The Web Service Modeling Toolkit

Mick Kerrigan and Adrian Mocan

Semantic Technology Institute (STI) Innsbruck,
Universitat Innsbruck, Austria
firstname.lastname@sti2.at

Abstract. The development of software is not an easy task and the
availability of adequate tool support is an important step towards reduc-
ing the effort that a developer must put into the Software Development
Cycle. As an emerging technology, it is vital that Semantic Web Services
can be quickly and easily created by developers to ensure that this new
technology can be easily adopted. In this demo the process of developing
Semantic Web Service descriptions, through the WSMO paradigm, using
the Web Service Modeling Toolkit (WSMT) will be presented.

1 Introduction

Web services are quickly becoming one of the most important technologies for
business to business integration; however some of the promises claimed by Ser-
vice Oriented Architectures in terms of loose decoupling and easy reusability
have failed to be met, as the ability to dynamically find and link Web services at
runtime cannot be realistically performed with syntactic technologies. Semantic
Web Services are the extension of ontologies to describe Web services in such
a way that they can be dynamically discovered, composed, ranked, selected, me-
diated and invoked at runtime. Such functionality reduces the amount of effort
that a developer must spend building an application using a Service Oriented
Architecture and improves the overall quality of that application as new ser-
vices, which may be cheaper or have better performance, become immediately
available to the application once they are published by the provider.

The life of the Semantic Web Service developer is not such an easy one though.
As noted in 1994 by the Standish group chaos report[10], 31% of all software de-
velopment projects in their survey failed, i.e. were canceled at some point during
the development cycle, another 53% where completed but over-budget, over the
estimate time or provided fewer functions and features than originally intended,
thus leaving only 16% of all software projects surveyed as completing success-
fully. Given that the software projects were using well establish technologies like
Java, C# or Visual Basic with good tool support provided by development envi-
ronments equivalent to the Eclipse Java Development ToolkitEL SharpDeveloIE
and Visual Studi(ﬁ7 it would be surprising if the Semantic Web Service developer
could do much better without any tool support at all.

! http://www.eclipse.org/jdt/
% http://www.icsharpcode.net/
3 http://msdn.microsoft.com /vstudio/

S. Bechhofer et al.(Eds.): ESWC 2008, LNCS 5021, pp. 812 2008.
© Springer-Verlag Berlin Heidelberg 2008

The Web Service Modeling Toolkit 813

The Web Service Modeling Toolkit (WSMT)[6l/7] is an integrated development
environment for Semantic Web Services that enables developers to develop On-
tologies, Web Services, Goals and Mediators through the Web Service Modeling
Ontology (WSMO)[3] formalism. The WSMT is implemented as a collection of
plug-ins for the Eclipseﬁ framework such that it can be integrated with other
toolkits like the Java Development Toolkit JDT or the Web Tools Platform
(WTPﬁ so that a developer can develop his java code, Web services and Se-
mantic Web Services side by side in the one application. The main aim of the
WSMT is to support the developer through the full Software Development Cycle
of his Semantic Web Service from requirements, through design, implementation,
testing, and deployment such that the process of developing Semantic Web Ser-
vices can become cheaper to perform and remove many of the tedious activities
that the developer must currently perform.

2 The Web Service Modeling Toolkit

The WSMT has been under development since early 2005 and is made up of
three main areas of functionality:

— Creation and Management of WSML Artifacts: The ability to quickly
and cheaply create and test WSMO Ontologies, Web Services, Goals and
Mediators through the Web Service Modeling Language (WSML)[]] is key
to the successful creation of Semantic Web Services. The WSMT provides
the WSML perspective with multiple editors[5] for creating and testing
WSMO descriptions, conversion tools to and from RDF and OWL, embedded
reasoners for testing the behavior of ontologies in their target environment,
and embedded discovery engines for ensuring that Goals and Web Services
match each other as expected.

— Creation and Management of Mediation Mappings: One of the key
challenges in semantics is the interoperability of ontologies. In the Seman-
tic Web Service field this becomes even more important when the service
requester and service provider use different ontologies to describe the same
domain. The WSMT provides the Mapping Perspective[l] within which
mediation mappings between two or more ontologies can be created at de-
sign time, such that they can later be executed at runtime. The tools in this
perspective guide the developer through the process of creating mappings
using visual cues, suggestion algorithms and embedded testing functionality.

