An User Interface Adaptation Architecture for
Rich Internet Applications

Kay-Uwe Schmidt!, Jorg Dorflinger!, Tirdad Rahmani!, Mehdi Sahbi!,
Ljiljana Stojanovic?, and Susan Marie Thomas'

L' SAP AG, Research, Vincenz-Prienitz-Strafie 1, 76131 Karlsruhe
“http://www.sap.com
2 FZI Forschungszentrum Informatik, Haid-und-Neu-Strafie 10-14, 76131 Karlsruhe
“http://www.fzi.de

Abstract. The need for adaptive and personalized Rich Internet Ap-
plication puts a new dimension to already existing approaches of Adap-
tive Hypermedia Systems. Instead of computing the adaptation steps at
the server, Rich Internet Applications need a client-side approach that
can react immediately on user input. In this paper we present a novel
approach that holistically combines page annotations, semantic Web us-
age mining, user modeling, ontologies and rules to adapt AJAX pages.
The focus of our pater is the conceptual introduction of the autonomous
client. An autonomous client directly executes all necessary adaptation
steps based on a user model, without requesting any logic on the server.
In order to realize this, we use ontologies to annotate Rich Internet Ap-
plications and to describe the user model as well as semantic Web usage
mining for detecting adaptation rules. Additionally, we provide a detailed
overview and evaluation of how we moved resource-intensive ontology
processing and rules execution from the server to the client.

1 Introduction

In Adaptive Hypermedia Systems (AHSs) adaptation strategies have been in-
tensively studied [I] and are well understood for conventional Web applications
adhering to the Web page paradignﬂ With conventional techniques, the track-
ing of user clicks, the user modeling, as well as the adaptation take place on the
server. This limits the possibilities of user tracking to the user requests seen by
the server [2], which is actually a subset of the user clicks. Furthermore adapta-
tion can only take place when a user requests a new page, which then is adapted
to his/her needs. On-the-fly adaptation, without reloading the whole page, is
not obtainable. Recently, with the rise of AJAX [3], new possibilities appeared
for user tracking and user interface adaptation. With AJAX the look and feel
of Web pages are transformed to that of desktop applications and users are ac-
customed to highly responsive user interfaces. State of the art Web applications

! The Web paradigm determines that very Web page in a series of pages is downloaded
separately.

S. Bechhofer et al.(Eds.): ESWC 2008, LNCS 5021, pp. 736 2008.
© Springer-Verlag Berlin Heidelberg 2008

An User Interface Adaptation Architecture for Rich Internet Applications 737

obtain a responsive user interface by encoding the adaptation logic in static
script languages like JavaScript.

In this paper we present a novel solution for on-the-fly adaptation of Rich
Internet Applications (RIAs) applications. We introduce a holistic framework
covering the whole adaptation cycle, from obtaining rules, over ad-hoc user mod-
eling, to on-the-fly user interface adaptation. Compared to common AHSs our
approach goes two steps beyond, as we introduce not only ontologies, for cap-
turing and storing the user model, and declarative logical rules, for carrying out
the adaptation, but also advance the state of the art through the client-side real-
ization of user modeling and portal adaptation. We consider the evaluation and
execution of the adaptation rules on the client-side as the major contribution
of this paper, as it is the prerequisite to responsive user interfaces for RIAs.
Client-side rule processing has several advantages, such as reduction of client-
server communication to a minimum, and in-time response to user interactions.
The acquisition of adaptation rules is an indispensable pre-requisite to adapta-
tion. Adaptation rules declaratively encode adaptation logic based on the user’s
behavior, which means based on the recorded user interactions with the RIAs.
Adaptation rules can be gained by mining user access log data. With the help
of annotations, added to the Web application in advance, we present a semantic
approach of Web usage mining in order to find common Web usage patterns.
In turn, the most useful patterns can be directly modeled as adaptation rules,
guiding the user while interacting with the RIA. The user interactions are stored
at run-time in a user model residing together with the application rules on the
client-side. We do not assume that the system has any previous information
about a user like explicitly specified user preferences or user roles determined by
log-in information. In each user session the user model has to be acquired from
scratch. The user model, the RIA and the rules are modeled in ontologies that
are transformed at design-time into executable AJAX snippets. The adaptation
ontologies as a backbone of our adaptive solution were already comprehensively
described in [4] and are not the focus of this paper.

