
Previewing Semantic Web Pipes �

Christian Morbidoni2, Danh Le Phuoc1, Axel Polleres1, Matthias Samwald1,
and Giovanni Tummarello1

1 DERI Galway, National University of Ireland, Galway
{firstname.lastname}@deri.org

2 SeMedia Group, Universita’ Politecnica delle Marche, Ancona, Italy
christian@deit.univpm.it

Abstract. In this demo we present a first implementation of Semantic Web Pipes,
a powerful tool to build RDF-based mashups. Semantic Web pipes are defined in
XML and when executed they fetch RDF graphs on the Web, operate on them,
and produce an RDF output which is itself accessible via a stable URL. Humans
can also use pipes directly thanks to HTML wrapping of the pipe parameters
and outputs. The implementation we will demo includes an online AJAX pipe
editor and execution engine. Pipes can be published and combined thus fostering
collaborative editing and reuse of data mashups.

1 Introduction

Making effective use of RDF data published online (e.g. in sources as RDF DBLP,
DBPEDIA etc) is, in practice, all but straightforward: data might be fragmented or
incomplete so that multiple sources needs to be joined, different identifiers (URIs) are
usually employed for the same entities, ontologies need alignment, certain information
might be need to be “patched”, etc. The only approach available to these problems
so far has been custom programming such transformations for the specific task to be
performed in a Semantic Web application. In this paper we present a paradigm for
creating and reusing such transformation in a easy way: a Web based Software Pipeline
for the Semantic Web.

A similar metaphor has been implemented in Yahoo Web Pipes1, which allows to
implement customized services and information streams by processing and combining
Web sources (usually RSS feeds) using a cascade of simple operators. Since Web pipes
are themselves HTTP retrievable data sources, they can be reused and combined to form
other pipes. Also, Web pipes are “live”: they are computed on demand at each HTTP
invocation, thus reflect the current status of the original data sources.

Unfortunately Yahoo Web Pipes are engineered to operate using fundamentally the
RSS paradigm (item list) which does not map well at all with the graph based data
model of RDF. For this purpose Semantic Web Pipes have been written from the start to

� This work has been supported by the European FP6 project inContext (IST-034718), by Sci-
ence Foundation Ireland under the Lion project (SFI/02/CE1/I131), and by the European
project DISCOVERY(ECP-2005-CULT-038206).

1 http://pipes.yahoo.com/

S. Bechhofer et al.(Eds.): ESWC 2008, LNCS 5021, pp. 843–848, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://pipes.yahoo.com/

844 C. Morbidoni et al.

operate also on Semantic Web data, offering specialized operators to perform the most
important data aggregation and transformation tasks.

When a pipe is invoked, simply fetching the pipe URL, the external sources are
fetched dynamically and transformed transparently and thus the Semantic Web pipe
will reflect the most up to date data available online.

2 Basic Operators

A Semantic Web pipe implements a predefined workflow that, given a set of RDF
sources (resolvable URLs), processes them by means of special purpose operators. Un-
like fully-fledged workflow models, our current pipes model is a simple construction
kit that consists of linked operators for data processing. Each operator allow a set of
unordered inputs in different yformats (to make them distinguishable) as well as a list
of optional ordered inputs, and exactly one output.

Figure 1(b) shows a set of base operators which we implemented so far and which
we will shortly explain below. The �-Operator: RDF Merge: This operator takes a list

FOR+U

RDFRDF

XMLRDF
...

RDF

...

Format

Format

$1

$n

...

...

Format

Format 1 Format m

... C
RDF

RDF

$1

$n

...

RDF

RDF Text

XSLT

XML

... S
RDF

RDF

$1

$n

...

RDF

RDF Text

RDFS

RDF

RDF

(a) general operator (b) base operators

$1 $n...

XML XSL

$1 $2

Fig. 1. Semantic Web pipe operators

of RDF graphs as inputs, expressed in RDF/XML, N3 or Turtle format, and produces
an RDF graph that is composed by the merge of its inputs. The standard implementa-
tion of the �-operator simply standardizes blank nodes apart, according to RDF merge
definition in [2], thus possibly generating non-lean graphs.

The C- and S-Operators: CONSTRUCT and SELECT: The C-operator outputs the result
of a SPARQL [4] CONSTRUCT query given as textual input performed on the standard
input RDF graphs. Similarly, the S-Operator performs a SELECT query and outputs the
result in the SPARQL-Result XML format.

The RDFS-Operator: This operator basically performs materialization of the RDFS
closure of the input graph by applying RDFS inference rules. We currently implement
this using OWLIM.