— Interfacing with Semantic Execution Environments: Crucially once
all the artifacts related to a Semantic Web Service have been created these ar-
tifacts need to be deployed the execution environment within which they will
be used. The SEE Perspective provides functionality for interfacing with
Semantic Execution Environments like the Web Service Execution Environ-
ment (WSMX)[] and IRSIII[2]. Artifacts can be stored to and retrieved from

* http://www.eclipse.org
® http://www.eclipse.org/webtools/

814 M. Kerrigan and A. Mocan

these environments, or can used to invoke the functionality of the Seman-
tic Execution Environments, for example discovering services that match, or
fully invoking the best service that matches, a provided Goal.

The WSMT development team is also in the process of branching out into new ar-
eas including the encoding of business processes semantically in WSML through
the many projects we are involved in. These new tools will form a number of new
key WSMT perspectives that will support the developer in creating Semantically
Enabled Service Oriented Architectures.

3 Contents of the Demo

The demo of the Web Service Modeling Toolkit takes the user through the
different tools that are available for developing those artifacts related to Semantic
Web Services and how these tools interact with each other. The demo begins
by introducing the user to the different editors available for creating WSML
Ontologies, Web Services, Mediators and Goals based on the expertise of the
user.

ualizer - htkp: x =0

2 2 s
[% +| zoom [son <] motate: [« | 0f[o | [etediontologies der orgismpsons
IS
@ Springfield
| @ sholbyvile
#. /s(
) ~ character \/
..... town
Pt
. Actor @ springfisld_church
4 o
~thurch L
@» The Simpsons Ontology ¥
5 place
A
P \ > sthoal
@ male [\
¥ < *.
/ springield_slementary
@b female
— General Modes _Sremariglace
@ ontology e AARN “—a» Springfield Muclear Plant
— @ Moe's Tavern g
— Concept N
@ Instance VAR G
Instance Clusker e Chanr‘m\s @ Springfield Police Station
Axiom O @ Kk E Mart
~
| >

Fig. 1. An Ontology in the WSML Visualizer

The WSML Visualizer[5], as can be seen in figure [Tl can be used by novice
users who know very little about ontologies to get an overview of WSMO de-
scriptions or by expert users to dig deeper into the intricacies of the relationship
between elements in the semantic description. Crucially the WSML Visualizer
also has fully embedded editing support allowing the user to directly manipulate

The Web Service Modeling Toolkit 815

the semantic description vis the graph representation. The WSML Form Based
Editor[7] provides a more functional view of the semantic description providing
custom forms to the user which can filled in to create and maintain semantic
descriptions. Finally the WSML Text Editor[7] is available to the user who is
more experienced with the Human-readable syntax of WSML, it provides func-
tionality like syntax highlighting, syntax and content assistance, code folding,
and bracket highlighting. At this stage the user is also introduced to the valida-
tion support available in the WSMT, which is used to give immediate feedback
to the developer whenever they make mistakes.

Now that the user is familiar with the different types of editing support avail-
able for WSML descriptions, and has an understanding of how to create and
maintain them, they are introduced to the WSML Reasoner View[7] within which
queries can be executed over the currently visible WSMO Ontology. The rea-
soner view gives the developer the opportunity to execute WSML queries over
WSML-Flight and WSML-Rule ontologies using the IRIS, MINS or KAON2
reasoners and over WSML-DL ontologies. The user is introduced to the Query
template preferences, that enables the creation of complex logic programming
queries by a domain expert and are later displayed to the end user as natural
language queries, where drop downs and text fields can be used for configuring
them. These query templates enable those that are not familiar with logics to
access the power of reasoning over ontologies.

