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Abstract. We present in this paper a framework, RMOR, for monitoring the
execution of C programs against state machines, expressed in a textual (non-
graphical) format in files separate from the program. The state machine language
has been inspired by a graphical state machine language RCAT recently devel-
oped at the Jet Propulsion Laboratory, as an alternative to using Linear Temporal
Logic (LTL) for requirements capture. Transitions between states are labeled with
abstract event names and Boolean expressions over such. The abstract events are
connected to code fragments using an aspect-oriented pointcut language similar
to ASPECTJ’s or ASPECTC’s pointcut language. The system is implemented in
the C analysis and transformation package CIL, and is programmed in OCAML,
the implementation language of CIL. The work is closely related to the notion of
stateful aspects within aspect-oriented programming, where pointcut languages
are extended with temporal assertions over the execution trace.

1 Introduction

The field of program verification is concerned with the problem of determining whether
a program conforms to a specification. The pure verification problem consists of prov-
ing that all possible executions of the program conform to the specification. This is
in general undecidable. Runtime verification is a less ambitious, but more feasible ap-
proach, just attempting to prove conformance of a single execution wrt. a specification.
The specification can in this context be seen as a formalized oracle that can be used
during testing, or it can become part of a fault protection system that runs in tandem
with the program during its deployment, while triggering error correction code when
non-conformance to the specification is detected.

The paper presents the runtime verification framework, RMOR (Requirement Mon-
itoring and Recovery, pronounced “armor”), for monitoring C programs against state
machines, using an aspect-oriented pointcut language to perform program instrumenta-
tion and connect the abstract events occurring in state machines with code fragments.
The work has been partly driven by the context of embedded systems for planetary
rovers and unmanned deep-space spacecraft as developed at NASA’s Jet Propulsion
Laboratory (JPL), where the majority of such code is written in C. The work presented
reflects the following four observations. First, state machines appear a natural notation
for programmers to apply, in contrast to for example temporal logic, or even regular
expressions. Regular expressions are likely the most attractive of the succinct notations,
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but seem to be best suited for specifying “small” properties, whereas state machines
support “big” properties involving many states. Second, although graphical editors for
state machines are convenient, many programmers find textual programming-like no-
tations convenient. Third, program instrumentation should be automated, connecting
events to program points. Aspect-oriented programming has offered powerful pointcut
languages for expressing such instrumentation. Fourth, most runtime verfication envi-
ronments to date have been developed for Java, and C has been somewhat ignored. This
is unfortunate since a majority of embedded software is written in C.

The RMOR language has inspirations from several sources. The language supports
a notion of state machines directly influenced by RCAT (Requirement CApture Tool),
a graphical state machine language language and editor [24,25]. That graphical state
machine language is inspired by Linear Temporal Logic (LTL) and allows for liveness
properties to be stated as well as safety properties. This is achieved by introducing special
error states and liveness states. RCAT was developed to support property specification
for the SPIN model checker [17]1 and was together with RMOR products of the Reliable
Software Systems Development (RSSD) project, funded by NASA. Beyond RCAT, an-
other direct inspiration has been the STATL specification language [12], from where a
distinction between consuming and non-consuming transitions was borrowed (a consum-
ing transition leaves the source state, whereas a non-consuming leaves a “token” – does
not consume the token – in the source state when the transition is taken). Finally aspect-
oriented programming, and specifically ASPECTJ [18] has strongly inspired the pointcut
language driving program instrumentation. More recently, ASPECTC [2] has emerged
as an aspect-oriented framework for C. This will be discussed further in Section 7.

A considerable amount of research has been invested in program monitoring systems
by different communities within the last 5-10 years. The runtime verification commu-
nity is concerned with program correctness [10,19,13,26,11,8]. This includes our own
work [15,16,4]. Most of these efforts investigate more or less powerful temporal log-
ics, with an exception in [11], which suggests the use of graphical UML state charts.
The aspect-oriented programming community is investigating what is referred to as
stateful aspects, where the pointcut language is extended with dynamic trace predicates
[9,29,7,28,1]. These pieces of work are often extensions of ASPECTJ [18]. TRACE-
MATHCES [1] for example is an extension of ASPECTJ with regular expressions. JASCO

[28] is a state machine solution for Java. An exception is ARACHNE [9], which per-
forms runtime weaving into binary code of C programs. ARACHNE supports a form of
trace predicates describing sequences of function calls, a limited form of regular ex-
pressions. The SLIC language [3] of the SLAM project is a specification language for
C much resembling an aspect-oriented programming language, but simplified to sup-
port static verification as well as monitoring. The language supports state variables as
well as access to function arguments and return values, but state machines have to be
encoded using enum types, and the event language is not as comprehensive as a gen-
eral purpose pointcut language. The program analysis communitiy has also contributed
to this field [20] and the model checking community, which uses timed automata for
testing, including monitoring [27,6].

