
SWiM – A Semantic Wiki for Mathematical
Knowledge Management

Christoph Lange

Computer Science, Jacobs University Bremen
ch.lange@jacobs-university.de

Abstract. SWiM is a semantic wiki for collaboratively building, edit-
ing and browsing mathematical knowledge represented in the domain-
specific structural semantic markup language OMDoc. It motivates users
to contribute to collections of mathematical knowledge by instantly shar-
ing the benefits of knowledge-powered services with them. SWiM is cur-
rently being used for authoring content dictionaries, i. e. collections of
uniquely identified mathematical symbols, and prepared for managing a
large-scale proof formalisation effort.

1 Research Background and Application Context:
Mathematical Knowledge Management

A great deal of scientific work consists of collaboratively authoring documents—
taking down first hypotheses, commenting on results of experiments, circulat-
ing informal drafts inside a working group, and structuring, annotating, or re-
organising existing items of knowledge, finally leading to the publication of
a well-structured article or book. Here, we particularly focus on the domain
of mathematics and on tools that support collaborative authoring by utiliz-
ing the knowledge contained in the documents. In recent years, several se-
mantic markup languages have been developed to represent the clearly defined
and hierarchical structures of mathematics. The XML languages MathML [9],
OpenMath [11], and OMDoc [3] particularly aim at exchanging mathematical
knowledge on the web. OMDoc, employing Content MathML or OpenMath rep-
resenting the functional structure of mathematical formulæ—as opposed to their
visual appearance—and adding support for mathematical statements (like sym-
bol declarations or axioms) and theories, has many applications in publishing,
education, research, and data exchange [3, chap. 26]. The main challenge is ac-
quiring a large collection of OMDoc-formalised knowledge that can power such
added-value services. In an open, collaborative environment, the workload can
be distributed among many authors, but as semantic markup make fine-grained
structures explicit, it is tedious to author. As the community can only benefit
from added-value services after a substantial initial investment (writing, anno-
tating and linking) on the author’s part, we sought for motivating the author
into action by offering “elaborate [. . .] services for the concrete situation” they
are in [2].

S. Bechhofer et al.(Eds.): ESWC 2008, LNCS 5021, pp. 832–837, 2008.
© Springer-Verlag Berlin Heidelberg 2008

SWiM – A Semantic Wiki for Mathematical Knowledge Management 833

2 Key Technology: Semantic Wiki and Ontologies

Our research is motivated by the assumption that in this context a semantic
wiki comes in handy. OMDoc supports all levels of formalisation, from human-
readable texts to fully formal representations for automated theorem proving,
and semantic wikis have been found appropriate for collaboratively refining
knowledge models (cf. [13]). User motivation in semantic wikis by instant grat-
ification has been investigated in earlier works [1]. The ultimate goal of our
work is to achieve a feedback loop where users are supported to contribute well-
structured knowledge, which is then exploited to offer services, which in turn
facilitate editing and motivate new contributions [5].

<omdoc>
<proof id="pyth-proof"

for="pythagoras">
. . . </proof>

</omdoc>

extraction
RDF

pyth-proof pythagoras

Proof Theorem
type type

proves

proves

<pyth-proof, rdf:type, omdoc:Proof>
<pyth-proof, omdoc:proves, pythagoras>

Fig. 1. RDF extraction from OMDoc markup in a wiki page

Semantic markup has deep structures: an OMDoc document can contain the-
ories containing statements that contain formulæ referring to symbols defined
in other theories. This is uncommon for most semantic wikis, where the struc-
tures are rather flat and one aims at small pages to prevent editing conflicts and
to facilitate search and navigation. So to adapt OMDoc’s model of knowledge
to a semantic wiki, we had to choose an appropriate granularity of wiki pages
and arrived at one page holding one mathematical statement or one theory. To
make knowledge from OMDoc documents usable on the semantic web, informa-
tion about the resources represented by pages and their interrelations (e. g. “a
proof for the Pythagorean theorem”) are extracted to RDF. As a vocabulary
for this, we modeled OMDoc’s structures explicitly in a document ontology [5]
in OWL-DL. This ontology contains e. g. the information that both theorems
and proofs are specialisations of a general “mathematical statement”, and that
a proof can prove a theorem (Fig. 1). Moreover, generic transitive dependency
and containment relations have been modeled. For example, having one theory
import another theory (and reusing symbols defined there) establishes a depen-
dency. One theory logically contains its statements; similarly, statements can
contain sub-statements, as in the case of a proof that consists of multiple steps.