Having introduced ontologies as the basis upon which Semantic Web Services
are built, the user is brought back to the concept of Goals and Web Services with
the WSML Discovery View[6]. The WSML Discovery View provides access to
a number of underlying discovery engines with which the developer can ensure
that a specified Goal matches the expected set of Semantic Web Services. This
is especially important as a Semantic Web Service that does not match the
expected Goal is essentially unfindable by service requesters and thus will never
be used in applications. The discovery view can also give a competitive advantage
to new service providers on the market, allowing them to test that their new
Semantic Web Services match the sample Goals provided by existing providers
on the market. Thus they can attempt to take business from its competitors by
providing services with better quality of service or lower cost.

As already mentioned the importance of the ability to mediate between dif-
ferent ontologies is necessary in the heterogeneous world of the web. Thus the
user is introduced to the WSMT Mapping perspective and particularly the View
Based Editor[9] for the semi-automatic creation of ontology to ontology map-
pings for runtime instance transformation[I] with the WSMXJ4] environment. At
runtime these mappings are used within WSMX to transform instances provided
by the service requester into the terms expected by the service provider and vice
versa. Alongside the view based editor the user is presented with the MUnit
view, which can be used for creating unit tests for mediation mappings. With
this view the developer can define tests consisting of a set of source instances
and a set of target instances. The tests can be executed whenever the ontologies
or mappings evolve in order to be sure that the mappings are still valid.

816 M. Kerrigan and A. Mocan

Acknowledgements

The work is funded by the European Commission under the projects ASG, DIP,
enlRaF, InfraWebs, Knowledge Web, Musing, Salero, SEKT, SEEMP, Seman-
ticGov, Super, SHAPE, SWING and TripCom; by the FFG (Osterreichische
ForschungsFérderungsGeselleschaft mbH) under the projects Grisino, RW, Sem-
NetMan, SeNSE, TSC, OnTourism.

References

1. Mocan, A., Cimpian, E.: An Ontology-based Data Mediation Framework for Se-
mantic Environments. International Journal on Semantic Web and Information
Systems (IJSWIS) 3(2), 66-95 (2007)

2. Cabral, L., Domingue, J., Galizia, S., Gugliotta, A., Norton, B., Tanasescu, V.,
Pedrinaci, C.: IRS-III: A Broker for Semantic Web Services Based Applications.
In: Proceedings of the 5th International Semantic Web Conference (ISWC 2006),
Athens, Georgia, USA (2006)

3. Fensel, D., Lausen, H., Polleres, A., de Bruijn, J., Stollberg, M., Roman, D.,
Domingue, J.: Enabling Semantic Web Services — The Web Service Modeling On-
tology. Springer, Heidelberg (2006)

4. Haller, A., Cimpian, E., Mocan, A., Oren, E., Bussler, C.: WSMX - A Semantic
Service-Oriented Architecture. In: Proceedings of the International Conference on
Web Services (ICWS 2005), Orlando, Florida, USA (July 2005)

5. Kerrigan, M.: WSMOViz: An Ontology Visualization Approach for WSMO. In:
Proceedings of the 10th International Conference on Information Visualization (IV
2006), London, England (July 2006)

6. Kerrigan, M., Mocan, A., Tanler, M., Bliem, W.: Creating Semantic Web Services
with the Web Service Modeling Toolkit (WSMT). In: Proceedings of the work-
shop on Making Semantics Work For Business (MSWEFB2007) at the 1st European
Semantic Technology Conference (ESTC2007), Vienna, Austria (May 2007)

7. Kerrigan, M., Mocan, A., Tanler, M., Fensel, D.: The Web Service Modeling
Toolkit - An Integrated Development Environment for Semantic Web Services (Sys-
tem Description). In: Proceedings of the 4th European Semantic Web Conference
(ESWC2007), Innsbruck, Austria (June 2007)

8. Lausen, H., de Bruijn, J., Polleres, A., Fensel, D.: WSML - A Language Frame-
work for Semantic Web Services. In: Proceedings of the W3C Workshop on Rule
Languages for Interoperability (April 2005)

9. Mocan, A., Cimpian, E.: Mapping creation using a view based approach. In: 1st
International Workshop on Mediation in Semantic Web (2005)

10. Standish Group. The CHAOS Report. Technical report, Standish Group (1994)

	The Web Service Modeling Toolkit
	Introduction
	The Web Service Modeling Toolkit
	Contents of the Demo

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

