
WSMX: A Solution for B2B Mediation and
Discovery Scenarios�

Maciej Zaremba1 and Tomas Vitvar2

1 Digital Enterprise Research Institute (DERI),
National University of Ireland, Galway

maciej.zaremba@deri.org
2 Semantic Technology Institute (STI2),

University of Innsbruck, Austria
tomas.vitvar@sti2.at

Abstract. We demonstrate Web Service Execution Environment
(WSMX), a semantic middleware platform for runtime service discov-
ery, mediation and execution, applied to SWS Challenge scenarios. We
show the modelling principles as well as execution aspects of the WSMX
semantic technology addressing the real-world requirements.

1 Introduction

Semantic Web Services (SWS) technologies offer promising potential to enable
integration and discovery that is more flexible and adaptive to changes occur-
ring over a software system’s lifetime. However, there remains very few publicly
available, realistic, implemented scenarios that showcase the benefits of seman-
tics for services. In this respect we develop the WSMX1 – a middleware system
that operates on semantic description of services and facilitates automation in
service integration and discovery. We demonstrate the value of the WSMX on
real-world scenarios from SWS Challenge2, a community-driven initiative that
provides a set of scenarios with real Web services along with a methodology for
the evaluation of solutions. We contribute to the SWS Challenge by implement-
ing solutions based on the WSMX showing how this technology can be used
to facilitate dynamic discovery and mediation in B2B integration. Users of our
demonstration are able to learn how existing, non-semantic Web services can be
semantically enabled and what are the benefits of semantics in the context of
B2B integration and service discovery.

2 SWS Challenge Scenarios and WSMX

We build our solutions on the SWS framework developed in DERI including con-
ceptual model for SWS (Web Service Modeling Ontology, WSMO[2]), language
� This work is supported by the Science Foundation Ireland Grant No. SFI/02/CE1/

I131, and the EU projects SUPER (FP6-026850), and SemanticGov (FP-027517).
1 WSMX is an open-source project, see http://sourceforge.net/projects/wsmx
2 http://www.sws-challenge.org

S. Bechhofer et al.(Eds.): ESWC 2008, LNCS 5021, pp. 884–889, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://sourceforge.net/projects/wsmx


WSMX: A Solution for B2B Mediation and Discovery Scenarios 885

for service modeling (Web Service Modeling Language, WSML[2]), middleware
system (Web Service Execution Environment, WSMX[4]), and modelling frame-
work (Web Service Modelling Toolkit, WSMT3). In order to model the scenario,
we use WSMO for modeling of services and goals (i.e. required and offered capa-
bilities) as well as ontologies (i.e. information models on which services and goals
are defined) all expressed in the WSML-Flight ontology language. WSML-Flight
provides a Datalog expressivity extended with inequality and stratified negation
that is sufficient for addressing requirements of SWS Challenge scenarios. We use
KAON2 reasoner4 for the inference over WSML-Flight ontologies. In addition,
we use Java SWING5 based monitoring facility to display WSMX components’
progress of use-case executions.

Figure 1 depicts solution architectures for SWS Challenge discovery (part A)
and mediation (part B) scenarios. Discovery (A) defines tasks for identifying
and locating Business Services. Selection (A) selects most appropriate service
according to user’s preferences. Orchestration (A and B) executes the compos-
ite business process. Mediation (B) resolves data and process heterogeneities.
Reasoning (A, B) performs logical reasoning over semantic descriptions of
services.

2.1 Mediation Scenario

The mediation scenario (Figure 1, part B) describes a data and process me-
diation of a trading company called Moon. Moon uses two back-end systems
to manage its order processing, namely a Customer Relationship Management
system (CRM) and an Order Management System (OMS). The SWS Challenge
provides access to both of these systems through public Web services. The sce-
nario describes how Moon interacts with its partner company called Blue using
RosettaNet PIP 3A4 purchase order specification6. Using the WSMT data map-
ping tool we map the Blue RosettaNet PIP 3A4 message to messages of the
Moon back-end systems. We then apply the WSMX data and process mediation
components to resolve incompatibilities of message exchanges defined by the
RosettaNet PIP 3A4 process and those defined in the Moon back-end systems.