1 RCAT automata are by the RCAT tool translated into Büchi automata. RMOR can specifically
monitor against such Büchi automata, although this is not the main purpose of the tool.
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Our contributions to these efforts are: (i) to suggest a simple and natural textual
programming notation for non-deterministic state machines integrated with an aspect-
oriented pointcut language for program monitoring. This includes adapting the notions
of error and live states from RCAT [24] for monitoring. With these concepts simple (fi-
nite trace) LTL properties can be stated naturally as state machines (the contribution of
[24]) and monitored (our contribution). (ii) To implement such a system for C. Most
embedded software is written in C. Most monitoring tools, however, have been focused
on Java. The implementation uses CIL [21], which turns out to be very suited for de-
veloping source code instrumentation and runtime monitoring frameworks for C. (iii)
To apply RMOR, resulting perhaps most importantly in feed-back from engineers wrt.
usability.

The paper is organized as follows. Section 2 gives an overview of the RMOR architec-
ture. Section 3 presents through examples the RMOR specification language. Section 4
summarizes the grammar of the specification language. Section 5 describes implemen-
tation details, including principles of the C code that is generated, as well as how the
C code is instrumented. Section 6 presents case studies performed with RMOR. Finally
Section 7 contains conclusions and outlines future work.

2 Overview of RMOR

The overall working of RMOR is illustrated in Figure 1. RMOR is a C program trans-
former, which inputs a pair consisting of a C program and a specification, and which
outputs a C program that is “armored” by the specification. The specification is writ-
ten in a textual format, that either can be programmed directly by a programmer, or it
can be generated from a graphical state machine specification in the RCAT specification
language. More specifically, RMOR takes as input a specification S in the RMOR speci-
fication language, and a C program P and produces a transformed program Q = M + PI

which is the combination of a monitor M generated from the specification S, and an
instrumented version PI of P. PI is P augmented with additional code that drives the
monitor M. Executing the resulting program Q corresponds to executing the original
program P, but with the monitor M constantly checking conformance to the specifica-
tion. In case the specification is violated, an error message is printed on standard output,
and in case specified, an error handling function is invoked.

The specification consists of two parts: the behavioral specification expressed as a set
of state machines, or monitors as they are called, and an instrumentation specification.
The state machines contain states and transitions between states that are triggered by the
occurrence of events. Events are just abstract names. The instrumentation part specifies
how these abstract event names connect to the code and is the basis for the automated
program instrumentation. In the resulting instrumented code PI , calls to the monitor
M occur as calls of the M submit(int event) function. Events are represented as
integers. The calls of this function are automatically inserted by RMOR at locations
defined by the instrumentation specification. The monitor M itself is a set of synthesized
C functions that check conformance to the state machines and which are written into
an rmor.c file that has to be compiled and linked together with the application. An
rmor.h header file is also generated that containts the events and RMOR API prototypes
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Fig. 1. Overview of RMOR

(function signatures). The header file does not need to be included in the user program
under normal circumstances, but can be as explained later in case the user program
needs to explicitly refer to monitoring functions. The synthesized monitor uses a fixed
amount of memory, hence it does not use dynamic memory allocation.

RMOR is implemented using CIL (C Intermediate Language), a C program analysis
and transformation system [21]. CIL is programmed in OCAML, which consequently
also is the programming language in which RMOR is implemented. CIL is a high-level
representation along with a set of tools that permit easy analysis and source-to-source
transformation of C programs. The CIL tool parses a C program and generates an ab-
stract syntax tree annotated with type information. The generated tree represents a pro-
gram in a clean subset of C. CIL is very robust and has been applied to for example the
Linux kernel and GCC’s C torture testsuite and processes not only ANSI-C programs
but also those using Microsoft C or GNU C extensions. Consequently RMOR inherits
the same characteristics. CIL provides a driver which behaves as either the gcc or Mi-
crosoft VC compiler and can invoke the preprocessor followed by the CIL application.
The advantage of this script is that one can easily use RMOR with existing make files.
The RMOR system extends CIL with approximately 2500 lines of code.

