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Abstract. THOTL represents a conservative extension of HOTL (Hy-
potheses and Observations Testing Logic) to deal with systems where
time plays a fundamental role. We adapt some of the HOTZL rules to
cope with the new framework. In addition, we introduce several specific
hypotheses and rules to appropriately express time assumptions. We pro-
vide a correctness result of THOTL with respect to a general notion of
timed conformance.

1 Introduction

In order to determine the correctness of an implementation with respect to a
given specification we can use a notion of conformance: An implementation con-
forms to a specification if the former shows a behavior similar to that of the
latter. In order to check this property we may use formal testing techniques to
extract tests from the specification. Each test represents a desirable behavior
that the implementation under test (in the following IUT) must fulfill. In fact,
the existence of such a formal framework facilitates the automation of the testing
process. In order to limit the (possibly infinite) time devoted to testing, testers
add some reasonable assumptions about the structure of the IUT. For example,
the tester can assume that the implementation can be represented by means of a
deterministic finite state machine, that it has at most n states, etc. In this line, a
wide range of testing methodologies have been proposed which, for a specific set
of initial hypotheses, guarantee that a test suite extracted from the specification
is correct and complete to check the conformance of the IUT (e.g. [AII5ITIIA]).
However, a framework of hypotheses established in advance is very strict and
limits the applicability of a specific testing methodology. For example, it could be
desirable that, in a concrete environment, the tester make complex assumptions
such as “non-deterministic states of the implementation cannot show outputs
that the machine did not show once the state has been tested 100 times.” In a
different scenario the tester could not believe this assumption but think that “if
she observes two sequences of length 200 and all their inputs and outputs coin-
cide then they actually traverse the same IUT states.” Let us remark that these
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are hypotheses that the tester is assuming. Thus, she might be wrong and reach
a wrong conclusion. However, this is similar to the case when the tester assumes
that the implementation is deterministic or that it has at most n states and, in
reality, this is not the case.

The logical framework HOTL [20021] (Hypotheses and Observations Testing
Logic) was introduced to cope with the rigidity of other testing frameworks. HO7L
alms to assess whether a given set of observations implies the correctness of the
TUT under the assumption of a given set of hypotheses. The methodology consists
of two phases. The first phase consists in the classical application of tests to the
IUT. By using any of the available methods in the literature, a test suite will be
derived from the specification. If the application of this test suite finds an unex-
pected result then the testing process stops: The IUT is not conforming. However,
if such a wrong behavior is not detected then the tester cannot be sure that the TUT
is correct. In this case, the second phase begins, that is, the tester applies HO7TL
to infer whether passing these tests implies that the IUT is correct if a given set
of hypotheses is assumed. If it does then the TUT is assumed to be correct; oth-
erwise, the tester may be interested in either applying more tests or in assuming
more hypotheses (in the latter case, on the cost of feasibility) and then applying
the logic again until the correctness of the IUT is effectively granted.

HOTL provides two types of hypotheses: Concerning specific parts (states) of
the IUT and concerning the whole IUT. In order to unambiguously denote the
states regarded by the former, they will be attached to the corresponding observa-
tions that reached these states. For example, if the [UT was showing the sequence
of outputs o1, 0, . . ., 0, as answer to the sequence of inputs i1, is, . . . , in, the tester
may think that the state reached after performing i1 /01 is deterministic or that
the state reached after performing the sequence i1 /01, 12/0 is the same as the one
reached after performing the whole sequence i1/01,i2/02,...,%,/0,. In addition
to using hypotheses associated to observations, the tester can also consider global
hypotheses that concern the whole IUT. These are assumptions such as the ones
that we mentioned before: Assuming that the IUT is deterministic, that it has at
most n states, that it has a unique initial state, etc. In order to denote the assump-
tion of this kind of hypotheses, specific logic predicates will be used.

Let us remark that even though we work with rules and properties, HO7L,
and its timed extension presented in this paper, is not related to model check-
ing [8] since we do not check the validity of properties: We assume that they hold
and we infer results about the conformity of the IUT by using this assumption.
In the same way, this work is not related to some recent work on passive testing
where the validity of a set of properties (expressed by means of invariants) is
checked by passively observing the execution of the system (e.g. [3I4]).

