
K. Suzuki et al. (Eds.): TestCom/FATES 2008, LNCS 5047, pp. 153–168, 2008.
© IFIP International Federation for Information Processing 2008

Generating Checking Sequences
for Partial Reduced Finite State Machines

Adenilso Simão1 and Alexandre Petrenko2

1 Instituto de Ciências Matemáticas e de Computação
Universidade de São Paulo

São Carlos, São Paulo, Brazil
adenilso@icmc.usp.br

2 Centre de recherche informatique de Montreal (CRIM)
Montreal, Quebec, Canada
petrenko@crim.ca

Abstract. The problem of generating checking sequences for FSMs with
distinguishing sequence has been attracting interest of researchers for several
decades. In this paper, a solution is proposed for partial reduced FSMs with
distinguishing sets, and either with or without reset feature. Sufficient
conditions for a sequence to be a checking sequence for such FSMs are
formulated. Based on these conditions, a method to generate checking sequence
is elaborated. The results of an experimental comparison indicate that the
proposed method produces shorter checking sequences than existing methods in
most cases. The impact of using the reset feature on the length of checking
sequence is also experimentally evaluated.

1 Introduction

Test generation from a Finite State Machine (FSM) is an active research topic with
numerous contributions over decades, starting with the seminal work of Moore [9]
and Hennie [5]. Given a specification FSM M and a black box implementation N, the
objective is to construct a test suite that can check whether N behaves correctly
according to M. It is usual to assume that N behaves like an unknown FSM with the
same input alphabet and has at most as many states as M.

A checking sequence is an input sequence that can be used to check the correctness
of the implementation. Many methods for generating checking sequences have been
proposed, e.g., [5], [8], [4], [2], [11], [6], [3], [10], [7], and [12]. The crucial issue for
these methods is how to guarantee that a black box implementation is in a known state
after the application of some input sequence. This problem is somewhat simplified if the
specification FSM M has a distinguishing sequence, that is an input sequence for which
different states of M produce different outputs. However, not every FSM has a
distinguishing sequence. A distinguishing set is a set of input sequences, one for each
state of M, such that for each pair of distinct states, the respective input sequences have
a common prefix for which both states produce different outputs. A distinguishing set
can be obtained from a distinguishing sequence. Notice, however, that there exist FSMs
with a distinguishing set which do not have distinguishing sequence [2].

154 A. Simão and A. Petrenko

Several generation methods have been proposed for generating checking sequence
when a distinguishing sequence is available, e.g., [5], [4], [11], [6], [3], [10], [7], and
[12]. In [5], Hennie elaborates the basis for the existing generation methods. Hennie
divides the checking sequence into two parts: in the first part, the distinguishing
sequence and some (possibly empty) transfer sequence are applied to each state,
verifying that the distinguishing sequence is also a distinguishing sequence for the
implementation under test, while in the second part, each transition is verified
certifying that the source and target states are correctly implemented. A graph-
theoretical method for generation of checking sequence is presented in [4]. No
attempt to optimize the checking sequence is made, though. Recently, interest in
improving methods for generating checking sequence with distinguishing sequence
has revived again. Ural et al. [11] state an important theorem with sufficient
conditions for a sequence to be a checking sequence for a complete FSM with a
distinguishing sequence. A graph-theoretical method is also suggested, which casts
the problem of finding a checking sequence as a Rural Chinese Postman Problem,
following Aho et al.’s work [1]. This work has later been improved in [6] and [7],
which fine-tune the modeling of the problem; Chen et al. [3] demonstrate that it is
sufficient to consider only a subset of the FSM transitions; and Ural and Zhang [10]
use the overlapping of the distinguishing sequence with itself to shorten the checking
sequence.

Boute [2] shows how to generate a checking sequence for FSMs which may not
have distinguishing sequences, but have distinguishing sets. The method also
determines when transitions are “automatically” verified (i.e., when the verification of
a transition is a consequence of the verification of other transitions) similarly to a
more recent work [3].

All the above methods deal only with complete FSMs. Moreover, when the
implementation under test has the reset feature, these methods do not attempt to use
the reset input to shorten the checking sequence.

The contributions of this paper are twofold. First, we claim a theorem that states
sufficient conditions for a sequence to be checking sequence for a (possibly partial)
FSM with a distinguishing set. Notice that this theorem generalizes Ural et al.’s
theorem [11]. The second contribution is a constructive method that generates
checking sequence from FSM with a distinguishing set. Differently from recent works
(namely, [11], [6], [3], [7], and [10]), the proposed method does not attempt to make a
global optimization. Instead, it makes a local best choice in each step. Although the
global optimization is expected to lead to shorter checking sequence, the graph-
theoretical methods require that some choices be made a priori which may reduce the
effectiveness of global optimization to that of local optimization if not lower. For
instance, the method of Hierons and Ural [7] requires that a set of transfer sequences
to be defined, and, moreover, the so-called α-set is determined by a separate
algorithm, which may influence the effectiveness of the method. We present
experimental results which indicate that the proposed method based only on local
optimization performs better than existing methods in most cases.

This paper is organized as follows. In Section 2, we provide the necessary basic
definitions. In Section 3, we define the notion of confirmed sets and use it to state
sufficient conditions for an input sequence to be a checking sequence. A method for
generating checking sequences based on the proposed conditions is presented in

 Generating Checking Sequences for Partial Reduced Finite State Machines 155

Sections 4. In Section 5, we present an experimental evaluation of the method. We
discuss the related work in Section 6. Section 7 concludes the paper.

2 Definitions

A Finite State Machine is a deterministic Mealy machine, which is defined as follows.

Definition 1. A Finite State Machine (FSM) M is a 6-tuple (S, s0, I, O, DM, δ, λ),
where

• S is a finite set of states with the initial state s0,
• I is a finite set of inputs,
• O is a finite set of outputs,
• DM ⊆ S × I is a specification domain,
• δ : DM → S is a transition function, and
• λ : DM → O is an output function.