3 The RMOR State Machine Language

3.1 An Example C Program

In order to illustrate the specification language, consider the following toy applica-
tion program about which properties will be formulated. The program, located in a file
main.c, defines a collection of functions supporting uplink of data from a planetary
rover to a space craft2:

2 The example is fiction and does not represent an existing design.
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char* header;
Connection open_connection(char* name) {...}
bool close_connection(Connection connection) {...}
void cancel_transmission(Connection connection) {...}
void write_buffer(Connection connection, int data) {...}
void commit_buffer(Connection connection) {...}
void acknowledge() {...}
void debug(char* str){...}

main(){
Connection c1,c2;
c1 = open_connection("connection1");
c2 = open_connection("connection2");
write_buffer(c1,100);
commit_buffer(c1);
close_connection(c1);

}

The program offers functions for opening and closing a connection between rover and
space craft. While the connection is open data can be written to a data buffer, and
finally committed, for which an acknowledgment is received and recorded with a call of
the function acknowledge. A transmission can also be cancelled, not requiring further
action. The program contains a global variable header, containing information about
the current connection. The main program illustrates an example scenario.

3.2 Writing a Monitor

RMOR allows to specify properties about the execution order of function calls and
global variable accesses. RMOR monitors safety properties, usually formulated as
“nothing bad happens”, as well as termination-bounded liveness properties “something
good eventually happens before program termination”. Safety properties are checked
each time an event is submitted. Liveness properties are checked at the end of an execu-
tion when monitoring is terminated: at that point it is checked whether any outstanding
events have not happened that were expected to happen according to the requirements
represented by the monitors. In order to illustrate the RMOR notation a set of require-
ments will be modeled. Consider the following requirements R1, R2 and R3 about the
call-sequence of the functions in the above API. R1: “A connection is opened, accessed
zero or more times, and subsequently either closed or canceled. An access is either a
write operation or a commit operation”; R2: “The commit operation must be followed
by an acknowledgement before any other operation can be performed, except a can-
cellation”; R3: “It is illegal to have more than one connection opened at any time”.
These requirements can be formulated as several monitors, for example one for each
requirement, or they can be grouped into one monitor as follows.

monitor UplinkRequirements {
event OPEN = after call(main.c:open_connection);
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event WRITE = after call(main.c:write_buffer);
event COMMIT = after call(main.c:commit_buffer);
event ACK = after call(main.c:acknowledge);
event CANCEL = after call(main.c:cancel_transmission);
event CLOSE = after call(main.c:close_connection);

initial state Closed {
when OPEN -> Opened;
when WRITE || COMMIT || ACK || CLOSE => error;

}

live state Opened {
when COMMIT -> Committing;
when CLOSE -> Closed;
when ACK => error;

}

next state Committing {
when ACK -> Opened;

}

super Active[Opened,Committing]{
when CANCEL -> Closed;
when OPEN => error;

}
}

The monitor introduces six events to be monitored and a state machine that any event
sequence observed during program execution must conform to. Each event is defined by
a predicate, denoting a set of statements in the program that satisfies it (a pointcut using
aspect-oriented terminology), and a directive indicating whether the event should emit-
ted before or after any statement satisfying the pointcut. As an example, the event OPEN
is associated with the pointcut call(main.c:open connection) which is matched by
any call of the function open connection defined in the file main.c. In the example
program there are in fact two such calls. The after directive requires the event to be
emitted to the monitor after each of these calls. It is in essence an instruction to RMOR

to instrument the code by inserting a call to the monitor after these two calls. Similarly
for the other events. Note that following aspect-oriented ideas, the program is oblivious
to the fact that it is getting instrumented.