The rest of the paper is structured as follows. Section 2 an example is pre-
sented in order to motivate our work. In Section 3 we give an overview of the
logical system architecture and illustrate the adaptation loop. The following two
Sections 4 and 5 go into the details of the design-time and run-time architecture
accordingly. An evaluation of our approach is given in Section 6, and in Section 7
we discuss related work. In Section 8 acknowledgments are given, and, finally,
the paper closes with conclusions and prospects for future work.

2 DMotivating Example

Searching for the right form is an widespread problem in portals especially in e-
Government portals. The average user of an e-Government portal is usually not
an expert but rather a novice regarding the use of online forms. E-Government
Web applications are designed for end users without special training. Two major
requirements for e-Government Web applications are: Citizen-centric services

738 K.-U. Schmidt et al.

and ease of use [5]. To meet these requirements a form of non-intrusive user
guidance can be provided.

In our first motivating example we pick up the idea of user guidance. We want
to recommend links related to the forms the user already filled in. Lets consider
the following use case: Building application. The citizen officially has to apply for
building permission at the local department of housing and urban development.
The building application can be filled in online and consists of several forms like
the main building application form, building license form, building description
form, start of construction form, to mention just a few. We assume no pre-
defined workflow determining the number and order of forms the citizen has to
fill in. After filling in the main form the user wants to know which form to fill in
next. This can be accomplished by suggesting related forms based on the forms
filled in by the current user compared to the collaboratively filtered Web usage
behavior of past users.

3 Logical System Architecture: The Adaptation Loop

Our user interface adaptation architecture for RIAs, as depicted in Figure[dl is a
two-stage approach consisting of three cycles forming the adaptation loop. The
design-time stage and the run-time stage logically divide the components of our
architecture into off-line and online components respectively. That is, the stages
refer to the invocation time of the components comprising our architecture. The
three cycles, the modeling cycle on the left, the adaptation cycle on the right
and the larger transfer cycle in the middle illustrate the self-adaptive character
of our architecture.

The modeling cycle stands for the design time components in charge of con-
structing the adaptation rules. At design time, an indispensable prerequisite for
our RIA adaptation approach, the portal must be annotated by using a portal
annotation tool. After annotating the structure and content of the RIA, user
access log data, collected in the past, can be mined for useful Web usage pat-
terns. This is done by the semantic Web usage mining component. Once useful
patterns are found, they can be formulated as adaptation rules by using a rule
design tool. The adaptation rules are stored in an ontology format. After de-
signing the adaptation rules on a conceptual level, based on the annotated RIA,
they are translated at design-time by the rule transformer into a client-readable
format like JavaScript.

The rightmost cycle in Figure [l the adaptation cycle, is executed, like the
transfer cycle in the middle of the figure, at run-time. The aim of the adaptation
cycle is to adapt the RIA based on the predefined adaptation rules and the
current user model. The adaptation rules are obtained from the modeling cycle
via the transfer adaptation rules component of the transfer cycle. The user model
is built up by the user tracking component, which records the user’s interactions
with the RIA. Based on the user model, which is constructed on-the-fly, the
adaptation rules are evaluated and, if the condition part holds, are fired. It is
the task of the rule evaluation component and the rule execution component to

An User Interface Adaptation Architecture for Rich Internet Applications 739

Design-time Run-time

Ontology
Transfer

N
Portal User Rule
Annotation Tracking Evaluation

- User Model / y
~ [Semantic Web Portal i Rule
Usage Mining Adaptation / Execution

User Model
Transfer

Transfer Cycle

Fig. 1. Logical System Architecture: The Adaptation Loop

carry out rule processing. If a rule fires the corresponding actions are executed
and the RIA adapts itself directly on the client-side without server requests. At
the end of the session the tracked user model is sent back to the server. On the
server-side all user models are collected and fed back into the modeling cycle in
order to mine new behavioral patterns. Thus, the adaptation loops starts again.

4 Design-Time Architecture

The design-time architecture consists of the components constituting the mod-
eling cycle as depicted in Figure [l These tools and components are executed
off-line during the annotation, mining, design and transformation phases.