If DM = S × I, then M is a complete FSM; otherwise, it is a partial FSM. A tuple (s, x)
∈ DM is a (defined) transition of M. A string α = x1…xk, α ∈ I*, is said to be a defined
input sequence at state s ∈ S, if there exist s1, …, sk+1, where s1 = s, such that (si, xi) ∈
DM and δ(si, xi) = si+1, for all 1 ≤ i ≤ k. We use Ω(s) to denote the set of all defined
input sequences for state s and ΩM as a shorthand for Ω(s0), i.e., for the input
sequences defined for the initial state of M and, hence, for M itself.

Given sequences α, ϕ, β ∈ I*, if β = αϕ, then α is a prefix of β, denoted by α ≤ β,
and ϕ is suffix of β. For a sequence β ∈ I*, pref(β) is the set of prefixes of β, i.e.,
pref(β) = {α | α ≤ β}. For a set of sequences T, pref(T) is the union of pref(β), for all
β ∈ T.

We extend the transition and output functions from input symbols to defined input
sequences, including the empty sequence ε, as usual, assuming δ(s, ε) = s and λ(s, ε)
= ε, for s ∈ S, and for each αx ∈ Ω(s), δ(s, αx) = δ(δ(s, α), x) and λ(s, αx) = λ(s,
α)λ(δ(s, α), x). Moreover, we extend the transition function to sets of defined input
sequences. Given an FSM M, a set of input sequences C ⊆ Ω(s), s ∈ S, we define δ(s,
C) to be the set of states reached by the sequences in C, i.e., δ(s, C) = {δ(s, α) | α ∈
C}. For simplicity, we slightly abuse the notation and write δ(s, C) = s', whenever δ(s,
C) = {s'}. Let also Φ(C, s) = {α ∈ C | δ(s0, α) = s}, i.e., Φ(C, s) is the subset of
sequences of C which lead M from the initial state to s, if any, thus containing the
sequences of A converging on state s.

An FSM M is said to be strongly connected, if for each two states s, s' ∈ S, there
exists an input sequence α ∈ Ω(s), called a transfer sequence from state s to state s',
such that δ(s, α) = s'.

Two states s, s′ ∈ S are distinguishable, denoted s ≁ s′, if there exists γ ∈ Ω(s) ∩

Ω(s′), such that λ(s, γ) ≠ λ(s′, γ). We also use the notation s ≁γ s′ when we need to
refer to a sequence distinguishing states. If a sequence γ distinguishes each pair of
distinct states, then γ is a distinguishing sequence. If γ distinguishes a state s from
every other state, then γ is an identification sequence for state s. A distinguishing

156 A. Simão and A. Petrenko

sequence is an identification sequence for each state, however, the converse does not
hold. A distinguishing set Ξ is a set of |S| identification sequences, such that for each
pair of distinct states s, s' ∈ S, there exists a sequence distinguishing s and s' which is
a common prefix of the respective identification sequences. Notice that, given a
distinguishing sequence E, the set of the shortest prefixes of E, each of which is an
identification sequence of a state, is a distinguishing set. Moreover, for a given FSM,
there may exist a distinguishing set even if no distinguishing sequence exists [2].

Given a set C ⊆ Ω(s) ∩ Ω(s′), states s and s′ are C-equivalent, denoted s ∼C s′, if λ(s,
γ) = λ(s′, γ) for all γ ∈ C. We define distinguishability and C-equivalence of machines
as a corresponding relation between their initial states. An FSM M is said to be
reduced, if all states are pairwise distinguishable, i.e., for all s, s′ ∈ S, s ≠ s′ implies s

≁ s′. An FSM N is quasi-equivalent to M, if ΩM ⊆ ΩN and N is ΩM-equivalent to M.
Given a reduced FSM M, let ℑ(M) be the set of all reduced complete FSMs with

the input alphabet of M and at most n states, where n is the number of states of M.

Definition 2. A finite input sequence ω ∈ ΩM of FSM M is a checking sequence (for

M), if for each FSM N ∈ ℑ(M), such that N ≁ M, it holds that N ≁ω M.

Let N = (Q, q0, I, O', DN, Δ, Λ) be an arbitrary element of ℑ(M). Given an input
sequence α, let ℑα(M) be the set of all N ∈ ℑ(M), such that N and M are α-equivalent.
Thus, ω is a checking sequence for M if every N ∈ ℑω(M) is quasi-equivalent to M.

A finite set K ⊆ ΩM is a state cover for M if δ(s0, K) = S. A state cover K is minimal
if |K| = |S|.

3 Generalizing Sufficient Conditions for Checking Sequences

Constructing checking sequence, a crucial issue is how to guarantee that the black box
implementation is in a known state after the application of some input sequence. We
propose a new way of addressing this issue by introducing the notion of confirmed
sets of defined input sequences. In particular, a set of prefixes of an input sequence is
confirmed if and only if it has transfer sequences for each state of the specification
FSM M and any sequences that converge, i.e., lead to a same state (diverge, lead to
different states) in any FSM that has the same output response to the given input
sequence and has as many states as M if and only if they converge (diverge) in M.

Definition 3. Let ω be a defined input sequence of an initially connected reduced
FSM M = (S, s0, I, O, DM, δ, λ) and K ⊆ pref(ω). The set K is ℑω(M)-confirmed (or
simply confirmed) if K is a state cover and, for each N ∈ ℑω(M), it holds that for all
α, β ∈ K, Δ(q0, α) = Δ(q0, β) if and only if δ(s0, α) = δ(s0, β). An input sequence is
confirmed if there exists a confirmed set that contains it.

In this paper, we assume that the FSM M is strongly connected, reduced, and has a
distinguishing set Ξ. Given Ξ, ω ∈ ΩM and α ≤ ω, α is said to be Ξ-recognized in ω,
if αEs ≤ ω,where Es ∈ Ξ and δ(s0, α) = s.

Lemma 1. Let ω ∈ ΩM and K be a minimal state cover. If each α ∈ K is Ξ-recognized
in ω, then K is ℑω(M)-confirmed.