The state machine itself consists of three basic states: Closed, Opened and
Committing. Each state is modeled as a named (the name of the state) block enclosed
by curly-brackets { . . . } containing all its exiting transitions. The Closed state is the
initial state, indicated with the state modifier keyword initial. In the Closed state,
two transitions are defined. The first transition states that the event OPEN brings the mon-
itor into the Opened state. Recall that an OPEN event occurs after any call of the function
main.c:open connection; The second transition states that if any of the events in the
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set {WRITE,COMMIT,ACK,CLOSE} occurs, using the or-operator ‘||’, it is it is regarded
as an error – error is a special identifier denoting a built-in error state. The double ar-
row (=>) indicates a transition that leaves a token in the source state, in this case Closed,
such that also future violations of this property is detected. Such a transition is called
non-consuming since it does not consume the source token, as does the normal single
arrow consuming transition (->). Recall that state machines are non-deterministic.

The Opened state is a live state as indicated by the modifier keyword live, meaning
that this state must be left before program termination for this specification to be sat-
isfied. This specifically means that either a COMMIT event or a CLOSE event must occur.
An ACK event is not allowed to occur in this state. In the Committing state an ACK event
must occur as the next observable event, indicated by the next state modifier keyword.
This has as consequence that no other event can occur, except for a cancellation. The
latter exception is a consequence of the super state named Active defined at the end of
the monitor. This super state contains the two atomic states Opened and Committing
and has two exiting transitions. This is a shorthand for these exiting transitions con-
nected to each substate. The super state definition implies that when in any of the two
sub-states it is regarded as an error if an OPEN event occurs, and a CANCEL event brings
the monitor back to the initial Closed state.

3.3 Complex Pointcuts

Emissions of events to a monitor are inserted either before or after certain program
locations (joinpoints) identified by pointcut expressions occurring after the ‘=’ sign in
event definitions. Pointcut expressions can, similar to ASPECTJ and ASPECTC [2], be
used directly in event definitions, as we have seen above, or they can be defined and
given names in explicit pointcut declarations, using Boolean combinators similar to
those used on conditions. The following example illustrates this. Consider the addi-
tional requirement R4: “A write operation or an assignment to the header variable
(collectively referred to as an update) should be followed by a commit operation be-
fore the connection is closed, unless the transmission is cancelled. This, however, only
concerns main updates performed in the main.c file, ignoring updates made within any
debugging function”. In order to capture this requirement RMOR’s poincut language is
used to define the notion of a main update. The following monitor defines two poincuts,
one used to define the other, and an event that is defined in terms of the latter pointcut.

monitor Symbols {
pointcut Update = call(main.c:write*) || set(main.c:header);
pointcut MainUpdate = Update &&

within(main.c) && !withincode(*debug*);

event UPDATE = after MainUpdate;
}

The pointcut Update matches any program statement that is either: (i) is a call of a
function defined in main.c and with a name matching the pattern write*, meaning
having the name write as prefix, or (ii) is an update of the variable header declared in
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main.c. The file patterns (the part before and including the ‘:’) are optional. Both file
names and function/variable names can be indicated as patterns using “*” to represent
any sequence of symbols. The pointcut MainUpdate refines the first pointcut to only
concern those program statements occurring in the file main.c but not within any func-
tion with a name that contains the string debug. Finally, the event UPDATE is emitted
after any main update. Note that this monitor contains no state machine and is purely
introduced to define the pointcuts and the event. RMOR allows a monitor to import other
monitors to access their pointcuts and events, and the next monitor imports the just pre-
sented one to access the UPDATE event, and also imports the original monitor to access
further events.

monitor CommitUpdates {
import Symbols; // access UPDATE
import UplinkRequirements; // access COMMIT, CANCEL and CLOSE

state Start {
when UPDATE => DoCommit;

}

live state DoCommit {
when COMMIT -> Done;
when CANCEL -> Done;
when CLOSE -> error;

}

state Done{}
}

3.4 Error Handling

Our example program violates requirements R2 (a commit must be followed by an ac-
knowledgment before anything else), and R3 (no more than one open connection at a
time). Running the armored program produced by RMOR therefore causes two error
messages to be printed on standard output. It is possible to provide a call-back handler
function, which the monitor will call for each violation detected. This function must
have the following name and type:

void handler(char *monitor, char *state, int kind) {
... user defined code ...

}

The first argument indicates the name (a string) of the monitor in which the error was
encountered. The second argument indicates the name of the state it occurred in, and
finally the third argument indicates the kind of error (a number between 0 and 2): (0)
transition into an error state, (1) not leaving the next state before another event occurs,
and (2) terminating in a live state. In order for errors to be handled by the handler
function, the monitor must be declared with the handled modifier as follows:
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handled monitor UplinkRequirements {
... as before ...