4.1 Ontology Creation and Portal Annotation

Suitable ontologies are crucial for our RIA adaptation approach. We developed
an approach amalgamating ontology learning [6], ontology refinement [7] and
annotating RIAs into one coherent tool. The main ideas behind this approach
are described in detail in [§]. Based on this approach we developed a domain-
specific e-Government ontology, as well as an annotation knowledge-base linking
concepts of the domain ontology to contents of the RIA. Additionally, a RIA
ontology, describing the structural aspects, and a user model ontology were de-
veloped using standard ontology development tools like Protegeﬂ. An overview

2 http://protege.stanford.edu/

740 K.-U. Schmidt et al.

and description of the developed ontologies are given in []. As a proof of concept
we annotated our internal demo portal and the e-Government portal of the city
of Vocklabruckd with our ontolgies under supervision of e-Government experts.
All ontologies are described using the Web Ontology Language (OWL) [9].

4.2 Semantic Web Usage Mining

Web Usage Mining is the application of data mining algorithms on Web server
access logs to gain a better understanding of user behavior. Besides the access
logs, metadata describing the Web resources and their content are conceptually
helpful for data-mining analysis. The utilization of the metadata is strongly
dependent on its organization and the way it can be combined with the log entries
[10]. In recent years the research areas semantic Web and Web mining have
become more important and are merged together into a new research field called
semantic Web mining which has been deeply analyzed [ITI12]. In particular,
semantic Web Usage Mining as a subcategory of semantic Web mining enables
tracking of user behavior at a conceptual level.

Figure2shows the different stages of our semantic Web usage mining architec-
ture. The first stage is the preprocessing stage. Here the ontologies are designed,
the Web resources are annotated and the user sessions are reconstructed. Re-
constructing user sessions is a difficult task, because of the lack of log-in data.
The user sessions are reconstructed using common reconstruction methods as
detailed in [I3]. The available data sources for the second stage, the data min-
ing step, comprise the reconstructed sessions, the annotated Web resources and
the domain ontology. The last two items form a knowledge-base of available

Wel Server Access Logs Web Resources Domain Knowledge

' S S F o=—
N —
N o=—
%]
ﬁ‘ Session Annotation ’“
Reconstruction

User-Sessions and -Transactions Domain Ontology

[Iu} u] | Onli

it il R
Recommendation

[=] =] |

Conceptual Patterns

Ontology
Generation

Data Mining
Algorithms

'

Fig. 2. Semantic Web usage mining architecture

3 http://www.voecklabruck.at/

An User Interface Adaptation Architecture for Rich Internet Applications 741

metadata. The Web usage mining algorithms used for this purpose are associa-
tion rules, sequential rules, and multi level rules based on a concept hierarchy.
Moreover, clustering approaches which consider the user behavior as well as
semantic contents are considered. More technical details are given in [14].

The results of the data mining step can be used for website optimization or
online recommendation based on the user behavior and semantic content. The
new item problem nicely illustrates the benefits of using semantics in Web usage
mining. New items can be recommended directly after their annotation. That
is possible, because our data mining approach, as well as our recommendation
engine, work on concepts rather than concrete URLs or IDs. As an example
the following rule is considered: C1 A C2 — C3. This rule states that if pages
annotated with C'1 and C?2 are visited, all pages annotated with concept C3 are
candidates to be recommended. If now a new Web resource annotated with C'3
is introduced, it can be added to these candidates, because the rules are on the
conceptual level.

4.3 Design of Adaptation Rules

After applying semantic Web usage mining to access-log files, the discovered
patterns need to be analyzed by an e-Government expert. The domain expert
has to judge, whether the patterns are useful or not. Patterns, which have been
judged useful, are then encoded into a rule language as adaptation rules by an
ontology engineer with the help of customary ontology and rule editors. So, for
instance, we discovered the following rule after evaluating the patterns found in
the annotated access log file of the city of Vocklabruck: 85% of all users that
filled in the marriage certificate form and the wedding day form also filled in the
birth certificate formfl.

Ezample 1 (Adaptation rule in SWRL)
portal:Form(?a) A portal:isVisited(?a, true) A
domain:WeddingDay(7b) A portal:isAnnotated(?a, 7b) A
portal:Form((?c)) A portal:isVisited(?c, true) A
domain:MarriageCertificate(?d) A portal:isAnnotated(?e, ?d) A
domain:BirthCertificate(?e) — portal:showLink(?7e)

We are using the Semantic Web Rule Language (SWRL) [15] because it nicely
fits to our OWL ontologies. Example[I] shows how an ontology and rule engineer
could formulate the rule described above in SWRL. Translated to English the
rule states, that whenever a form annotated with WeddingDay and a form an-
notated with MarriageCertificate were visited show all links to forms annotated
with BirthCertificate as link recommendations. WeddingDay, DateOfWedding
and BirthCertificate are concepts taken from the domain ontology. The func-
tionality of displaying recommended links is realized as a SWRL built-in. The
built-in finds all forms annotated with BirthCertificate, reads the link from the
appropriate property and, finally, recommends these links.