 Generating Checking Sequences for Partial Reduced Finite State Machines 157

Proof. Let N ∈ ℑω(M) and α, β ∈ K. We demonstrate that δ(s0, α) ≠ δ(s0, β) implies
Δ(q0, α) ≠ Δ(q0, β). Suppose that s = δ(s0, α) ≠ δ(s0, β) = s'. Notice that α and β are
followed in ω by Es and Es', respectively. Thus, there exists a sequence γ ∈ pref(Es) ∩
pref(Es'), such that λ(s, γ) ≠ λ(s', γ). As N is ω-equivalent to M, it follows that Λ(Δ(q0,
α), γ) = λ(s, γ) ≠ λ(s', γ) = Λ(Δ(q0, β), γ). Therefore, Δ(q0, α) ≠ Δ(q0, β). ♦

From Lemma 1, we state the following corollary.

Corollary 1. Let ω ∈ ΩM and K be a minimal state cover and ℑω(M)-confirmed. Then
K is a minimal state cover for any N ∈ ℑω(M).

The next lemma indicates when a state cover K is confirmed, even if it is not minimal.

Lemma 2. Let ω ∈ ΩM and K be a state cover. If each α ∈ K is Ξ-recognized in ω,
then K is ℑω(M)-confirmed.

Proof. Let N ∈ ℑω(M). Let α, β ∈ K. If δ(s0, α) ≠ δ(s0, β), we can use the same
argument used in the proof of Lemma 1 to prove that Δ(q0, α) ≠ Δ(q0, β). Suppose
then that δ(s0, α) = δ(s0, β). Let K' ⊆ K be such that both Kα = K' ∪ {α} and Kβ = K'
∪ {β} are minimal state covers for M. By Corollary 1, we have that Kα and Kβ are
also minimal state covers for N. Thus, Δ(q0, α) is distinct from each of the n – 1 states
in Δ(q0, K'). As Δ(q0, β) is also distinct from each of the n – 1 states in Δ(q0, K') and N
has n states, it follows that Δ(q0, α) = Δ(q0, β). ♦

The next statement relies on the fact that if proper prefixes of some transfer sequences
converge in a deterministic FSM, then the sequences converge as well. We use the
following definitions. If α and αϕ are confirmed sequences (in a confirmed set K),
then ϕ is verified in δ(s0, α) (w.r.t. to K). If x ∈ I is verified in s, then the transition (s,
x) is verified.
Lemma 3. Let K be a ℑω(M)-confirmed set. If α, β ∈ K, δ(s0, α) = δ(s0, β), and ϕ is
verified in δ(s0, α), then the set K ∪ {βϕ} is also ℑω(M)-confirmed.

Proof. As α and β are confirmed in K and ϕ is verified in δ(s0, α), αϕ is also
confirmed. Thus, we have that Δ(q0, α) = Δ(q0, β) and, therefore, it follows that Δ(q0,
βϕ) = Δ(Δ(q0, β), ϕ) = Δ(Δ(q0, α), ϕ) = Δ(q0, αϕ). ♦

Thus, each sequence that is Ξ-recognized or is concatenation of Ξ-recognized and
verified sequences can be included into a confirmed set. This key property of
confirmed sets suggests a method for constructing a checking sequence which we
elaborate later in the paper.

Theorem 1. Let ω be an input sequence of a reduced FSM M = (S, s0, I, O, DM, δ, λ)
with n states. ω is a checking sequence for M, if there exists a confirmed set K with
the following properties:

1. ε ∈ K.
2. Each defined transition is verified.

Proof. Let N ∈ ℑω(M). As M is strongly connected, for each s ∈ S, there exists α ∈ K,
such that δ(s0, α) = s. For each β ∈ K, if δ(s0, β) ≠ δ(s0, α), then Δ(q0, β) ≠ Δ(q0, α).

158 A. Simão and A. Petrenko

Thus, |Q| = n. Consequently, there exists a bijection f : S → Q, such that for each α ∈
K, f(δ(s0, α)) = Δ(q0, α). As ε ∈ K, f(s0) = q0.

We prove that, for each ν ∈ ΩM, f(δ(s0, ν)) = Δ(q0, ν) using induction on ν, and,
moreover, λ(s, x) = Λ(f(s), x) for each (s, x) ∈ DM.

If ν = ε, we have ν ∈ K, and, by definition, f(δ(s0, ν)) = Δ(q0, ν). Let ν = ϕx and
assume that f(δ(s0, ϕ)) = Δ(q0, ϕ). As the transition (δ(s0, ϕ), x) is verified, there exist
α, αx ∈ K, such that δ(s0, α) = δ(s0, ϕ). Thus, we have that Δ(q0, α) = f(δ(s0, α)) =
f(δ(s0, ϕ)) = Δ(q0, ϕ) and f(δ(s0, αx)) = Δ(q0, αx). It follows that f(δ(s0, ϕx)) = f(δ(δ(s0,
ϕ), x)) = f(δ(δ(s0, α), x)) = f(δ(s0, αx)) = Δ(q0, αx) = Δ(Δ(q0, α), x) = Δ(Δ(q0, ϕ), x) =
Δ(q0, ϕx). Therefore, f(δ(s0, ϕx)) = Δ(q0, ϕx) and, by induction, for any ν ∈ ΩM, f(δ(s0,
ν)) = Δ(q0, ν).

For each transition (s, x) ∈ DM, there exists αx ∈ pref(ω), δ(s0, α) = s, α ∈ K.
Therefore, λ(δ(s0, α), x) = Λ(Δ(q0, α), x). As α ∈ K, we have that Δ(q0, α) = f(s) and,
as N is ω-equivalent to M, it follows that λ(s, x) = Λ(f(s), x).

Suppose finally that N can be distinguished from M. Therefore, there exists a
sequence νx ∈ ΩM, such that λ(s0, ν) = Λ(q0, ν) and λ(s0, νx) ≠ Δ(q0, νx). There exist
α ∈ K, such that δ(s0, α) = δ(s0, ν), and αx ∈ pref(T), such that λ(δ(s0, α), x) =
Λ(f(δ(s0, α)), x). δ(s0, α) = δ(s0, ν) implies that f(δ(s0, α)) = f(δ(s0, ν)). Thus, λ(δ(s0,
ν), x) = Λ(f(δ(s0, ν)), x); and from λ(s0, ν) = Λ(q0, ν), it follows that λ(s0, νx) = Λ(q0,
νx). The resulting contradiction concludes the proof. ♦

The theorem presented in [11] is a special case of Theorem 1. While Ural et al.’s
theorem is applicable to complete FSMs with distinguishing sequence, Theorem 1 is
applicable to partial FSMs as well as to FSMs with distinguishing sets. In the
following section, we discuss how the sufficient conditions can be used to elaborate a
method that generates checking sequence for FSMs with distinguishing sets. In
Section 5, we present experimental results which demonstrate that the proposed
method produces shorter checking sequences than known methods in most cases,
even for complete FSMs with distinguishing sequences.