}

4 Elements of the RMOR Grammar

In this subsection elements of the grammar of RMOR are outlined, summarizing the
concepts introduced in the example. A specification consists of a sequence of monitors3:

<specification> ::= <monitor>*
<monitor> ::=

"handled"? "monitor" <monitor_name> "{" <declaration>* "}"
<declaration> ::=

<import_decl> | <pointcut_decl> | <event_decl> |
<state_decl> | <machine_decl>

An import declaration has the form:

<import-decl> ::= "import" <ident> ";"

Imports have the sole purpose of giving access to pointcuts and events from other mon-
itors. Imports have no semantics at the state machine level. The grammar rules for
pointcut declarations and pointcut expressions are as follows:

<pointcut_decl> ::= "pointcut" <ident> "=" <pointcut_expr> ";"
<pointcut_expr> ::=

"call" "(" (<idpat1>":")?<idpat2> ")"
| "set" "(" (<idpat1>":")?<idpat2> ")"
| "within" "(" <idpat1> ")"
| "withincode" "(" (<idpat1>":")?<idpat2> ")"
| <ident>
| <pointcut_expr> "&&" <pointcut_expr>
| <pointcut_expr> "||" <pointcut_expr>
| "!" <pointcut_expr>
| "(" <pointcut_expr> ")"

<idpat1> ::= ("*" | letter|digit | "_" | "." | "-" | "/" )+
<idpat2> ::= ("*" | letter|digit | "_" )+

A poincut expression can specify a function call or a variable assignment, with idpat1
indicating the name of the file in which the called function or updated variable is de-
clared. The within pointcut matches statements occurring in files with names match-
ing the argument, and withincode matches statements occurring within functions with
names matching the argument. Beyond this, pointcuts can be referred to by name and
conjoined with Boolean operators. An event declaration has one of two forms:

3 The meta symbol * means zero or more occurrences, and ? means zero or one occurrence.
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<event_decl> ::=
"event" <ident> "=" ("before "|" after") <pointcut_expr> ";"

| "event" <ident> ("," <ident>) ";"

The event declarations shown this far are all of the first form. The second form is an
abstract event declaration. It just introduces an event name that then can be used in state
machines. However, no automated instrumentation is performed and it is the respon-
sibility of the user to manually instrument the program to emit these events using the
RMOR API. A state declaration can be of one of two forms:

<state_decl> ::=
<state_modifier>* "state" <ident> "{" <transition>* "}"

| "super" <ident> "[" <ident> ("," <ident>)* "]" "{"
<transition>*

"}"
<state_modifier> ::= "initial" | "anytime" | "live" | "next"
<transition> ::= "when" <cond> ("->"|"=>") <ident> ";"
<cond> ::=

"ANY" | <ident> | "!"<cond> | "(" <cond> ")"
| <cond> "&&" <cond> | <cond> "||" <cond>

The first form is the basic state definition: a list of state modifiers, the keyword state,
the name of the state, and a list of exiting transitions enclosed in a block. The second
form is a super state definition, with the name of the super state and the list of sub-states
in between [ . . . ] brackets. These sub-states must be defined within the same monitor
using the first form of state declaration. It is not possible to use another super state
as a sub-state. The super state also has a list of exiting transitions. An anytime state
always contains a token, even if an exiting transition is taken (state machines can be
non-deterministic). The same effect can be obtained by defining all exiting transitions
as non-consuming using the => arrow. A condition is a Boolean expression over event
identifiers and the ANY keyword, which in essence represents true, or “any” transition.

In an attempt to offer the possibility of grouping together state machines in one
module it has been made possible to define several state machines inside a monitor.
Such state machines cannot define any symbols or perform any imports:

<machine_decl> ::= "machine" <ident> "{" <state_decl>* "}"

RMOR offers in addition an API of functions with which the user application can inter-
act with the monitors. These functions can for example be called from the handler. This
includes functions for resetting and stopping monitors, submitting events, and printing
monitor status for debugging purposes.

5 Implementation

OCAML [22] and its parser modules OCAMLLEX and OCAMLYACC were used to
implement the parser for the RMOR specification language. The generated monitors
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in C utilize the SGLIB library [23], specifically double-linked lists for implementing
sets. The program instrumentation module was, as already mentioned, implemented in
OCAML on top of CIL [21].