4 Support: 0,01; confidence: 0,85.

742 K.-U. Schmidt et al.

4.4 Ontology Transformer

Having the ontologies, annotations and adaptation rules in place, the last step
in the modeling cycle is still the transformation of all of these parts into a client-
readable format that can be executed by a browser’s JavaScript engine. As an
Internet browser on a client machine has only limited processing power and main
memory capacity, both ontologies and rules must be translated beforehand in
an easy-to-parse format that can be effortlessly executed on the client-side. Due
to the lack of a client-side reasoner we materialize all ontologies at the server-
side. By using an OWL reasoner we check the consistency of the ontology at
design-time, classify the instances and infer the class hierarchy. There are two
possibilities to represent ontologies on the client-side: XML or JSON (JavaScript
Object Notation) [I6]. XML is very verbose and adds additional overhead to the
payload. Furthermore, XML rules encoded in XML cannot be executed directly
on the client, but have to be parsed, an added expense. Therefore, we decided
to represent ontologies, annotations and rules in the compact and directly exe-
cutable data interchange format JSON.

Ontology Transformator (Design-time

v PortalEntity
) Element
Protégé V¥ @ ActiveElement
v Button (1)
ResetButton
SubmitButton

var Button = { "indi" :

{"name” : "Button1", "Button1" : { "hasID" : ["btn_1"], "thisclass" : "Button" }}

ESOH "superclass” : "ActiveElement”,

"subclass” : ["ResetButton”, "SubmitButton™]

.

{ GET / POST / XMLHttpRequest }

Object Builder (Run-time) J

Button1 : Button
lsuperclass = ActiveElement
lsubclass = [ResetButton, SubmitButton]
hasID = btn_1
thisclass = Button

Fig. 3. Transformation of ontologies

Figure Bl shows what the JSON format looks like, after transforming the con-
cept Button. As depicted in the concept hierarchy of Protege the class Button
has several super and sub concepts. Additionally, there exist one instance of

An User Interface Adaptation Architecture for Rich Internet Applications 743

Button in the ontology. Not shown are the properties of the Button class, which
in fact are: hasID and thisclass. A class is represented as object in JSON and
its instances are collected in a property of type Array called indi. This array
contains all instances as objects whereas the objects in turn hold their proper-
ties as attributes. The last attribute thisclass is a reference to the instantiated
class and is automatically added during the translation. The class hierarchy is
stored directly in the JSON object representing the class as Array attributes:
superclass and subclass. SWRL rules are also encoded as objects consisting of a
condition and action part. SWRL build-ins are encoded manually as JavaScript
functions beforehand. A call to these external functions is placed into the JSON
translation whenever the transformer detects a built-in in the original adapta-
tion rules format. At run-time the object builder generates real objects from the
JSON string, as depicted in the lower part on Figure [3

5 Run-Time Architecture

The core responsibility of the run-time architecture is to ensure the user-centric
adaptiveness of the RIA. The run-time architecture is constituted by the adapta-
tion and transfer cycle as depicted in Figure[ll After transforming the ontologies,
annotations and adaptation rules into a client-readable format at design-time,
they can be transmitted as JavaScript code in answer to a client request at any
point in time. When a user requests the RIA, not only content and layout data
are send to the client, but also the JSON representation of the ontlogies, anno-
tations and rules. On the client-side the user model is built up and the portal is
adapted by tracking user interactions and executing adaptation rules. Figure @
shows the interplay of the constituent run-time components.

In a Web browser HTML pages are internally represented as a DOM (Document
Object Model). Whenever a user interacts with the Web page the DOM fires ap-
propriate events which can be caught by the event handler component. In order

Internal Browser

I Event Handler !Tr';gw Representation

User Update
Interactions User

Tracking
Call Read

User Model

DOM

7 Adaptation
Mampulate\ ul
] Adaptation Rules
Presentation JavaScript/JSON

Fig. 4. Logical client-side run-time architecture

744 K.-U. Schmidt et al.

to catch events the event handler has to register first to specific event types. In our
current implementation this is done manually. The Web programmer has to explic-
itly specify which kinds of events shall be tracked. Each recognized event results in
a call of the user tracking component and, in a second step, the invocation of the
rule engine. The user tracking component resolves the relationships between the
JavaScript events, the user interface elements and their annotations. Furthermore
it records the events to the user model. In this way the user model materializes the
browsing history of the current user on the level of JavaScript events.