4 Checking Sequence Generation Method Based on Distinguishing
Sets

In this section, we present a method based on distinguishing sets which exploits
overlapping between identification sequences shortening the length of a checking
sequence. The basic idea of the method is to consecutively append identification and
transfer sequences to a current sequence ω, until a confirmed set K ⊆ pref(ω) is
obtained and each transition of M is verified in K. We use R(ω) to denote the maximal
subset of prefixes of ω, such that each α ∈ R(ω) is either Ξ-recognized or there exist
β, βϕ, χ ∈ R(ω), such that δ(s0, β) = δ(s0, χ) and α = χϕ (Lemma 3). Notice that, if
R(ω) is a state cover, by Lemma 1 and 2, R(ω) is a confirmed set. Notice also that if α
≤ ω, then R(α) ⊆ R(ω). Thus, the method obtains a checking sequence by
guaranteeing that R(ω) is a confirmed state cover and that each transition is verified in
R(ω). By V(ω) we denote the set of transitions verified in R(ω). Let also U(ω) = DM \
V(ω) be the set of unverified transitions.

 Generating Checking Sequences for Partial Reduced Finite State Machines 159

The method is described in Algorithms 1 and 2 presented below. Let ωi be a
sequence obtained in the i-th iteration of Algorithm 1. There exist two cases that are
dealt with by the algorithm. The first case occurs when ωi ∉ R(ωi). Then, we identify
the longest suffix χ of ωi, such that αiχ = ωi and χ is also a prefix of the identification
sequence of s = δ(s0, αi), and append Es to αi. Actually, as αi is already followed by χ
in ωi, the suffix ϕ of Es, with χϕ = Es, is appended to ωi to obtain ωi+1. Notice that αi

∈ R(ωi+1), since αi is Ξ-recognized. After doing this a certain number of times, we
have that ωi ∈ R(ωi) (see Lemma 4 below), which is the second case. In this case, we
verify a yet unverified transition (w.r.t. to R(ωi)). Notice that, as ωi ∈ R(ωi), if α is a
verified transfer sequence from δ(s0, ωi) to some state s, we have that ωiα ∈ R(ωiα).
We then append xEs', for s' = δ(s, x), to ωiα, so that ωiαx ∈ R(ωiαxEs'), i.e., the
transition (s, x) is verified w.r.t. R(ωiαxEs'). Algorithm 1 terminates when no
transition remains unverified. Notice that, the determination of R(ωi+1) and U(ωi+1)
from a given intermediate sequence ωi is a key feature of the algorithm. We provide
an efficient method for doing this in Algorithm 2.

Algorithm 1.

Input: A distinguishing set Ξ for a reduced FSM M = (S, s0, I, O, DM, δ, λ).
Output: A checking sequence ω
i ← 0
ω0 ← ε
U(ω0) ← DM
R(ω0) ← ∅
while U(ωi) ≠ ∅ do

Step 1. if ωi ∉ R(ωi), then
o let αi ∈ pref(ωi) be the shortest prefix of ωi, such that αi ∉

R(ωi), ωi = αiχ, s = δ(s0, αi), Es = χϕ.
o Update ωi+1 ← ωiϕ.
o Determine R(ωi+1) and U(ωi+1) using Algorithm 2 with the input

ωi+1 and αi.
Step 2. else,

o determine a shortest verified transfer sequence βi from state
δ(s0, ωi) to some state s, such that there exists x ∈ I and (s, x) ∈
U(ωi).

o Let αi = ωiβi and s' = δ(s0, αix).
o Update ωi+1 ← αixEs'
o Determine R(ωi+1) and U(ωi+1) using Algorithm 2 with the input

ωi+1 and αix.
end if
i ← i + 1

end while
Return ω ← ωi

160 A. Simão and A. Petrenko

Now, we present an algorithm to calculate R(ωi+1) and U(ωi+1). Actually, these sets
can be determined directly from their definitions. A straightforward method to find
R(ωi+1) would require the inspection of all subsequences of ωi+1. Notice, however, that
it is sufficient to determine the set of verified sequences, since R(ωi+1) and U(ωi+1) can
be derived from them. Suppose that the sequences β, βϕ and βϕχ are in R(ωi+1). Then,
the sequences ϕχ and ϕ are verified in δ(s0, β) and χ is verified in δ(s0, βϕ). The fact
that ϕχ is verified in δ(s0, β) is not used to determine R(ωi+1) and U(ωi+1), since the
same result is obtained from the fact that the other two sequences are verified. This
observation suggests that only shortest verified sequences have to be considered for a
given state. We denote by P(ωi+1) the maximal subset of S × (I*\{ε}), such that (s, α)
∈ P(ωi+1) iff α is the shortest sequence verified in s. Thus, to determine R(ωi+1) and
U(ωi+1), we first determine P(ωi+1) as follows. Notice that P(ω0) = ∅. We identify the
longest β ∈ R(ωi+1), such that α = βϕ, for some non-empty ϕ, and include the pair
(δ(s0, β), ϕ) in P(ωi+1). Notice that if α is the only recognized sequence, i.e., if R(ωi) =
∅, such a sequence β does not exist, in which case P(ωi+1) is empty. After the
inclusion of a new pair into P(ωi+1), we check whether some sequences can be
removed from P(ωi+1), so that it contains only the shortest verified sequences.