Our major contributions to the mediation scenario shows:

– how flat XML schema of RosettaNet purchase-order and other proprietary
messaging schema used by different partners could be semantically enriched
using the WSML ontology language as Listing 1.1 shows,

– how services provided by partners could be semantically described as WSMO
services and built on top of existing systems,

– how conversation between partners and their services can be facilitated by
the WSMX integration middleware enabling semantic integration, and

3 http://sourceforge.net/projects/wsmt
4 http://kaon2.semanticweb.org
5 http://java.sun.com/docs/books/tutorial/uiswing
6 RosettaNet is the B2B integration standard and PIP (Partner Interface Process)

define various interactions patterns and vocabularies for business integration.

http://sourceforge.net/projects/wsmt
http://java.sun.com/docs/books/tutorial/uiswing


886 M. Zaremba and T. Vitvar

CRM

OMSRosettaNet

Gateway

Orchestration

descriptionimplementation

Publish 
descriptions

Blue

Choreography

Interface

WSMO Goal

implementationdescription

Moon

WSMO Service

Web Service Web Service

searchCustomer

openOrder

addItems

closeOrder

orderConfirmation

PO Confirmation

PO request

WSMX Middleware

Choreography

Interface

Ontology OntologyData Mediation

Publish 
mappings

Publish
mappings

A

B

WSMX middleware

Discovery

Selection

Orchestration

h

h

Service 
Repository

select from L

Portal

WSMO 
Goal

Execution 

Interface

Data Fetch 

Interface

Capability

User

h

h

invoke G, S

description
implementation

Publish
descriptions

data fetching

invocation

Request

Response

Racer

Mueller

Broker

Web Service

Fig. 1. Solution Architectures for SWS Challenge Scenarios

– how data and process mediation can be applied between heterogeneous ser-
vices within the integration process.

1 /∗ XSLT Extract of lifting rules from XML message to WSML ∗/
2 instance PurchaseOrderUID memberOf por#purchaseOrder
3 por#globalPurchaseOrderTypeCode hasValue ”<xsl:value−of select=”dict:GlobalCode”/>”
4 por#isDropShip hasValue IsDropShipPo
5 <xsl:for−each select=”po:ProductLineItem”>
6 por#productLineItem hasValue ProductLineItem<xsl:value−of select=”position()”/>
7 </xsl:for−each>
8 ...
9 /∗ message in WSML after transformation ∗/

10 instance PurchaseOrderUID memberOf por#purchaseOrder
11 por#globalPurchaseOrderTypeCode hasValue ”Packaged product”
12 por#isDropShip hasValue IsDropShipPo
13 ...

Listing 1.1. Lifting in XSLT and resulting WSML message

Since the core WSMX functionality operates on semantic descriptions of mes-
sages, WSMX needs to also facilitate transformations between semantic and
non-semantic messages through so called grounding descriptions (i.e. lifting and



WSMX: A Solution for B2B Mediation and Discovery Scenarios 887

lowering). For the modelling phase we demonstrate how WSMT toolkit can be
applied to modeling of both semantic and grounding definitions for the Moon and
Blue companies, that is, how we model service orchestrations, domain ontologies,
lifting/lowering groundings. Data Mediation is based on declarative, rule-based
mappings between source and target ontologies. We show how these mappings
are created during the design-time and how they are executed on the messages
(instance level) using KAON2 reasoner during the execution time. We demon-
strate details of semantic B2B integration focusing on types of data and process
heterogeneities that WSMX is able to handle. We also show how changes in uti-
lized ontologies and processes are handled. In case of source or target ontology
changes, adjustments of their declarative mappings using WSMT are required.
Changes on the service public process level are handled automatically by Process
Mediator without any additional design time steps.

2.2 Discovery Scenario

The discovery scenario (Figure 1, part A) describes a user who uses a third-party
company (broker or e-hub) in order to buy certain products with shipment to
certain location. A number of shippers allow to ship products with different
shipment conditions (places of shipment, price, etc.). Our approach to discovery
is to match a WSMO Goal with a WSMO Web service through their seman-
tic descriptions as well as to use additional data not available in the semantic
descriptions (e.g., shipment price). The WSMX fetches this information during
runtime through a specific Web service data-fetching interface. In [3] we define
a conceptual framework supporting integration of dynamically fetched data into
the discovery context.