The main goal of this paper is to extend HOTL to deal with timed systems.
Even though there exist several proposals to test timed systems (for example,
[22TTITOOUT2J5IT3I2UTT] ), these proposals suffer from the same rigidity pre-
viously commented. The first decision to define the new framework, that we
call THOTL, is to consider a formal language to represent timed systems. The
natural candidate would be to consider timed automata [I]. However, since
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HOTL is oriented to deal with a language with a strict alternation between
inputs and outputs, we decided to consider a timed extension of finite state ma-
chines in order to reuse, as much as possible, the definition of the predicates and
rules. Intuitively, transitions in finite state machines indicate that if the machine
is in a state s and receives an input ¢ then it will produce and output o and it
will change its state to s’. An appropriate notation for such a transition could be
s ﬂ s'. If we consider a timed extension of finite state machines, transitions as
s Ld s" indicate that the time between receiving the input ¢ and returning
the output o is given by d, where d belongs to a certain time domain. Usually,
d is considered to be a simple value (e.g. a non-negative real number). How-
ever, we would like to use a more sophisticated time domain. Our first choice
was to consider a stochastic version of finite state machines [I8] where a tran-

sition s Lg s’ indicates that the time elapsed between ¢ and o is equal to ¢
with probability Fe(t), where Fg is the probability distribution function associ-
ated with the random variable £. However, this choice strongly complicated the
definition of some rules and the notion of observation. In fact, the added com-
plication was such that it would deviate the attention from the main goal of the
paper: Introduce time in HO7TL. Thus, we decided to choose a simpler approach

but richer than singles values: Time intervals. Thus, a transition s L [d1,ds] s’
indicates that the time elapsed from the moment i is offered until the moment o
is produced is at most dy time units and at least d; time units. Actually, time in-
tervals represent a simplification of random variables where the different weight
given to each possible time value is not quantified.

Once the language and a notion of timed conformance were fixed, we had to
work on how to adapt HOTL to the new setting. Initially, we thought that this
task would be straightforward, consisting in modifying some of the rules so that
time values were appropriately added and dealt with. However, once we started
to work in the proposal, we realized that to develop the new framework would
be much more involved than a simple rewriting of the non-timed framework.
First, we had to adapt the notion of observation to take into account not only
assumptions about the possible time interval governing transitions but also to
record the observed time values: Since we consider time intervals, different ob-
servations of the very same transition can produce different time values. Next,
we had to modify the existing rules. The addition of time complicated the rules
linked to the accounting of observations. Finally, we introduced new hypotheses
to express specific temporal constraints.

This paper represents an extension of [16] where we presented a preliminary
timed extension of HOTL. In particular, [16] concentrated on adapting existing
HOTL hypotheses and rules to cope with a timed model. However, new hy-
potheses and rules to deal with specific time issues, what strongly complicates
the theoretical development, were not included in [I6].

The rest of the paper is organized as follows. In Section [2] we introduce
our extension of finite state machines to model timed systems and define two
implementation relations. In Section Bl we define the basics of the new logical
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framework. In Section ] we introduce new hypotheses and provide a correctness
result. Finally, in Section Bl we present our conclusions and some directions for
further research.

2 A Timed Extension of FSMs

In this section we present our timed extension of the classical finite state machine
model. The main difference with respect to usual FSMs consists in the addition of
time to indicate the lapse between offering an input and receiving an output. As
we already indicated in the introduction, time intervals will be used to express
time constraints associated with the performance of actions. First we need to
introduce notation, related to time intervals and multisets, that we will use
during the rest of the paper.

Definition 1. We say that @ = [a1,az] is a time interval if ay € Ry, ag €
R4 U {0}, and a1 < az. We assume that for all » € Ry we have r < oo
and r + oo = oo. We consider that 7r, denotes the set of time intervals. Let
a = [a1,az] and b= [b1,b2] be time intervals. We write @ C b if we have both
by < a; and as < be. In addition, @+ b denotes the interval [a1 + b1, as + ba] and
mi(a), for i € {1,2}, denotes the value a;.

We will use the delimiters { and } to denote multisets. We denote by p(R™)
the multisets of elements belonging to R". Given H € p(R™), for all r € R™ we
have that H(r) denotes the multiplicity of r in H. Given two multisets Hy, Ho €
p(]fﬁ)7 H, W Hy denotes the union of H; and Hs, and it is formally defined as
(Hy W Hy)(r) = Hi(r) + Ha(r) for all 7 € R™. O

Let us note that in the case of [t1,00] and [0, 00] we are abusing the notation
since these intervals are in fact half-closed intervals, that is, they represent the
intervals [t1,00) and [0, 00), respectively.

Definition 2. A Timed Finite State Machine, in the following TFSM, is a tuple
M = (S, inputs, outputs,Z, 7 ) where S is a finite set of states, inputs is the set
of input actions, outputs is the set of output actions, 7 is the set of transitions,
and 7 is the set of initial states.