Once P(ωi+1) is determined, we can obtain R(ωi+1) and U(ωi+1) as follows. If α is
recognized, for each (δ(s0, α), ϕ) ∈ P(ωi+1), we include αϕ ∈ pref(T) in R(ωi+1). The set
of verified transitions V(ωi+1) is now DM ∩ P(ωi+1) and, consequently, U(ωi+1) becomes
DM \ V(ωi+1). The following algorithm shows how P(ωi+1) is determined after the Ξ-
recognition of a sequence α and how R(ωi+1) and U(ωi+1) are obtained from P(ωi+1).

Algorithm 2.

Input: Sequence ωi+1 and Ξ-recognized sequence α; the sets R(ωi) and U(ωi).
Output: R(ωi+1) and U(ωi+1)

• R(ωi+1) ← R(ωi) ∪ {α}
• P(ωi+1) ← P(ωi)
• if R(ωi) ≠ ∅ then

o Let β be the longest sequence in R(ωi+1). Let s = δ(s0, β) and ϕ be
the such that βϕ = α.

o P(ωi+1) ← P(ωi+1) ∪ {(s, ϕ)}
o while there exist (s, τ), (s, χ) ∈ P(ω), such that τ = χγ and γ ≠ ε do

P(ωi+1) ← P(ωi+1) \ {(s, τ)} ∪ {(δ(s, χ), γ)}
o end while
o V(ωi+1) ← DM ∩ P(ωi+1)
o U(ωi+1) ← DM \ V(ωi+1)
o for each χ ∈ pref(ωi+1) \ R(ωi+1), s = δ(s0, χ) do

for each (s, ϕ) ∈ P(ωi+1) do
R(ωi+1) ← R(ωi+1) ∪ ({χϕ} ∩ pref(ωi+1))

end for
o end for

• end if
Return R(ωi+1) and U(ωi+1)

 Generating Checking Sequences for Partial Reduced Finite State Machines 161

The next lemma states that Step 1 of Algorithm 1 cannot be executed infinitely
many times. This lemma is important to prove that Algorithm 1 terminates and that
the obtained sequence is actually a checking sequence.

Lemma 4. In Algorithm 1, Step 1 can be executed at most ∑
∈Ss

sE || times without

executing Step 2.

Proof. We show that, for a given s ∈ S, the number of executions of Step 1 when αi is
such that δ(s0, αi) = s is at most |Es|. Let αi and αj be the shortest Ξ-recognized
sequences (obtained in the i-th and the j-th iterations of Algorithm 1, respectively),
such that i < j and δ(s0, αi) = δ(s0, αj) = s. Notice that αi ∉ R(ωi), but αi ∈ R(ωi+1). If
ωi+1 ∈ R(ωi+1), then Step 2 must be executed. Therefore, suppose that ωi+1 ∉ R(ωi+1).
In the next iteration of the algorithm, we have that ωi+1 = αiEs and, thus, αi+1 < αiEs.
Let βi be the non-empty prefix of Es, such that αi+1 = αiβi. Consider now αj, i.e., the
sequence which is Ξ-recognized in the j-th iteration of the algorithm. It follows from
the definition of R that αjβi ∈ R(ωj+1), since δ(s0, αi) = δ(s0, αj) and αi, αj, αiβi ∈
R(ωj+1). In the next iteration, we have that ωj+1 = αjEs and, thus, αj+1 ≤ αjEs. Then,
there must exist a non-empty sequence βj ≤ Es, such that αj+1 = αjβj and βi < βj ≤ Es.
As |βi| < |βj| ≤ |Es|, it follows that there exist at most |Es| executions of Step 1, such that
δ(s0, α) = s. ♦

Theorem 3. Let ω be a sequence obtained by Algorithm 1. Then, ω is a checking
sequence.

Proof. When the algorithm terminates, U(ω) = ∅, which implies that each transition
is verified in R(ω). The algorithm indeed terminates because after each execution of
Step 2, the number of unverified transitions is decreased by at least one. Therefore,
Step 2 can be executed at most |DM| times. As, by Lemma 4, after a finite number of
executions of Step 1, Step 2 must be executed, the number of iterations of the
algorithm is finite.

In the first iteration of the algorithm, ω0 = ε and R(ω0) = ∅. Then, Step 1 is
executed and yields ω1 = Es0. Thus, ε ∈ R(ω1) and, consequently, ε ∈ R(ω).

We now show that R(ω) is a ℑω(M)-confirmed set. By the definition of R(ω), we
have that each α ∈ R(ω) is either (i) Ξ-recognized or (ii) there exist β, βϕ, χ ∈ R(ω),
such that δ(s0, β) = δ(s0, χ) and α = χϕ. Let K ⊆ R(ω) be the set of Ξ-recognized
sequences. Observe first that, in the case (ii), we have that δ(s0, βϕ) = δ(s0, α), which
implies that if α ∈ R(ω) is not Ξ-recognized, then another sequence that takes M to
the same state as α should be. Thus, if there exists a sequence α ∈ R(ω), δ(s0, α) = s,
there must exist at least one sequence β ∈ Φ(K, s). As each transition is verified and
M is strongly connected, for each state s, there exists a sequence α ∈ Φ(R(ω), s).
Thus, there exists β ∈ Φ(K, s) for each state s. Consequently, K is a state cover. By
Lemma 2, K is a confirmed set. By the definition of R(ω) and Lemma 3, it follows
that R(ω) is a confirmed set and satisfies the conditions of Theorem 1. Thus, ω is a
checking sequence. ♦

162 A. Simão and A. Petrenko

4.1 An Example

We now illustrate the application of the method to the FSM M1 in Figure 1. This
machine has a distinguishing sequence E = aa. The distinguishing set contains three
identification sequences E1 = E2 = aa, and E3 = a. The intermediate values of ωi,
R(ωi), and U(ωi) are presented in Table 1. The obtained checking sequence ω =
aaaaababaabaa has length of 13. For the same FSM, the method in [6] finds a
checking sequence of length 32. An improved version of the method generates a
checking sequence of length 15 [10].