Based on the Web usage data stored in the user model the rule engine evalu-
ates the adaptation rules. We implemented a stateless rule evaluation based on
the sequential algorithm [I7]. The rationale behind this approach is that each
of the independent rules fires once its conditions hold. There is no agenda to
resolve any eventual conflicts caused by executing rules. Furthermore, this ap-
proach implies that the rules do not affect each other. Despite the disadvantages
of this approach we chose the sequential algorithm because of its simple loop-
like implementation. Once a rule has fired, the rule body, in most of the cases
translated SWRL built-ins, is executed by the Ul adaptation component and the
user interface is manipulated.

At the end of the session the user model is sent back to the server using the
asynchronous communication facility of AJAX. The accumulated user models
form the basis for a further modeling cycle.

6 Evaluation

The implementation of the conceptual framework was realized using Java li-
braries for the design-time code generation and AJAX for the run-time compo-
nents. We evaluated our prototypical implementation at different levels. First,
we looked at the time consumption of rebuilding the ontologies and executing
the adaptation rules at runtime on the client-side. Secondly, we evaluated our
approach theoretically. That means we looked at the JSON format represent-
ing ontologies and rules and we also examined restrictions imposed by our rule
execution algorithm.

6.1 Computational Evaluation

The design-time modeling of ontologies and rules, as well as the subsequent
translation into JSON is the non-time critical part of the application. The trans-
formation from RDF/XML syntax into JSON rules and the mapping of OWL
concepts, instances and relations into JSON occurs at design-time. But already
at this stage optimization is a crucial issue. The preparation of the JSON file
for later usage on client-side requires an effective mapping-method to keep the
amount of data represented on the client to a minimum. The compressed JSON
format, as the result of translating ontologies, annotations and rules, lets the
file size shrink to 50% of it original size. The file size decreased from 42,1 KB
(RDF/XML) to 20,3 KB (JSON).

An User Interface Adaptation Architecture for Rich Internet Applications 745

The more time critical issues are the run-time tasks, like the initial loading
and creation of OWL concepts on client-side as well as the execution of rules
and user interface adaptation on the client-side. At the time of accessing the
RIA the ontolgies, annotations and rules have to be up-loaded to the client in
a first step. The JSON file is executed using the JavaScript function eval() and
concepts, instances and rules are represented as JSON objects on the client-
side. An evaluation of this initial client-side concept creation is depicted in the
following Figure [l a). The initial transfer and construction of the rules and
ontologies does not affect the usability too much, since it takes place within the
first couple of seconds a user accesses a new page which is a time period of almost
no interaction. As the diagram shows, the time consumption is below 200 ms
for up to 10000 concepts, which is not recognized by the user when loading the

page.

4 6000
2000 2000 = 20
@ 1500 @ 1500 £ 4000
E E @ 3000
> 1000 o 1000 £ 2000 i
E E F 100011]
£ 8001 £ 8001 0= o
044 044 20 30 40 50 60 70 80
10 50 200 10 50 200 Interdependent
Number of Rules Number of Rules Instances
a) b) <)

Fig. 5. Evaluation: a) Client side initial JSON concept creation; b) Rule execution
time evaluation; ¢) Interdependent instances

During run-time the most important task is the execution of rules and the sub-
sequent adaption of the user interface. The client-side rule engine is implemented
as a stateless sequential algorithm. The rules are mapped to nested [F/THEN
statements and executed in the order they are received. There is no conflict
solving, complex event processing or any kind of inference during the execution
since rules cannot be triggered by another rule. Each rule is evaluated and, if
all conditions hold, the body (action) of the rule is executed. In Figure [l b)
the performance of the rule execution is evaluated. As an evaluation constraint
we let each rule fire, that means that all conditions of our evaluation rule set
hold. Each rule manipulates the user interface of our exemplary RIA. The eval-
uation of each rule starts with loading the rule from the JSON structure into a
local variable. This loading process is realized with a non-optimized algorithm
and needs refinement. A big system performance improvement will be reached
by revising this algorithm which occupies most of the execution time. Future
development will also include the evaluation and integration of more matured
rule execution algorithms like Rete [I8] to achieve better performance.