3 The SWiM 0.2 Prototype: IkeWiki + OMDoc

As a base system for the implementation, we chose IkeWiki [12]. Among the
systems evaluated, it offered the richest XML infrastructure—a key requirement

834 C. Lange

Fig. 2. A mathematical document in SWiM

for adding OMDoc support—and was found to be most extensible [4]. Its backend
consists of a PostgreSQL database for the page contents, a Jena RDF store for
the RDF graph and the ontologies. Additional ontologies can easily be imported.
The frontend heavily relies on the Dojo Ajax toolkit.

Technically, the extension of IkeWiki to SWiM required supporting OMDoc
in addition to the HTML-like wiki page format. To foster stepwise formalisation
of informal text, we chose to mix OMDoc fragments with wiki markup. Thus we
could still rely on IkeWiki’s WYSIWYG HTML editor, which just had to be en-
hanced by support for OMDoc XML elements. Moreover, this choice allowed for
an easier maintenance of the OMDoc-related enhancements to the SWiM code
base and avoided changes to the underlying database schema. The document
ontology is preloaded into the RDF store. RDF triples are extracted from the
OMDoc markup upon saving a page or importing an OMDoc file. Additional
XSLT template rules care for rendering embedded OMDoc fragments. In order
to render mathematical formulæ, there is a notation definition for every semantic
symbol. These notation definitions can be imported and edited right in the wiki,
as parts of OMDoc documents [6]. An efficient, specialised renderer supporting
the upcoming MathML 3 standard [10,9] applies them to the symbols in the
formulæ. In the editing view, statement- and theory-level structures of OMDoc
are made accessible as special HTML tables, whereas mathematical formulæ
given in semantic markup are made accessible in a simplified ASCII notation
of OpenMath. OMDoc documents are browsable via inline links manually set in
the informal parts, via links from occurrences of symbols in formulæ to the place
of their declaration, set by the formula renderer, and via RDF links, displayed in

SWiM – A Semantic Wiki for Mathematical Knowledge Management 835

a separate box by IkeWiki. The latter comprise those triples that are extracted
from the markup (cf. Fig. 1), as well as triples inferred by a reasoner1.

SWiM also relies on the ontology for reacting on changes to notation def-
initions. When an author changes a notation definition n for a symbol s, ex-
actly those wiki pages that contain a formula using s or that include other
pages containing such formulæ need to be re-rendered. Looking up the sym-
bol s rendered by n, the formulæ fi using s, or pages (transitively) includ-
ing the fi would be clumsy in the OMDoc XML sources, but is easy in the
RDF graph, as this information is extracted from the documents and repre-
sented using ontology properties such as NotationDefinition–renders–Symbol and
Statement–contains–Formula; Formula–uses–Symbol. This service allows for in-
stant visual debugging of notation definitions [6]. For upcoming releases, more
ontology-powered services are planned, including more general change manage-
ment, learning assistance, and editing facilitations like editing of subsections and
auto-completion of link targets [7]. There is some evidence that many services can
be based on the most generic relations of dependency and (physical or logical)
containment [5]. With scientists and knowledge engineers in mind, we envisage
SWiM as a development environment that conveniently supports refactorings of
knowledge2.

4 Use Cases and Applications

Now that viewing, browsing, editing, importing and exporting mathematical
documents basically works, we are evaluating SWiM in practical settings. The
Flyspeck project is about large-scale formalisation of a proof of the Kepler con-
jecture. We are starting to support this effort by “crowdsourcing” the knowledge
compiled so far (hundreds of proof sketches that are not yet machine-verifiable)
on a SWiM site [8]. The main challenge is giving an interested visitor an im-
pression of the extent of the project and, using appropriate SPARQL queries,
showing him where work needs to be done. Currently we are investigating how
the original LATEX sources can be utilised by automatically converting them to
HTML with MathML, then to informal OMDoc, breaking that into wiki pages,
and letting the users formalise them stepwisely. For the upcoming OpenMath 3
standard, SWiM is currently being extended to an editor for OpenMath Con-
tent Dictionaries [6], which could be regarded as flat OMDoc theories that just
define symbols and do not import anything. There, mainly editing Dublin Core
metadata and notation definitions is of interest.

1 The ontology is prepared for DL reasoning, but currently only the RDFS reasoner
built into Jena is used.

2 This is common in mathematics, e. g. in algebra: If one just needs groups, they can
be defined by a theory with the four well-known axioms. For explicitly modeling
related structures as well, one would break this into smaller theories—semigroup
just defining an associative operation on a set, monoid importing this and extending
it by an identity element, and finally the refactored group, adding inverse elements.