1 3
a/1

b/1

a/0

2b/0
b/1

a/0

Fig. 1. Complete FSM M1 from [11]

Table 1. Execution of Algorithm 1

i Step
Executed

ωi Recognized Prefixes R(ωi) Unverified
Transitions U(ωi)

0 ε ∅ {(1, a), (1, b), (2, a),
(2, b), (3, a), (3, b)}

1 Step 1 aa {ε} {(1, a), (1, b), (2, a),
(2, b), (3, a), (3, b)}

2 Step 1 aaa {ε, a, aa} {(1, b), (2, b), (3, a),
(3, b)}

3 Step 1 aaaaa {ε, a, aa, aaa, aaaa, aaaaa} {(1, b), (2, b), (3, b)}
4 Step 2 aaaaaba {ε, a, aa, aaa, aaaa, aaaaa, aaaaab,

aaaaaba}
{(1, b), (2, b)}

5 Step 2 aaaaababaa {ε, a, aa, aaa, aaaa, aaaaa, aaaaab,
aaaaaba, aaaaabab, aaaaababaa}

{(2, b)}

6 Step 2 aaaaababaabaa {ε, a, aa, aaa, aaaa, aaaaa, aaaaab,
aaaaaba, aaaaabab, aaaaababaa,

aaaaababaab, aaaaababaaba,
aaaaababaabaa}

∅

4.2 Reset Feature

An FSM M has a reset feature if it has a special input (denoted r), which transfers it,
as well as all its possible implementation machines, from any state to the initial state
producing a null output, usually represented by the empty sequence ε. The reset
transitions are assumed to be correct, i.e., verified; so Theorem 1 directly applies to
FSMs with reset feature. Moreover, Algorithms 1 and 2 can be extended to deal with
cases where the reset input is available. By default, the reset transitions are verified in
each state and can be used to construct verified transfer sequences, which may result

 Generating Checking Sequences for Partial Reduced Finite State Machines 163

in shorter checking sequences. In Step 2 of Algorithm 1, when searching for a shortest
verified transfer sequence βi, the reset input may be used. In Algorithm 2, we have
that (s, r) ∈ P(ω), for each state s and any input sequence ω.

Consider the partial FSM M2 in Figure 2 (dashed lines represent the reset
transitions) and the distinguishing set Ξ with E1 = E2 = E3 = E4 = aa. If Algorithm 1 is
applied to this FSM, it generates the checking sequence ω = aaaaabaaabaabbabaa
with length 18. However, if M2 has the reset feature, the algorithm generates the
checking sequence ωr = aaaaabaaabaarabaa with length 17. The execution of the
algorithm either with or without reset is the same up to the point where ωi =
aaaaabaaabaa. At that point, the only unverified transition remains (2, b). Notice that
δ(s0, ωi) = 3. The shortest verified transfer sequence from state 3 to state 2 is ra, if the
reset input is available, or bba, otherwise. In this case, the reset input contributes to
shortening checking sequence.

2

4 1

3

a/1

a/0

b/0

a/0

b/0 a/1

b/0

r/ε

r/ε
r/ε

r/ε

 2

4 1

3

a/0

b/0

a/1

a/1

a/0

r/ε

r/ε
r/ε

r/ε

b/0

b/0

b/0

 (a) (b)

Fig. 2. (a) Partial FSM M2 with reset feature; (b) Complete FSM M3 with reset feature

There are cases, however, where the reset feature increases the length of a checking

sequence generated by Algorithm 1, since the best local choices (e.g., shortest paths)
made do not guarantee to lead to globally optimized checking sequences. Consider,
for instance, M3 in Figure 2 with the distinguishing sequence aa. The checking
sequence without reset is ω = aaaabaaaabbaababaabaa of length 21, while the
checking sequence with reset is ωr = aaaabaaaabbaarbaababaa of length 22. The
execution of the algorithm in both cases is the same, up to the point where ωi =
aaaabaaaabbaa, δ(s0, ωi) = 2. At this point, U(ωi) = {(1, b), (4, b)}. If reset is not
available, the shortest path chosen in Step 2 of Algorithm 1 is βi = ba, which transfers
to state 4. After this step, we have that ωi+1 = aaaabaaaabbaababaa, δ(s0, ωi+1) = 1,
and U(ωi+1) = {(1, b)}. Then, Step 2 is executed again, choosing βi+1 = ε. On the other
hand, if reset is used, the shortest path chosen in Step 2 is βi = r, which transfers to
state 1. After this step, we have that ωi+1 = aaaabaaaabbaarbaa, δ(s0, ωi+1) = 2, and
U(ωi+1) = {(4, b)}. Then, Step 2 is executed, choosing βi+1 = ba. An interesting
question investigated in Section 5.1 is the impact of using the reliable reset feature on
the length of checking sequence for randomly generated FSMs.

164 A. Simão and A. Petrenko

5 Experimental Results

This section describes an experimental evaluation of the method for constructing
checking sequence proposed in this paper and some existing methods. We also
investigate the reduction provided by the use of the reset feature. The experiments
involve randomly generated FSMs. Since the existing methods treat only complete
FSMs with distinguishing sequences, only such machines are considered to have a fair
comparison.

We generate complete strongly connected reduced FSMs with a distinguishing
sequence in the following way. Sets of states, inputs, and outputs with the required
number of elements are first created. The generation proceeds then in three phases. In
the first phase, a state is selected as the initial state and marked as “reached”. Then, for
each state s not marked as “reached”, the generator randomly selects a reached state s',
an input x, and an output y and adds a transition from s' to s with input x and output y,
and mark s as “reached”. When this phase is completed, an initially connected FSM is
obtained. In the second phase, the generator adds transitions (by randomly selecting two
states, an input, and an output) to the machine until a complete FSM is obtained. If the
FSM is not strongly connected, it is discarded and another FSM is generated. In the
third phase, a distinguishing sequence is searched. If the FSM does not have a
distinguishing sequence, it is discarded and another FSM is generated.

5.1 Reset Feature

As discussed in Section 4, our method can be applied to FSMs with the reset feature.
The use of the reset input can result in shorter transfer sequences, which may shorten
the resulting checking sequence. In this experiment, we evaluate the reduction
obtained by the usage of the reset input. We randomly generated FSMs which have
distinguishing sequence. Each FSM has two inputs, two outputs, and the number of
states n ranging from three to 20. For each value of n, 1000 FSMs are generated.