A transition belonging to 7 is a tuple (s, s',1, o0, d) where s,s' € S are the
initial and final states of the transition, respectively, i € inputs and o € outputs
are the input and output actions, respectively, and deIn . denotes the possible

time values the transition needs to be completed. We usually denote transitions
/

by s Lg s’
We say that (s, s, (z'l/o%, ceyip /o), ci) isa tz'mAed trace, or simply trace, oAf M
if there exist (s, s1,%1,01,d1),. .., ($r—1,8",ir,0r,dy) € T, such that d = d;.
We say that ((i1/01,...,ir/0r),d) is a timed evolution of M if there exists s;,, €
7 such that (s, s', (i1/01,...,4-/0.),d) is a trace of M. We denote by TEvol(M)
the set of timed evolutions of M. In addition, we say that (i1/01,...,4,/0,) is
a non-timed evolution, or simply evolution, of M and we denote by NTEvol(M)

the set of non-timed evolutions of M.
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Let us consider s,s’ € S. We say that the state s’ is reachable from s, denoted

by isReachable(M, s, s'), if either there exist u, i, o, d such that s L& ueT

and isReachable(M,u,s’) holds, or s = s’. The set reachableStates(M,s)
contains all s’ € S such that isReachable(M, s, s’).
Let s € S and 7 € inputs. The set outs(M, s,4) contains the outputs that
can be produced in s in response to i, that is, {o| 3 s'.d:s i>3 s'eTh.
Finally, we say that s € S is deterministic, denoted by isDet(M, s), if there

. i/o’ i/o"!
do not exist s ishs g 8" € T such that o' # 0" or s’ # s". O

Intuitively, a transition (s, s, 4, 0, d) indicates that if the machine is in state s and
receives the input 4 then, after a time belonging to the interval cﬂ the machine
emits the output o and moves to s’. Traces are sequences of transitions. The
time associated with the trace is computed by adding the intervals associated
with each of the transitions conforming the trace. We allow machines to be non-
deterministic. We assume that both implementations and specifications can be
represented by appropriate TFSMs and we consider that IUTs are input-enabled.
During the rest of the paper we will assume that a generic specification is given
by spec = (Sspec; inputs,,., outputs .., Zspec, Topec)-

Next we introduce our first timed implementation relation. In addition to the
untimed conformance of the implementation, we require some time conditions to
hold. Intuitively, an IUT is conforming if it does not invent behaviors for those
traces that can be executed by the specification and time values are as expected.

Definition 3. Let I and S be TFSMs. We say that I conforms to S, denoted by
I contf S, if for all py = (i1/01,...,in—1/0n—1,in/0n) € NTEvO1(S), with n > 1,
we have pg = (i1/01,...,in—1/0n—1,1n/0,) € NTEvol(I) implies ps € NTEvol(S).
We say that I conforms in time to S, denoted by I conf, , S, if I conf S and
for all e € NTEvol(I) N NTEvol(S) and d € I, , we have that (e,d) € TEvol(])

implies (e, d) € TEvol(S). O

Even though this is a very reasonable notion of conformance, a black-box testing
framework disallows us to check whether the corresponding time intervals coin-
cide. The problem is that we cannot compare in a direct way timed requirements
of the real implementation with those established in the specification. In fact,
we can see the time interval defining a given transition in the specification, but
we cannot do the same with the corresponding transition of the implementa-
tion, since we do not have access to it. Thus, we have to give a more realistic
implementation relation based on a finite set of observations. We will present an
implementation relation being less accurate but checkable. Specifically, we will
check that the observed time values (from the implementation) belong to the
time interval indicated in the specification.

Definition 4. Let I be a TFSM. We say that ((i1/01,...,in/0n),1) is an observed
timed execution of I, or simply timed execution, if the observation of I shows
that the sequence (i1/01,...,%,/0,) is performed in time ¢.
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Let & = {e1,...,em} be a set of input/output sequences and let us con-
sider a multiset of timed executions H = {(e},t1),..., (e, tn)}. We say that
Samplingy 4) : ¢ — o(R™) is a sampling application of H for & if for all
e € ¢ we have Sampling 4 (¢) = {t| (e, ?) € H}. |

Timed executions are input/output sequences together with the time that it
took to perform the sequence. In a certain sense, timed executions can be seen
as instances of the evolutions that the implementation can perform. Regarding
the definition of sampling applications, we just associate with each evolution the
multiset of observed execution time values.

Definition 5. Let I and S be two TFSMs, H be a multiset of timed executions
of I, and @ = {e | 3¢ :(e,t) € H} NNTEvol(S). For all non-timed evolution
e € ¢ we define the sample interval of e in H as

§(H,e) = [min(Samplingy 4(¢)), max(Sampling 4 4)(€))]

We say that I H—timely conforms to S, denoted by I conf!, S if I conf S and

wnt

foralle € ¢ and d € TIr, we have that (e, d) € TEvol(S) implies §(H’e) cd O

3 THOTL: An Extension of HOTL with Time

In this section we present the new formalism 7HOTL. This framework represents
an extension and adaption of HOTL to cope with systems where time plays a fun-
damental role. While some of the rules remain the same (the rules dealing with
the internal functional structure of the implementation), THOTL constitutes a
complete new formalism. Next, we briefly describe the main contributions with
respect to HOTL. First, we have to redefine most components of the logic to con-
sider temporal aspects. Observations will include the time values that the TUT
takes to emit an output since an input is received. Additionally, the model will be
extended to take into account the different time values appearing in the observa-
tions for each input/output outgoing from a state. We will add new hypotheses
to allow the tester to represent assumptions about temporal behaviors concern-
ing both specific states and the whole IUT. Finally, we will modify the deduction
rules as well as include new rules to add the new hypotheses to the models. During
the rest of the paper Obs denotes the multiset of observations collected during the
preliminary interaction with the IUT while Hyp denotes the set of hypotheses the
tester has assumed. In this latter set, we will not consider the hypotheses that are
implicitly introduced by means of observations.