836 C. Lange

5 Conclusion and Related Work

SWiM makes mathematical documents editable collaboratively and particularly
facilitates browsing them by exploiting the knowledge they contain. Domain-
specific services are powered by an ontology thatmodels structures of documents—
an advantage over generic semantic wikis, which would not be able to offer addi-
tional services for mathematical knowledge. Competing non-semantic approaches
like the math encyclopædia PlanetMath (evaluated in [4]) are less flexible, as they
cannot exploit the structures of their presentation-orientedLATEXformulæand rely
on a fixed set of metadata. Most services for editing and browsing need to be hard-
coded, which potentially restricts the scale of knowledge managment tasks the sys-
tems can be applied to. The SWiM approach of integrating a semantic markup lan-
guage into a wiki by choosing an appropriate page granularity, modeling a docu-
ment ontology, and extracting relevant facts from the markup into RDF has suc-
cessfully been applied to OMDoc and the closely related but syntactically different
OpenMath [6] and is likely to be portable to other domains as well, e. g. for the
chemical markup language CML.

References

1. Aumüller, D., Auer, S.: Towards a semantic wiki experience – desktop integration
and interactivity in WikSAR. In: 1st Workshop on The Semantic Desktop (2005)

2. Kohlhase, A., Müller, N.: Added-Value: Getting People into Semantic Work Envi-
ronments. In: Rech, J., Decker, B., Ras, E. (eds.) Emerging Technologies for Se-
mantic Work Environments: Techniques, Methods, and Applications, Idea Group
(in press, 2008)

3. Kohlhase, M.: OMDoc – An Open Markup Format for Mathematical Documents
[version 1.2]. LNCS (LNAI), vol. 4180. Springer, Heidelberg (2006)

4. Lange, C.: SWiM – a semantic wiki for mathematical knowledge management.
Technical Report 5, Jacobs University (2007), http://kwarc.info/projects/
swim/pubs/tr-swim.pdf

5. Lange, C.: Towards scientific collaboration in a semantic wiki. In: Hotho, A., Hoser,
B. (eds.) Bridging the Gap between Semantic Web and Web 2.0 (2007)

6. Lange, C.: Mathematical Semantic Markup in a Wiki: The Roles of Symbols and
Notations. In: The 3rd Semantic Wiki Workshop at ESWC (submitted, 2008),
http://kwarc.info/projects/swim/pubs/semwiki08-notation-semantics.pdf

7. Lange, C.: SWIM development roadmap (2008),
https://trac.kwarc.info/swim/roadmap/

8. Lange, C., McLaughlin, S., Rabe, F.: Flyspeck in a semantic wiki, 2008. In: The
3rd Semantic Wiki Workshop at ESWC 2008 (submitted, 2008),
http://kwarc.info/projects/swim/pubs/flyspeck-wiki-eswc08.pdf

9. Mathematical Markup Language (MathML) version 3.0. W3C working draft, World
Wide Web Consortium (2007),
http://www.w3.org/TR/MathML3

10. Müller, C., Müller, N., Kohlhase, M.: A library for transforming Content
MathML/OpenMath into Presentation MathML (2008),
http://kwarc.info/projects/mmlkit/

http://kwarc.info/projects/swim/pubs/tr-swim.pdf
http://kwarc.info/projects/swim/pubs/tr-swim.pdf
http://kwarc.info/projects/swim/pubs/semwiki08-notation-semantics.pdf
https://trac.kwarc.info/swim/roadmap/
http://kwarc.info/projects/swim/pubs/flyspeck-wiki-eswc08.pdf
http://www.w3.org/TR/MathML3
http://kwarc.info/projects/mmlkit/

SWiM – A Semantic Wiki for Mathematical Knowledge Management 837

11. The Open Math standard, version 2.0. Technical report, The Open Math Society
(2004), http://www.openmath.org/standard/om20

12. Schaffert, S.: IkeWiki: A semantic wiki for collaborative knowledge management.
In: 1st International Workshop on Semantic Technologies in Collaborative Appli-
cations (STICA) (2006)

13. Schaffert, S.: Semantic social software. In: Sure, Y., Schaffert, S. (eds.) Semantics
(2006)

http://www.openmath.org/standard/om20

	SWiM – A Semantic Wiki for Mathematical Knowledge Management
	Research Background and Application Context: Mathematical Knowledge Management
	Key Technology: Semantic Wiki and Ontologies
	The SWiM 0.2 Prototype: IkeWiki + OMDoc
	Use Cases and Applications
	Conclusion and Related Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

