includes tools for generating
test-cases with respect to a protocol specification, it lacks support for test-case
generation based on policies.

6.2 Conclusion and Future Work

We presented a family of case study for HOL-TestGen consisting of a formal
model of firewall policies in HOL, several problem-specific test plans and domain-
specific tool support for generating test-cases. Our integrated approach allows
for both the formal analysis of a policy, e. g., certain properties could be proven
interactively, their automatic simplification, and the automatic generation of
tests for real firewall implementations. We believe to have presented a successful
application of our methods and tools to real-world scenarios.

The general domain of testing firewalls is both technically challenging and
as well a rewarding target of security testing. Moreover, the variety of different
firewall implementations, all based on the same set of network protocol speci-
fications, makes firewalls especially well-suited for a model-based testing based
on abstractions.

The presented work can be extended into various directions. In [5], we used
sequence testing techniques for testing stateful firewalls using HOL-TestGen.
This allows for the integration of unit and sequence testing, i. e., in every state
of a test sequence a unit-test is executed.

On the theoretical side, our framework could be used for formally analyzing
different separation techniques on the level of networks. For example, a common
technique for reducing the amount of test-cases is to partition the policy into
different fragments where every fragment only covers one pair of subnetworks.
While this clearly reduces the amount of test labor, it also introduces a new
kind of test hypothesis (“traffic between two networks does not influence the
policy for other networks”) into the system. Overall, this would allow to analyze
formally the effects of a heuristic that is usually applied in an ad-hoc manner in
firewall testing.

On the practical side, several extensions can be made: first, our integrated
test-harness generator could be configured for generating test-data in a format
that is suitable as input for the tools developed in the context of [13]. This would
allow for testing the conformance of deployed firewalls. Secondly, our policy
specification can be used for generating configuration artifacts (e. g., scripts for
iptables) for real firewall implementations and thus HOL-TestGen/fw could
be used for testing and configuring real firewalls. And Thirdly, an integration
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of HOL-TestGen/fw into standard firewall configuration tools is possible. Like
the second approach, this would allow for a policy specification language that is
used for testing and configuration of a real firewall.
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