3.1 Temporal Observations

In our framework we consider that temporal observations follow the format
ob = (a1,i1/01/t1,a2,...,Gn,in/0n/tn, ant1) € Obs. This expression denotes
that when the sequence of inputs i1, ...,%, was proposed from an initial state
of the implementation, the sequence o1,...,0, was obtained as response in
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ti,...,t, time units, respectively. Moreover, for all 1 < 7 < n + 1, a; rep-
resents a set of special attributes concerning the state of the implementation
reached after performing iq/01,...,4;—1/0j—1 in this observation. Attributes de-
note our assumptions about this state. The attributes belonging to the set a; are
of the form imp(q) or det, where imp(q) denotes that the implementation state
reached after i1/01,...,4;-1/0j_1 is associated to a state identifier name ¢ and
det denotes that the implementation state reached after i1 /01,...,4;—1/0j-1 in
this observation is deterministic. State identifier names are used to match equal
states: If two states are associated with the same state identifier name then they
represent the same state of the implementation. The set of all state identifier
names will be denoted by Q. In addition, attributes belonging to a,41 can also
be of the form spec(s) denoting that the implementation state reached after
i1/01,...,4n/0p is such that the subgraph that can be reached from it is isomor-
phic to the subgraph that can be reached from the state s of the specification.
Thus, the behavior of the implementation from that point on is known and there
is no need to check its correctness. In addition to the previous attributes, already
defined in HOTL, temporal observations may include a new type of attribute
that represents our assumption about the time interval in which a transition can
be performed. For all 1 < 7 < n, the attributes in the set a; can be also of the
form int(d), with d € IR, - Such an attribute denotes that the time that the im-
plementation takes from the state reached after performing i, /o1,...,4;-1/0j-1,
to emit the output o; after it received the input 7; belongs to the interval d. We
assume that this attribute cannot appear in the set a1, since the implementation
is in an initial state, and no actions have taken place yet.

3.2 Model Predicates

Temporal observations will allow to create model predicates that denote our knowl-
edge about the implementation. A model predicate is denoted by model (m), where
m = (§,7,Z,A,E,D,0). As in HOTL, S is the set of states appearing in the
model, 7 is the set of transitions appearing in the graph of the model, £ is the
set of equalities relating states belonging to S, D is the set of deterministic states,
and O is the set of observations we have used so far for the construction of this
model. In addition, Z is the set of states that are initial in the model. Two ad-
ditional symbols may appear in Z. The first special symbol, «, denotes that any
state in S could eventually be initial. The second symbol, 3, denotes that not only
states belonging to & but also other states not explicitly represented in S could
be initial. Finally, A is the set of accounting registers of the model. An account-
ing register is a tuple (s, 1, outs, f,d,n) denoting that in state s € S the input i
has been offered n times and we have obtained the outputs belonging to the set
outs. Besides, for each transition departing from state s and labelled with input
i, the function f : 7 — IN returns the number of times the transition has been
observed. If, due to the hypotheses that we consider, we infer that the number
of times we observed an input is high enough to believe that the implementation
cannot react to that input either with an output that was not produced before
or leading to a state that was not taken before, then the value n is set to T. In
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this case, we say that the behavior at state s for the input ¢ is closed. The only
change we need to introduce with respect to HO7TL is that each register includes
a function § : 7 — Ig, x p(RT) that computes for each transition departing
from state s with input ¢ and output o € outs the time interval, according to our
knowledge up to now, in which the transition could be performed and the set of
time values the implementation took to perform the transition. If no assumptions
about the interval are made by means of temporal observations, it will be set to
[0, 00]. In the case of transitions not fulfilling the conditions about s, 4, and outs,
an arbitrary value is returned. Let us remark that as new hypotheses and temporal
observations are included in the model, the intervals will be reduced.

3.3 Basic THOTL Rules

First, we will include a new rule denoting how a model can be constructed from
a temporal observation.