 (a) (b)

Fig. 3. Reduction ratio of the length of checking sequences with and without the reset input: (a)
average ratio variation with respect to the number of states; (b) histogram of the ratio

 Generating Checking Sequences for Partial Reduced Finite State Machines 165

For each FSM, a checking sequence ω is obtained using the proposed method. Then,
we augmented the machine with the reset input and executed the method on the
resulting FSM, obtaining a checking sequence ωr. Figure 3(a) characterizes the variation
of the average ratio |ωr|/|ω| with respect to the number of states. We observe that on
average ωr is about 2.5% shorter than ω. Figure 3(b) shows the frequency of the
obtained reduction. Notice that in about 40% of the cases, the ratio is between 0.995 and
1.005, indicating that the reset feature has a little impact on the length of the checking
sequence (at least for the chosen FSM parameters). However, in some cases, the
checking sequence for the FSM augmented with the reset input is 20% shorter. On
the other hand, in some cases it may be 10% longer. Thus, our experiments indicate that
the reset feature does not significantly influence the length of checking sequences.
However, more large scale experiments may be needed to confirm this conclusion.

5.2 Comparison with Existing Methods

In this experiment, we compare the length of checking sequences generated by the
proposed method and by the methods presented in [7] and [3]. We chose to consider
machines with two inputs, two outputs, and number of states n ranging from three to
25. For each value of n, we randomly generated 1000 FSMs which have
distinguishing sequence. For each FSM, we executed Algorithm 1, generating
checking sequence ω. No execution took more than one second. Then, we executed
Hierons and Ural’s method [7], obtaining checking sequence ωh, and Chen et al.’s
method [3], which results in sequence ωc. Figure 4(a) shows the average length of ω,
ωh and ωc. The experimental data indicate that ω is, on average, 45% shorter than ωh,
while ω is, on average, 20% shorter than ωc.

Figure 4(b) shows the boxplots of the ratios |ω|/|ωh| and |ω|/|ωc|. Notice that the
maximum value of |ω|/|ωh| is smaller than 1.0, thus, the proposed method generated
shorter checking sequences than the Hierons and Ural’s method in all experiments.
Notice also that the reduction may be as high as 70%. On the other hand, compared with
the Chen et al.’s method, method proposed in this paper generated shorter checking
sequences in 75% of the cases, since the 3rd quartile of the boxplot is below 1.0.

 (a) (b)

Fig. 4. (a) Average lengths of ω, ωh and ωc; (b) Boxplots of the ratios |ω|/|ωh| and |ω|/|ωc|

166 A. Simão and A. Petrenko

However, the maximum value of |ω|/|ωh| is 1.35, as in some experiments, the proposed
method generated sequences 35% longer than Chen et al.’s method. On the other hand,
in some cases our method generated sequences 60% shorter than Chen et al.’s method.

6 Related Work

There has been much interest in the generation of checking sequence, pioneered by
Hennie’s work [5]. Hennie discusses an approach for designing a checking sequence
based on a distinguishing sequence. The method consists of two parts. The states are
assumed to be ordered. In the first part, the distinguishing sequence is applied to each
state, starting from the initial state, and transfer sequences are used to lead FSM to the
second state. In the second part, each transition (si, x) is checked. To do this, the FSM
is brought to a known state. This is done by transferring FSM to si-1, applying the
distinguishing sequence, transferring to si (the same sequence used in the first part
must be used), and applying x followed by the distinguishing sequence. Notice that
Hennie does not assume that the FSM is initialized, thus checking sequence generated
by his method should be prepended by a synchronizing or homing sequence, in order
to bring both the specification and the implementation to a known state. Differently,
we assume that the specification and the implementation are initialized and, thus, we
do not use a synchronizing or homing sequence.

Gonenc [4] presents an algorithmic approach to generate checking sequence for
FSMs with distinguishing sequences. The method, known as the method D, is divided
into two parts, similarly to Hennie’s work. In the first part, an α-sequence is
generated, such that the distinguishing sequence is guaranteed to distinguish the states
in the implementation. In an α-sequence, the distinguishing sequence is applied to
each state of the FSM, using transfer sequences, if necessary. In the second part, a
β-sequence is generated, such that each transition is checked. A β-sequence is a
concatenation of transitions, followed by the distinguishing sequence, using transfer
sequences, if necessary. Notice that α- and β-sequences correspond to the sequences
generated in the first and the second part of Hennie’s method, respectively. The
α- and β-sequences are, then, concatenated to form a checking sequence. The number
of transitions that are checked is reduced, using the fact that the last transition of the
distinguishing sequence when applied to a state will be checked when all the other
transitions of the distinguishing sequence were checked.

Kohavi and Kohavi [8] show that, instead of whole distinguishing sequence, suitable
prefixes of it can be used to shorten the checking sequence. Boute [2] further shows that
shorter sequences can be obtained if, instead of distinguishing sequences, distinguishing
sets are used, and if the overlapping among the identification sequences is exploited.

Ural et al. [11] propose a method that attempts to minimize the length of checking
sequence generated using distinguishing sequence. Sufficient conditions for a
sequence to be a checking sequence are formulated there and used in several work,
e.g., [6], [3], [10], [7], and [12]. The conditions are now further relaxed in Theorem 1
of this paper. The α- and β-sequences of Gonenc’s method are divided in [11] into
smaller pieces (the α-set and the set of transition tests) that are combined with
appropriate transfer sequences to form a checking sequence. The problem of finding a
minimal length checking sequence is then cast as a Rural Chinese Postman Problem

 Generating Checking Sequences for Partial Reduced Finite State Machines 167

(RCPP), as previously proposed by Aho et al. [1]. The RCPP is an NP-complete
problem of finding a minimal tour which traverses some required edges in an
appropriate graph. Ural et al. show how a graph can be defined, such that the RCPP
tour satisfies the stated sufficient conditions and, thus, it is a checking sequence. An
α-set and a set of transfer sequences must be provided as input parameters of the
method. Improvements to this method are proposed by Hierons and Ural [6] [7].