The FOR-Operator: It works by taking a SPARQL XML result list (i.e. the output
from the S operator) and binding each result with temporary variables which are then
used as parameters in a subpipe which can be embedded inside it. The FOR operator
is fundamental to enable many useful processing which involve discovering and using
open data on the Semantic Web.

Previewing Semantic Web Pipes 845

The XSLT-Operator: Finally, the XSLT-Adapter performs an XML transformation on a
generic input XML document. This operator is particularly handy when custom XML
output formats are needed or when an input source in a custom XML format shall be
transformed to RDF/XML.

Examples for all operators can be found at http://pipes.deri.org.

2.1 A Semantic Web Pipe Example: About TBL

Pipes enable flexible aggregation of RDF data from various sources, here we present
a simple example that show them in action. Data about Tim Berners-Lee is available
on various sources on the Semantic Web, e.g. his FOAF file, his RDF record of the
DBLP scientific publication listing service and from DBPedia. This data cannot simply
be merged directly as all three sources use different identifiers for Tim. Since we prefer
using his self-chosen identifier from Tim’s FOAF file, we will create a pipe as an ag-
gregation of components that will convert the indentifiers used in DBLP and DBPedia.
This is performed by using the C-operator with a SPARQL [4] query as shown below
for DBLP:

CONSTRUCT {<http://www.w3.org/People/Berners-Lee/card#i> ?p ?o.
?s2 ?p2 <http://www.w3.org/People/Berners-Lee/card#i>}

WHERE {{<http://dblp.l3s.de/d2r/.../Tim_Berners-Lee> ?p ?o}
UNION {?s2 ?p2 <http://dblp.l3s.de/d2r/.../Tim_Berners-Lee>} }

A similar query is done to perform fix the identifier for Tim’s DBPedia entry.2 The
whole use case is then easily adressed by the pipe shown in Figure 2: URIs are normal-
ized via the C-operators and then joined with Tim’s FOAF file.

TBL on DBPL
TBL on

DBPedia
TBL's FOAF

RDF output

C C+U"CONSTRUCT for DBLP" "CONSTRUCT for DBPedia"

Fig. 2. A pipe that combines a Foaf file with DBLP and DBPedia entries

For lack of space we do not discuss more compex examples here. However it would
be simple to perform more interesting operations, such as fetching the 10 top hints from
the Sindice3 search engine (e.g. querying for TBL’s URI or even for his email address
as an IFP) and using a FOR block to merge them with the end results (possibly after a
proper transformation or filtering).

3 Implementation

An open-source implementation is available online at http://pipes.deri.org
and is composed by an execution engine and an AJAX based pipe editor. The engine

2 http://dbpedia.org/resource/Tim Berners-Lee
3 http://sindice.com

http://pipes.deri.org
http://pipes.deri.org
http://dbpedia.org/resource/Tim_Berners-Lee
http://sindice.com

846 C. Morbidoni et al.

supports the basic operators from Figure 1 plus more advanced ones which provide sup-
port for patching RDF graphs, or smushing URIs based on owl:sameAs relations. As the
output of a pipe is an HTTP-retrievable RDF model or XML file, simple pipes can work
as sources for more complex pipes. Additional functionalities are also available, such as
“parametric pipes” which inject extra parameters via HTTP GET query string, allowing
pipes to act within other pipes not only as sources but as full featured operators. Pipes
are written in a simple XML language.4 The following XML code show two pipes: a
simple mix between two RDF sources (M-operator) and the one shown in Figure 2.

<mix>
<source><fetch><location>
http://www.w3.org/People/Berners-Lee/card

</location></fetch></source>
<source><fetch><location>
http://g1o.net/foaf.rdf

</location></fetch></source>
</mix>

<mix>
<source><fetch><location>
http://www.w3.org/People/Berners-Lee/card#i

</location></fetch></source>
<source><construct>
<source><fetch><location>

http://dblp.l3s.de/.../Tim_Berners-Lee
</location></fetch></source>
<query> <![CDATA[CQ1]]> </query>

</construct></source>
<source><construct>
<source><fetch><location>

http://dbpedia.org/.../Tim_Berners-Lee
</location></fetch></source>
<query> <![CDATA[CQ2]]> </query>

</construct></source>
</mix>

Here, CQ1 and CQ2 stand for CONSTRUCT queries such as the ones previously shown.
While it would be possible to implement pipe descriptions themselves in RDF, our
current ad hoc XML language is more terse and legible. If an RDF representation will
be later needed, it will be possible to obtain it via GRDDL.