(tobser) ob=(a1,i1/01/t1,a2,...,an,in/0n/tn, ans1) E0bs A S1,...,Sny1 fresh states
{51,...,8n+1}U8/,
{51 % 5o, s MY s} UT {51, 8,

model {(s5,35, {0}, fs;05;,1) [1 <5 <npuUA,
{sjis gl <j<n+1 A imp(qj) € a5},
{s;]1<j<n+1 A det €a;}UD’, {ob}

where f, (tr) is equal to 1 if tr = s; /% sj+1 and equal to 0 otherwise; and

(EZ, ﬂtjl}) if tr = s 1& Sj+1 A int(dA) € aj+1

05, (1) =4 ([0,00] 4ts}) 1£ tr = s; LY 5,00 A int(d) ¢ s

([0,00],0)  otherwise

The sets of states, transitions, accounting registers, and deterministic states
will be extended with some extra elements, taken from the specification, if the
tester assumes that the last state of the observation is isomorphic to a state of the
specification (i.e., spec(s), for some s € Sgpec). The new states and transitions S’
and 7", respectively, will copy the structure existing among the states that can
be reached from s in the specification. The new accounting, A’, will denote that
the knowledge concerning the new states is closed for all inputs, that is, the only
transitions departing from these states are those we copy from the specification
and no other transitions will be added in the future. Additionally, accounting
registers will reflect the time intervals associated to the transitions that are
copied from the specification. Finally, those model states that correspond to
deterministic specification states will be included in the set D’ of deterministic
states of the model. The formal definition of &', 7/, A’, and D’ follows. If there
does not exist s’ such that spec(s’) € a,+1 then (S, 7', A", D) = (0,0,0,0).
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Otherwise, that is, if spec(s) € ap41 for some s € Sgpec, let us consider the
following set of states:

U = {u; | uj is a fresh state A 1 < j < |reachableStates(spec, s)|}

and a bijective function ¢ : reachableStates(spec, s) — U U {s,,41} such that
g(s) = spy1. Then, (8,7, A", D') is equal to

U,
{g(s") o, g(s”)|3d: s Lg s" € Typee N isReachable(spec,s,s’)},
U g, u€UU{spt1} A i€ inputsg,, A
outs(spec, g~ (u), ), i/o )
5T Ju’ € U,o0 € outputs,,,.: u——u €T’

{g(s")|isReachable(spec, s,s’) A isDet(spec,s’)}

where f!(tr) is equal to 1 if there exist o/, u’ such that tr = u Y e T and
equal to 0 otherwise; and

i/o

_ (d,{a|a €d}) if 3o ,u :tr=u 5w €T A
bulir) = g7 (w) L g7 (W) € Topee
([0, 0], 0) otherwise

We can join different models, created from different observations, into a single
model by means of the (fusion) rule. The components of the new model are the
union of the components of each model.

model (S1,71,Z1,A1,&1,D1,01) A
) model (SQ,E,IQ,A2,52,D2,0Q) ANO1NOy=10
(fUSZon)model (81 @] 52,73 U ’TQ,Il UIQ,A1 U A2,51 U gQ,Dl U Do, O U OQ)

The iterative application of this rule allows us to join different models created
from different temporal observations into a single model.

At this point, the inclusion of those hypotheses that are not covered by obser-
vations will begin. During this new phase, we will usually need several models
to represent all the FSMs that are compatible with a set of observations and
hypotheses. Some of the rules use the modelElim function. If we discover that
a state of the model coincides with another one, we will eliminate one of the
states and will allocate all of its constraints to the other one. The modelElim
function modifies the components that define the model, in particular the ac-
counting set. A similar function appeared in the original formulation of HO7L.
However, due to the inclusion of time issues, this function must be adapted to
deal with the new considerations. The modelElim function is constructed in two
steps. First, we define how to modify the accounting. The countElim(.A, s1, s2)
function shows how an accounting A is updated when a state sy is modified
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because it is equal to another state s;. Basically, we move all the accounting
information from sy to s;. The new accounting set is constructed by joining
two sets. The first set denotes the accounting for all states different from s;
and so. A register (s,i,outs, f,0,n) € A, with s # s1 and s # so, will change
only if there exists a registered transition from s to so with input 4, that is, if
f(s ie, s2) > 0 for some o € outs. In this case, the information provided by
J must denote the replacement of sy by s1: We set f(s ife, s2) = 0 and we

increase the value of f(s e, s1). Additionally, we need to update the temporal
information provided by the ¢ function. Finally, all information concerning so is
removed. Let us note that this operation may lead to inconsistent models from
a temporal point of view. It can happen that for the state s with input ¢ the

pairs d(s ie, 1) = (di, Hy) and §(s ie, $9) = (da, Hy) are incompatible, either
because dy Ndy = () or because Hy W Hy & di N da, where & denotes the union
of multisets introduced in Definition [II

Definition 6. Let p = (dy, H1), ¢ = (dy, Hy) € Tr, x p(RT). We denote by
p + ¢ the pair defined as

n {(dAlﬂdAQ,Hltt'HQ) ifdAlﬂdAQ#@/\Hltt'HggdAlﬂdAQ
pPrqg=

error otherwise

Let A be a set of accounting registers and s1, so be states. Then, we have

countElim(A, s1, $2) =

( s & {s1,s2} A (s,i,0uts, f,n) € AN )
. f(s L2 s R
f/(S ﬂ 5/) = i/o i/o . ,
fls == s1)+ f(s = s2) if s’ =51
. r_
(s.i.outs, f',8'm) | ! s
_ 5(5£>5’) if s’ # 81,52
(s L% g = i/o i/o o,
0(s = s1) +0(s = s2) if s’ = 51
([0, o], 0) if s’ = s9 )
3p7q7g7h761752:
51 ((s1,1,0uts1,g,01,p) € A V (s2,1,0utss, h,d2,q) € A) A
(out51 U out52,> n =7 {m|(s,i,outs, f,d,m) € A, s € {s1,s2}} A
fe'n Ity = SS{f(tr)|(s, i, outs, f,6,m) € A, s € {s1,82}} A
\ 5/(t’l“) = Z{a(tr)l(svi70Ut57fv 57 m) € A7 s € {51782}}