5.1 Monitor Generation

The lexical scanning of RMOR specifications involves scanning of pointcut expressions,
which is a well-known problem in aspect-oriented programming implementations, re-
quiring the lexer to be state oriented, behaving differently in the normal and the pointcut
state. OCAMLLEX allows for such state orientation, permitting us to apply a high-level
parser generator for the task4. The program is parsed into an abstract syntax tree (AST),
which is then processed for two purposes: translation of state machines to monitors, and
instrumentation of the C code to emit events to the monitors (Section 5.2). The trans-
lator that produces state machines takes the AST as input and prints out the monitors
in the file rmor.c. There are three constraints that specifically influence how RMOR is
implemented: (i) monitors are allowed to be non-deterministic (a consequence for ex-
ample of the => transition arrow, useful for monitoring), meaning that a state machine
can be in more than one state at a given moment; (ii) dynamic memory allocation is
not allowed since monitors should be able to monitor embedded flight code as part of a
fault protection strategy, where only static memory allocation is allowed; (iii) a future
extension of RMOR should allow for events to be parameterized with data values, and
hence tokens in states should be able to carry values.

The first constraint requires each transition to produce a set of next states, computed
from the set of current states. The second constraint requires that these different sets
cannot be allocated dynamically on the fly as new sets are built. Instead, all states are
allocated up front, and for each monitor is maintained three collections during next-
state computation: a list of free states, a set of current states, and a set of next states.
Each collection is modeled as a double-linked list. All states are initially stored in the
free list. The monitor subsequently just moves states between these three sets when a
new event arrives. At program termination it is checked that no tokens exist in live or
next states. The motivation for representing sets as linked lists of records, and not as
bitvectors, is the third constraint above, which requires data values to be part of state
tokens in an extension of the tool. This will be further discussed in Section 7.

5.2 Instrumentation with CIL

The instrumentation module is implemented using CIL’s object oriented visitor pattern
framework. RMOR defines a class that subclasses a predefined visitor class, overriding
a method for each kind of CIL construct that should be visited. CIL’s visiting engine
scans depth-first the structure of a CIL program and at each node executes the corre-
sponding method in the user-defined visitor. The code below shows part of the visitor
class defined for instrumentation. It overrides the method vinst : instr -> instr
list visitAction that is applied to every basic instruction in the C program (essen-
tially function calls and assignment statements, excluding composite statements, such

4 The ASPECTJ parser is for example not constructed using a parser generator.
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as loops). This function is expected to return a list of instructions, namely those that the
visited instruction is replaced with. The body of the function computes a list of advices
to be inserted (advice inserts), that if not empty is split into those to be inserted
before and after the instruction respectively.

class instrumentVisitor = object (self) inherit nopCilVisitor
...
method vinst (i : instr) : instr list visitAction =
...
let advice_inserts = match_instr ... i in
if advice_inserts = [] then

SkipChildren
else
begin

let (before,after) = create_before_after advice_inserts in
ChangeTo (before @ [i] @ after)

end
end

The instrumentation consists of inserting calls of the function M submit(int event)
before or after joinpoints matching the pointcuts associated with events. The function
M submit stores the submitted event for later reference in the state machines, and sub-
sequently calls the next-state function of each state machine.

6 Case Study

The Laboratory for Reliable Software at JPL has been developing a RAM File Sys-
tem (RAMFS) for use in future space missions. RAMFS will specifically be used as
a backup file system on the next Mars Rover, MSL (Mars Science Laboratory), with
launch date September-October 2009. MSL will be the biggest rover yet sent to Mars,
and will be three times as heavy and twice the width of the Mars Exploration Rovers
(MERs) that landed in 2004. RAMFS implements a thread-safe file system for flight
systems in volatile memory (memory that requires a power supply to maintain the stored
information). The main purpose of RAMFS is to provide a storage capability that can
be used when the disk- or flash-file system is unavailable, e.g., when a spacecraft is
in crippled mode, or in case there is not enough disk memory available. It is a project
goal to apply various testing and verification technologies to establish confidence in the
correctness of this file system [14]. Two different properties were formulated in RMOR

and checked against the system. Both properties were satisfied, and malicious manual
code modification caused them to be violated as expected.