HTTP-compliant caching is performed to avoid to recompute a pipe output if the
sources have not changed. Whenever content is fetched it is hashed to detect changes.
When no changes are detected the cached result is returned.

Circular invocations of the same pipe, which could create denial of services, can be
easily detected within the same pipe engine, but not when different engines are involved.
In this cases our solution relies on extra HTTP headers: whenever a model is fetched
coming from an another pipe engine, an HTTP GET is performed putting an extra
PipeTTL (Time To Live) header. The TTL number is decremented at each subsequent
invocation. A pipe engine refuses to fetch more sources if the PipeTTL header is ≤ 1.

The AJAX pipe editor provides inline operator documentation when inserting a com-
ponent. It presents a list of available pipes, fostering pipe reuse and composition. While
normal runtime behavior is very accommodating to network errors (using copies of pre-

4 A grahical editor following the notation in Section 2 is currently under development.

Previewing Semantic Web Pipes 847

vious files on network timeouts or treating malformed input as empty sources), a debug
mode is available, which highlights execution errors.

Finally, thanks to HTTP content negotiation, humans can use Semantic Web Pipes
directly. Pipes parameters can be inputted directly in HTML boxes and the results will
be shown by the use of the Simile Exhibit data browser5.

4 Related Works

Semantic Web pipes as described in this paper are similar, in sense, to UNIX pipes6 ,
but they allow to connect outputs to multiple inputs of other operators so that there can
be multiple branches executed at the same time.

Cascaded XML transformations are sometimes referred to as XML pipelines and
have been successfully employed in projects like Apache Cocoon.7

The Yahoo Web Pipes framework was greatly inspiring our work, but lacks in func-
tionality to address our desired use cases. Yahoo pipes provides an easy to use and
powerful Web based graphic composer for pipes.

Concerning the Semantic Web world, the need for a cascade of operators to pro-
cess RDF repositories is also addressed in the SIMILE Banach project8, that enhance
the Sesame triplestore by implementing pipelined stack of operators (implemented as
SAILS). These can both process data and rewrite queries.

5 Conclusions and Future Works

Semantic Web pipes were also shown to be a paradigm that can do more than data
harmonization alone: they implement workflows which can be used to model data flow
scenarios that also include collaborative aspects. Most importantly, Semantic Web pipes
are based on the union of functional operators specific to Semantic Web with the HTTP
REST paradigm. Such combination fosters clean implementations, and promotes reuse
of data sources as well as pipes themselves.

As we mentioned, a number of additional operators can then be imagined to aid on-
tology and data alignment when SPARQL CONSTRUCT queries are inconvenient or
do not have the required features. Also, it will be interesting to consider how to achieve
interaction between advanced RSS feed processing tools like Yahoo Pipes and Seman-
tic Web operators. The SPARQL SELECT operator, producing XML, together with an
XSLT transforms could provide a base for this. Many technical solutions can also be
put in place to achieve scalability. These range from smart pipe execution strategies,
advancing those explained in the previous sections, to others such as, for example, dif-
ferential updates of the local copy of large remote RDF graphs [5].

Finally, while Semantic Web pipes (like Web pipes and Unix pipes) are certainly a
tool for expert users, it is undeniable that the overall engine will be much more useful

5
http://simile.mit.edu/exhibit/

6 http://www.linfo.org/pipe.html
7 http://cocoon.apache.org/
8 http://simile.mit.edu/wiki/Banach

http://simile.mit.edu/exhibit/
http://www.linfo.org/pipe.html
http://cocoon.apache.org/
http://simile.mit.edu/wiki/Banach

848 C. Morbidoni et al.

once a visual pipe editor is availale. A grahical editor for our XML format following
the notation in Section 2 is currently under development.

References

1. Brickley, D., Miller, L.: FOAF Vocabulary Spec. (July 2005)
2. Hayes, P.: RDF semantics, W3C Rec. (February 2004)
3. Morbidoni, C., Polleres, A., Tummarello, G., Le Phuoc, D.: Semantic Web Pipes. Technical

Report (November 2007), http://pipes.deri.org/
4. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF, W3C Cand. Rec.

(June 2007)
5. Tummarello, G., Morbidoni, C., Bachmann-Gmur, R., Erling, O.: RDFSync: efficient remote

synchronization of RDF models. In: 6th Int.l Semantic Web Conf (ISWC 2007) (2007)

http://pipes.deri.org/

	Previewing Semantic Web Pipes
	Introduction
	Basic Operators
	A Semantic Web Pipe Example: About TBL

	Implementation
	Related Works
	Conclusions and Future Works

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