We assume that for all n € N we have n + T = T. O
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The previous function is auxiliary to define how to eliminate a state s when
we discover that this state is equal to another state s’. In the following we will
denote by [z/y] the renaming of any occurrence of = by y. As before, we can reach
an inconsistent result. For example, if the behavior of the state s with input ¢
is closed, that is, (s,i,outs, f, T) € A, and s’ has an outgoing transition labelled
with i/o, being o & outs, then the model resulting by joining s and s’ would be
inconsistent because it would not preserve the closed behavior of s. In this case,
an empty set of models will be returned (see case (a) of the following definition).
The same happens if there exists (s, i, outs, f,0,m) € countElim(.A4, s1, s2) such
that for some ¢r € T[s3/s1] we have d(¢tr) = error (see case (b)). Otherwise,
the new model is obtained by substituting all occurrences of the state to be
eliminated by the state that will stay (see case (c¢)). In the next definition we
use the following property: For all index j € {1,2}, the expression 3 — j always
denotes the other number of the set.

Definition 7. Let m = (S,7,Z, A,&,D,O) be a model and s1,s2 € S. We de-
fine the predicate modelElim(m, s1, $2) as models (M), where M is constructed
as follows:

(a) If there exist ¢,outs, f,0,s, and j € {1,2} such that s3_; LR 7T,
(sj,i,0uts, f, T) € A, and o & outs, then M = ().
(b) If there exists (s,4,outs, f,d,m) € countElim(A, s1, s2) such that for some
tr € T[s2/s1] we have §(tr) = error, then M = ().
S\{s2}, T[s2/s1], I[s2/51],
(¢) Otherwise, M = countElim(A, s1, $2), E[s2/s1],
'D[Sg/sﬂ, O

The previous function can be generalized to operate over sets of states as
follows. Let S C S be a set of states. We have

4e1E1in( 5) {m} if S=0
fodeisiimim, 8,57 = Uf:lmodelElim(m;-,s,{SQ,...,sn}) if S ={s1,...,8n}

where {m/,...,m},} =modelElim(m, s, s1). O

The rest of the rules belonging to HO7TL do not vary in their formulation. It
is only necessary to consider that those rules using countElim have to consider
the temporal version of this function (that is, temporal issues are transparent in
the formulation of those rules).

4 New THOTL Hypotheses

In this section we will extend the repertory of hypotheses to include assumptions
about temporal constraints of the transitions. The tester may assume that “the
IUT cannot spend more (less) than ¢ time units for producing the output o after
it receives the input ¢” or “the pair i/o never takes more (less) than ¢ time units.”
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This kind of hypotheses affects the whole IUT, so they will be included in the set
Hyp. Besides, we need to define specific rules to apply the different hypotheses
to our models and reflect how they are affected by their application.

Some of the new rules use the updTime function. Its role is to update the
accounting set in the model to reflect the constrains established by the considered
temporal hypotheses. The new accounting set is constructed by joining two sets.
The first set denotes the accounting for all registers of states that either do not
belong to S or have an input that does not belong to I. These registers will
never change. The second set denotes the new registers. A register will change
only if there exists a registered transition from s € S with input 4 € I such that

o € ONouts, that is, if f(s e, s") > 0 for some &'. In this case, the information
provided by § must denote the temporal constraint. One more time, we can reach
an inconsistency if (s e g ) = (d, H) and the temporal restriction imposed by
the hypothesis, given by a time interval d , is incompatible due to either dnd’ =0
or H¢ dNd'. In this case, the function ¢ will return error. Then, the resulting
model would be inconsistent because it would not preserve the timed behavior
for some transition. In this case, an empty set of models will be returned by the
function.

First, we introduce a function to update the temporal functions of the ac-
counting registers.

Definition 8. Let A be a set of accounting registers, S C S, I C inputs,,..,
O C outputs,,,., and d e IR, . We define accTime(A, S, 1, O,cZ’) as the set of
accounting registers

{(s',i',outs,f, d,m) | (s"¢SVvigl VoutsNO=0) A (s',i,outs, f,d,n) € A }

U

( 3 f,outs,d,n :
(s,i,outs, f,on) € AN seSAiel A outsNO #DA
(5»@0/“7557 5(s'iﬁ>s") ifs'¢gSvi¢gl Vo ¢goutsnO
f:6n

§(tr)y =14 (dnd H) it (s ﬂ» )= (d,H) A
dnd #0 AN HCdnd
. error otherwise ) o

Let m = (S§,7,Z,A,E,D,0O) be a model. We define updTime(m, S, I,O,d’) as
the model

(a) 0, if there exist (s,i,outs, f,d,n) € accTime(A, S, I,O,d’) and tr € 7 such
that d(tr) = error;
(b) (S,7,Z,accTime(A,S,1,0,d"),E,D,O), otherwise.