Property 1: Matching Semaphore Accesses. The first property, called MatchSem,
checks that semaphore operations are executed correctly: the semaphore must be re-
served and released in strictly alternating order. The specification further states that
once the semaphore has been reserved, it must eventually be released again. Reserv-
ing and releasing the semaphore is performed in the program respectively by calls of
functions osal sem take and osal sem give. The monitor is defined as follows.
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monitor MatchSem {
event semtake = before call(osal_sem_take);
event semgive = after call(osal_sem_give);

state Start {
when semtake -> HaveLock;
when semgive -> error;

}

live state HaveLock {
when semgive -> Start;
when semtake -> error;

}
}

Property 2: Protected Memory Updates. While the first property above states that
the semaphore is used correctly, the second property states that memory accesses are
correctly protected by the semaphore. That is, any access to memory must occur be-
tween a semtake and a semgive. Memory accesses come in two forms. The first
are updates to the list of free memory through memory allocations with the func-
tion ramfs alloc pages, and memory freeing with the function ramfs free pages.
The second are updates to the memory pages themselves through two functions
ramfs update entry and ramfs update header. The monitor defines two pointcuts
free list update and page update, corresponding to these two kinds of calls.

monitor DataProtected {
import MatchSem ;
pointcut free_list_update =

call(ramfs_alloc_pages) || call(ramfs_free_pages);
pointcut page_update =

call(ramfs_update_entry) || call(ramfs_update_header);
event update = before free_list_update || page_update;

state Unsafe {
when semtake -> Safe;
when update -> error;

}

state Safe {
when semgive -> Unsafe;

}
}

Observations. This case study demonstrated the ease with which a non-expert in
RMOR was able to quickly learn the specification language and formulate properties.
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Although not seen as a limitation during the exercise, the need for events to carry data
values comes to the forefront in this example, specifically when it comes to the first
property, that the semaphore must be reserved and released in strictly alternating or-
der. The specification should ideally state that for a given semaphore S, its acquisition
should be followed by a release of this same S.

A different case study was performed using RCAT from which RMOR monitors were
generated as Büchi automata for an earlier version of RMOR. The case study was a
rover controller for the Rocky 8 rover, a research vehicle that is used at JPL to develop,
integrate, and demonstrate advanced autonomous robotic capabilities for future Mars
missions. Since the specification language used was RCAT and since monitors were
generated for an earlier version of RMOR, we shall not provide details about the example
or the specifications. It suffices to say that the specification concepts used were similar
to those of RMOR, and that the study supported the need for augmenting RMOR with
the ability to express time constraints, and the ability to model conditions (predicates)
on the state of the C program and use these as guards on transitions.

Concerning efficiency, the overhead naturally depends on the ratio with which mon-
itored function calls and variable accesses are performed in the monitored application
compared with the overall computation. Experiments showed that a single monitored
call of a function with empty body results in an order of magnitude slow down of that
call. Although monitored function calls usually constitute a small fraction of the over-
all computation, such overhead must be reduced using static analysis and algorithm
optimizations.

7 Conclusions and Future Work

The following three aspects are important for acceptance of a technology such as
RMOR: (i) convenience of the specification language; (ii) expressiveness of the spec-
ification language; (iii) efficiency of monitoring. A contribution of the paper is to illus-
trate the convenience of a state machine notation in combination with an aspect-oriented
pointcut language. Concerning expressive power of the specification language, it cur-
rently only offers monitoring of propositional events. The notation should be extended
with the ability to parameterize events with data values, corresponding to arguments in
monitored functions, timers, and to generally enable C code to occur in the specifica-
tion, for example allowing C code to be executed as a result of state machine transitions.
In current work we are permitting this by directly extending ASPECTC [2] with state
machines, utilizing ASPECTC’s already existing pointcut language. This work is carried
out using the SILVER extensible compiler framework [30]. Future work includes allow-
ing user defined temporal logic operators as shorthands for state machines. Specifically,
we plan to allow monitors to be parameterized with pointcuts. This will allow to define
temporal operators/specification patterns within the language as is done in the EAGLE

specification language [4], permitting very succinct specifications. We are furthermore
exploring the possibility of adopting the more expressive rule-based logic RULER [5]
as core logic, in which state machines form a special case. Efficiency can be obtained
by application of static analysis to reduce code instrumentation.
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15. Havelund, K., Roşu, G.: An Overview of the Runtime Verification Tool Java PathExplorer.
Formal Methods in System Design 24(2) (March 2004)
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