1 /∗ general abstract definition of the axiom in the common ontology ∗/
2 relation isShipped(ofType sop#ShipmentOrderReq)
3

4 /∗ specification of the axiom in the Mueller ontology ∗/
5 axiom isShippedDef definedBy
6 ?sOrder[sop#to hasValue ?temp, sop#package hasValue ?p] memberOf sop#SOrderReq and
7 ?temp[so#address hasValue ?to] and ?to[so#city hasValue ?city] and
8 isShippedContinents(?city, so#Europe, so#Asia, so#NorthAmerica, so#Africa) and
9 ( (?p [so#weight hasValue ?weight] memberOf so#Package) and (?weight =< 50) )

10 implies
11 sop#isShipped(?sOrder).

Listing 1.2. isShipped relation declared in the common and Mueller ontologies

We semantically describe shipment capabilities offered by different compa-
nies using common shipment ontology. We take the advantage of the shared
ontology when defining “abstract” axioms and their specialization in the con-
crete shipment service ontology (e.g., isShipped axiom as Listing 1.2 shows). The
axiom is shared by both the shipping services and the goals (representing service
requester) and provides an interface-like mechanism7 to define a common
7 An analogy are interfaces in programming languages like Java. The interface declares

some functionality but does not say how this should be implemented.



888 M. Zaremba and T. Vitvar

evaluation criteria for service discovery. Requestor does not need to know how
isShipped is specified by the service, but it can use it in its request to check
whether given service is able to ship for a specified input (i.e., source and tar-
get location, package weight, dimension, etc.). There is a context Knowledge
Base (KB) created for every instance of matchmaking between goal and a ser-
vice. Logic query provided in the goal is evaluated against this KB by KAON2
reasoner and depending on the evaluation and variable binding, a service is as-
signed to the given matching category and is further ranked for runtime selection
purposes.

Our solution demonstrates how domain ontologies, shipment goals and ser-
vices are semantically described (concepts, instances, relationships, rules) as well
as how service discovery works. We demonstrate Web services and Goals mod-
elling principles and we show how extra information (e.g., shipping price) can
be dynamically provided into the discovery context by utilizing data-fetching
service interface.

3 Related Work

Our work can be compared to other solutions of SWS Challenge scenarios like
Diane or SWE-ET as described in [1]. Diane solution provides a solution based
on the language supporting fuzzy sets modelling, although without rule support.
On the other hand, SWE-ET is based on combination of software modelling
workflow-based methods with Flora-2 utilized for semantic descriptions.

4 Conclusion

With our contribution to the SWS Challenge we proved the value of the WSMX
semantic technology in the context of B2B integration. Our solutions have been
evaluated, by peer-review, according to the evaluation methodology of the SWS
Challenge8. The evaluation criteria targets the adaptivity of the solutions, that
is, solutions should handle introduced changes by modification of declarative
descriptions rather than code-changes. Success level 0 indicates a minimal sat-
isfiability level, where messages between middleware and back-end systems are
properly exchanged. Success level 1 is assigned when changes introduced in the
scenario require code changes and recompilation. Success level 2 indicates that
introduced changes did not entail any code modifications and only declarative
parts had to be changed. Finally, success level 3 is assigned when the system
is able to automatically adapt to the new conditions. WSMX proved to deliver
a generic solution9 scoring level 2 as there were no changes required in WSMX
code when addressing new scenarios but it sufficed to adapt or provide a new
semantic descriptions of involved services and service requestors.

8 http://sws-challenge.org/wiki/index.php/SWS Challenge Levels
9 http://sws-challenge.org/wiki/index.php/Workshop Innsbruck



WSMX: A Solution for B2B Mediation and Discovery Scenarios 889

References

1. Kuster, U., et al.: Service Discovery with SWE-ET and DIANE - A Comparative
Evaluation By Means of Solutions to a Common Scenario. In: 9th International
Conference on Enterprise Information Systems (ICEIS 2007), Funchal, Madeira-
Portugal (June 2007)

2. Roman, D., et al.: Web Service Modeling Ontology. Applied Ontologies 1(1), 77–106
(2005)

3. Vitvar, T., Zaremba, M., Moran, M.: Dynamic Service Discovery through Meta-
Interactions with Service Providers. In: Franconi, E., Kifer, M., May, W. (eds.)
ESWC 2007. LNCS, vol. 4519, Springer, Heidelberg (2007)

4. Vitvar, T., et al.: Semantically-enabled service oriented architecture: Concepts, tech-
nology and application. Service Oriented Computing and Applications 1(2) (2007)


	WSMX: A Solution for B2B Mediation and Discovery Scenarios
	Introduction
	SWS Challenge Scenarios and WSMX
	Mediation Scenario
	Discovery Scenario

	Related Work
	Conclusion



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