Next we introduce new hypotheses. The first two ones allow us to assume
that the implementation never takes more (less) than ¢ time units to produce
the output o since it receives the input .
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model (S,7,Z,A,E,D,0bs) A maxTime(i,0,t) € Hyp
models (updTime(m, S, {i}, {0}, [0, t]))

model (S§,7,7Z,A,E,D,0bs) A minTime(i,0,t) € Hyp
models (updTime(m, S, {i}, {0}, [¢, >0]))

(maxTime)
(minTime)

The tester can assume that the performance of the pair ¢/o always consumes
exactly ¢ time units.

(oclockTime)mOdel (8,7,17, A,&D,'[]bs) A oc}ocleme(z,o, t) € Hyp
models (updTime(m, S, {i}, {0}, [t,t]))
The logic THOTL allows to consider other temporal hypotheses about the
IUT. For example, the predicate alwMax(t) (resp. alwMin(¢)) assumes that all
pair ¢/o is performed in at most (resp. at least) ¢ time units.

model (S,7,7Z,A,E,D,0bs) A aluMax(t) € Hyp

(alwaysMaz) models (updTime(m,S,Z, O, [0, t]))

model (S,7,Z, A,E,D,0bs) A alwMin(¢) € Hyp

(alwaysMin) models (updTime(m,S,Z, O, [t, <]))

Another plausible assumption is that all actions that can be performed from
a state s spend at least/most ¢ time units.

model (S,7,Z, A,E,D,0bs) A allOutMax(s,t) € Hyp
models (updTime(m, {s},Z, O, [0, t]))

model (S§,7,Z, A,E,D,0bs) A allOutMin(s,t) € Hyp
models (updTime(m, {s},Z, O, [t,o0]))

(allOutMax)
(allOutMin)

The allTimes(n) hypothesis allows to assume that if an input/output pair
is produced n times at a given state then all the time values that the imple-
mentation may take at this state to perform this pair will belong to the interval
delimited by the minimum and maximum observed time values.

model (§,7,Z,A,E,D,0bs) A n € N A allTimes(n) € Hyp

(allTimes) models ({(S,7,Z, A’,E,S,0bs)})

where
A" = {(s,i,outs, f,5,n')|(s,i,outs, f,6,n') € A A n’ <n}

U

(s,i,outs, f,6,n') € A A n >nA
Vo €outs: Y {f(tr)|tr =s e, s't<n

U

(s,i,0uts, f,6,n') € A A n >nA
Jo€outs: Y {f(tr)[tr=s e, s't>n

{(s,i,outs,f, &,n’)

{(57 i? 0ut$7 f? 5;7 n/)
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and

i’ /o’

0(s1 —— $2) if s1#£sVi #iV
i i’ /o’ ilo!
Si(s1 L% 52) = S {Ftr)ftr = s L% '} <)

(d, 72(5(s1 L% 52))) otherwise

g | minft 3 o st e m(8(s1 L2 8},
max{t| 351 L% &' 1 t € ma(d(s1 L2 &)}

The new accounting set A’ is the union of three set of registers. The first
set collects those registers that do not change because they correspond to states
whose outgoing transitions have been observed less than n times. The second set
gathers the registers associated to states whose outgoing transitions have been
observed at least n times, but all input/output pairs attached to them have been
observed less than n times. The third set introduces the assumption for those
registers (s, 1, outs, f,0,n') that present more than n observations of some pair
i/o in the transitions outgoing from s. In this case, we must update the temporal
function. For all transition ¢r leaving the state s and labelled by i/o we change
the associated interval. This interval, d, has as lower (resp. upper) bound the
minimum (resp. maximum) time values observed in all the transitions outgoing
from s and labelled by i/o.

We have shown some rules that may lead to inconsistent models. In some of
these cases, an empty set of models is produced, that is, the inconsistent model
is eliminated. Before granting conformance, we need to be sure that at least one
model belonging to the set is consistent. HOTL already provides us with a rule
that labels a model as consistent. Let us note that the inconsistences created by
a rule can be detected by the subsequent applications of rules. Thus, a model
is free of inconsistencies if for any other rule either it is not applicable to the
model or the application does not modify the model (that is, it deduces the same
model). Due to space limitations we do not include the details of this rule (the
formal definition can be found in [21]).