Chen et al. [3] demonstrate that the verification of last transition traversed by a
distinguishing sequence applied to a particular state is implied by the verification of
the other transitions. The authors present an (NP-complete) algorithm that identifies
transitions to remove sequences ensuring their verification from the RCPP graph. The
possibility of overlapping the distinguishing sequence, as proposed by Boute [2], is
exploited by Ural and Zhang [10]. The RCPP graph modelling of Hierons and Ural
[6] is modified, so that edges with negative cost are added to represent the possible
overlapping. However, incorporating sequence overlapping comes with the price,
since the size of the RCPP grows significantly.

All the above methods only deal with complete FSMs (however, partial machines can
also be allowed, provided that definitions are adjusted as in this paper), and do not attempt
to use the reset input to shorten the checking sequence. On the other hand, the method
proposed in this paper can be used for generating checking sequence for a possibly partial
FSM with a distinguishing set and, possibly, with the reset feature. The proposed method
makes a local best choice in each step. This approach diverges from methods proposed in
recent work (namely, [11], [6], [3], [7], [10]), which use graph-theoretical modeling for
minimizing the length of checking sequence. We consider that our local optimization based
approach has at least two advantages over the graph-theoretical ones, discussed below.

Firstly, the graph-theoretical methods attempt to globally optimize the length of
checking sequence, but only after some input parameters are set, e.g., the α-sequences
and transfer sequence set used by Ural et al. [11]. However, the length of checking
sequence is influenced by these parameters and, thus, a sub-optimized sequence may be
generated anyway. On the other hand, the method proposed in this paper does not
require any input, besides the distinguishing set. Instead of assuming that suitable
parameters are furnished, the algorithm makes choices based on the information
available up to a certain execution point. The results of an experimental comparison
indicate that the proposed method produces shorter checking sequences than existing
methods in most cases. However, more experiments are needed to order to find a proper
compromise between global and local optimization in generating checking sequence.

The second advantage of our approach is in its extensibility. For instance, it is not
immediately clear how to the ideas of [10], [3] and [12] can be integrated in a same
method, since each requires adaptations of the graph model which are not
straightforward to merge. Our approach is based on a new problem casting, using the
notion of “confirmed sequences”. This formulation allows us to relax the existing
sufficient conditions and generalize them to partial reduced FSM with distinguishing
sets. Further generalizations constitute our current work.

7 Conclusion

In this paper, we stated sufficient conditions for an input sequence to be a checking
sequence for possibly partial FSMs with distinguishing sets. Based on these conditions,

168 A. Simão and A. Petrenko

we proposed a method for generating checking sequence. The method can be used either
with or without the reset feature. Moreover, the method allows the use of distinguishing
sets, while recent methods deal only with FSMs with distinguishing sequences.

We experimentally compared the proposed method with existing generation
methods, using randomly generated complete FSMs with distinguishing sequences.
The results indicate that the proposed method generates shorter checking sequence in
most cases. We also presented an experimental evaluation of the impact of the reset
feature on the length of checking sequence. We noticed that, although shorter
sequences may sometimes be obtained, our preliminary experiments indicate that the
reset feature does not significantly influence the length of checking sequences.

As future work, we can mention several possible extensions of the presented
results. For instance, the improvement suggested by Chen et al. [3] can be
incorporated into the method proposed in this paper. The set of unverified transitions
may be initialized with a subset of the defined transitions, following the algorithm of
Chen et al. Finally, our experiments show that some checking sequences do not
satisfy the suggested sufficient conditions, so there is still room for improvements on
the conditions, which may lead to shorter checking sequences.

References
1. Aho, A.V., Dahbura, A.T., Lee, D., Uyar, M.U.: An optimization technique for protocol

conformance test generation based on UIO sequences and rural chinese postman tours.
IEEE Transactions on Communications 39(11), 1604–1615 (1991)

2. Boute, R.T.: Distinguishing sets for optimal state identification in checking experiments.
23(8), 874–877 (1974)

3. Chen, J., Hierons, R.M., Ural, H., Yenigun, H.: Eliminating redundant tests in a checking
sequence. In: Khendek, F., Dssouli, R. (eds.) TestCom 2005. LNCS, vol. 3502, pp. 146–
158. Springer, Heidelberg (2005)

4. Gonenc, G.: A method for the design of fault detection experiments. IEEE Transactions on
Computers 19(6), 551–558 (1970)

5. Hennie, F.C.: Fault-detecting experiments for sequential circuits. In: Proceedings of Fifth
Annual Symposium on Circuit Theory and Logical Design, pp. 95–110 (1965)

6. Hierons, R.M., Ural, H.: Reduced length checking sequences. IEEE Transactions on
Computers 51(9), 1111–1117 (2002)

7. Hierons, R.M., Ural, H.: Optimizing the length of checking sequences. IEEE Transactions
on Computers 55(5), 618–629 (2006)

8. Kohavi, I., Kohavi, Z.: Variable-length distinguishing sequences and their application to the
design of fault-detection experiments. IEEE Transactions on Computers 17(8), 792–795 (1968)

9. Moore, E.F.: Gedanken-experiments on sequential machines. Automata Studies, Annals of
Mathematical Studies (34), 129–153 (1956)

10. Ural, H., Zhang, F.: Reducing the lengths of checking sequences by overlapping. In: Uyar,
M.Ü., Duale, A.Y., Fecko, M.A. (eds.) TestCom 2006. LNCS, vol. 3964, pp. 274–288.
Springer, Heidelberg (2006)

11. Ural, H., Wu, X., Zhang, F.: On minimizing the lengths of checking sequences. IEEE
Transactions on Computers 46(1), 93–99 (1997)

12. Yalcin, M.C., Yenigun, H.: Using distinguishing and uio sequences together in a checking
sequence. In: Uyar, M.Ü., Duale, A.Y., Fecko, M.A. (eds.) TestCom 2006. LNCS,
vol. 3964, pp. 274–288. Springer, Heidelberg (2006)

	Generating Checking Sequences for Partial Reduced Finite State Machines
	Introduction
	Definitions
	Generalizing Sufficient Conditions for Checking Sequences
	Checking Sequence Generation Method Based on Distinguishing Sets
	An Example
	Reset Feature

	Experimental Results
	Reset Feature
	Comparison with Existing Methods

	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