Similar to HOTL, in order to check whether a model conforms to the spec-
ification we have to take into account that only the conformance of consistent
models will be considered. In addition, given a consistent model, we will check its
conformance with respect to the specification by considering the worst instance
of the model, that is, if this instance conforms to the specification then any other
instance extracted from the model does so. This worst instance is constructed
as follows: For each state s and input ¢ such that the behavior of s for i is not
closed and either s is not deterministic or no transition with input 7 exists in the
model, a new malicious transition is created. The new transition is labelled with
a special output error that does not belong to outputs,,... This transition leads
to a new state L having no outgoing transitions. Since the specification cannot
produce the output error, this worst instance will conform to the specification
only if the unspecified parts of the model are not relevant for the correctness of
the IUT it represents.
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Definition 9. Let m = (S,7,Z, A, &, D,0bs) be a model. We define the worst
temporal instance of the model m with respect to the considered specification
spec, denoted by worstTempCase(m), as the TFSM

SU{Ll}, inputs outputs U {error},

spec?
i/o

s—s €T A
g8 |Jouts, f,8,n: (s,i,outs, f,6,n) € AN

o€ outs N m1(d(s A ) =d

spec

i/o
—_—

U
‘ s €S A i€ inputs,,. . A
ﬂ’[ooo]J— Aouts: (s,i,outs, f,6,T) € AN T
(s¢DvV /Hs',o:sﬂs') 0O

Thus, the rule for indicating the correctness of a model is

m=(S,7,7,A,E,D,0bs) A consistent(m) A
H = reduce(Obs) A worstTempCase(m) confiy, spec

(correct) models ({correct(m)})

where

reduce(0bs) = {(i1/01/t1, ... ,in/0n/tn)|(a1,11/01/t1, ..., Qn,in/On/tn, Gnt1) € Obs}

Now we can consider the conformance of a set of models. A set conforms to the
specification if all the elements do so and the set contains at least one element.
Note that an empty set of models denotes that all the models were inconsistent.

models (M) A M # 0 A M = {correct(m1),..., correct(mn)}

(allCorrect)
allModelsCorrect

Now that we have presented the set of deduction rules, we introduce a correct-
ness criterion. In the next definition, in order to uniquely denote observations,
fresh names are assigned to them.

Definition 10. Let spec be a TFSM, Obs be a set of observations, and Hyp be
a set of hypotheses. Let A = {ob = o] obis a freshname A o € Obs} and
B = {hy € Hyp, ..., h,, € Hyp}, where Hyp = {h1,...,hyn}.

If the deduction rules allow to infer al1ModelsCorrect from the set of pred-
icates C'= AU B, then we say that C' logically conforms to spec and we denote
it by C logicConf spec. O

In order to prove the validity of our method, we have to relate the deductions
obtained by using our logic with the notion of conformance introduced in Defini-
tion[Bl The semantics of a predicate is described in terms of the set of TFSMs that
fulfill the requirements given by the predicate; given a predicate p, we denote this
set by v(p). Due to space limitations we cannot include the definition of v (de-
spite the differences, the construction is similar to that in [21] for classical finite
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state machines). Let us consider that P is the conjunction of all the considered
observation and hypothesis predicates. Intuitively, the set v(P) denotes all the
TFSMs that can produce these observations and fulfill these hypotheses, that is, all
the TFSMs that, according to our knowledge, can define the IUT. So, if our logic
deduces that these TFSMs conform to the specification (i.e., allModelsCorrect
is obtained) then the IUT actually conforms to the specification.

Theorem 1. Let spec be a TFSM, Obs be a set of observations, and Hyp be a
set of hypotheses. Let A = {0ob = 0| obis afreshname A o € Obs} # () and
B = {h; € Hyp,...,hy, € Hyp}, where Hyp = {h1,...,hn}. Let C = AUB be a
set of predicates and H = reduce(Obs). Then, C logicConf spec iff for all TFSM
M € v(A,c) we have M cont [l spec and v(/\ ) # 0.

Corollary 1. Let IUT and spec be TFSMs, Obs be a set of observations, and Hyp
be a set of hypotheses. Let A = {ob = 0| obis a fresh name A o € Obs} # ()
and B = {h; € Hyp,...,h, € Hyp}, where Hyp = {h1,...,h,}. Let C = AU
B and H = reduce(Obs). If IUT € v(A,cc) then C logicConf spec implies
IUT contf}, spec. If there exists M € v(A ) such that M cont ]

wnt int

not hold then C logicConf spec does not hold.

spec does

5 Conclusions and Future Work

In this paper we have presented THOTL: A timed extension of HOTL to deal
with systems presenting temporal information. What started as a simple exercise,
where only a couple of rules were going to be modified, became a much more
difficult task. The inclusion of time complicated not only the original framework,
with a more involved definition of the accounting and the functions that modify
it, but added some new complexity with the inclusion of new rules. The first
task for future work is to produce a longer version of this paper were all the
issues that either could not be included or could not be explained with enough
details, are considered. This includes to elaborate on the semantics of predicates.
The second task is to construct, taking as basis the current paper and [I§], a
stochastic version of HOTL.
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