The number of instances of ontology concepts have a considerable bearing on
the execution time of the application rules on the client-side. The most time-
intensive parts of instance-handling are N-to-M relations between instances.
The rationale behind this is: If there is one instance Ia of concept A and one

746 K.-U. Schmidt et al.

instance Ib of concept B it is easy to utilize a rule because there is only one
relation between the two instances. But if there are several instances I'a — n for
concept A and several instances Ib — n for concept B the rule engine has to
evaluate the Cartesian product of the instances, which leads to an exponential
time consumption. Figure[§l c) depicts the time consumption of rules coping with
interdependent instances in more detail. However, in our motivating examples
we did not have to deal with that, because of carefully designed adaptation rules.

During the performance evaluation a slight distinction in the measurement
results between the two tested web browsers (Internet Explorerﬁ and Mozilla
Firefoxﬁ) has been determined. The diagrams are based on the average measure-
ment results of both web browsers.

6.2 Theoretical Evaluation

First we evaluated the JSON format we created in order to represent OWL
ontologies. Our JSON ontology serialization is conceived to minimize time of
accessing instances at the client-side. The format puts some limitations on the
representation of ontologies. On the other side, these limitations have no re-
strictive effects to the overall approach of client-side adaptation of RIAs as we
solely rely on the concept taxonomy in our adaptation rules. By computing the
subsumption hierarchy at design-time we can construct the entire class hierar-
chy graph. However, in doing so we lose all informations regarding OWL class
axioms like equivalent classes and class descriptions like union or intersection.
All axioms and descriptions are mapped to a simple sub class relation. Also
all information about relations are lost. Relations only appear as attributes in
objects and are no longer represented as discrete entities. Only individuals are
transformed without any information loss. But as already mentions, as consis-
tency checks are performed at design-time and the adaptation rules only rely on
instances, their relations, and class hierarchy, this puts practically no constrains
to our approach.

In a second step we evaluated the gains and losses of the sequential algo-
rithm implemented by our client-side rule engine. One advantage of the sequen-
tial algorithm is its simplicity. It is quick to implement and easy to maintain.
Furthermore, in the computational evaluation, we showed the feasibility of our
approach even with a simple rule evaluation strategy. But the sequential algo-
rithm does not come for free. So, we have exponential time consumption when
evaluating the Cartesian product of class instances. This could be reduced to
by using the forward-chaining Rete algorithm for the evaluation of the adap-
tation rules. Rete as efficient pattern matching algorithm would introduce real
inferencing and a stateful rule evaluations. Our current implementation of the
client-side rule engine imposes some restrictions to the design of the adaptation
rules. So, the rule engine can only evaluate 2-ary predicates which have a model
consisting exactly of pairs of the form (a, b;);cs or conversely (a;,b);er, where I

® http://www.microsoft.com/windows/products/winfamily /ie/default. mspx
5 http://www.mozilla.com/en-US /firefox/

An User Interface Adaptation Architecture for Rich Internet Applications 747

is an arbitrary finite index set. In the case of (a;, b;); jer the outcome is currently
undefined. We are working on a solution to that. Furthermore all variables have
to be explicitly introduced as we can not conclude the type of a variable for its
occurrence in an 2-ary predicate. This means that in the Example [Tl the atoms
portal:Form(?a), domain:WeddingDay(?b), domain:MarriageCertificate(?d) and
domain:BirthCertificate(?e) are mandatory. Also the order matters. These atoms
have to occur before the variables are used in an arbitrary 2-ary relation.

One of our goals is the autonomous working of the application (without client-
server communication). It means that our main instrument for the detection of
events is JavaScript. This fact constitutes a restriction with respect to complex
events. Suppose that some complex event C'E is modelled as the conjunction
of two other not necessarily atomic events F; and E;. We must have a rule
FEy N E5 — CFE expressing this situation. It is possible to create a new instance
for the complex event C’Eﬂ, however the application remains unaware of the
latter, since it was not detected by JavaScript. We have solved this issue by
coding the occurrence of such a complex event in some attributes of the existing
instances, and then replacing the above rule by a checking of the attributes. This
fact remains, however, a handicap toward an elegant and natural modeling of
the rules. The above evaluation confirms our presentiment in [4], SWRL is in
fact not sufficient for our purposes. It does not constitute a suitable framework
for the modeling of complex rules. The simulation of the seq operator does not
allow an efficient processing of the events and rules. A recent investigation has
shown that Event-Condition-Action (ECA) ruled may be more appropriate.

7 Related Work

In [19] the integration of semantics in Web usage mining techniques is shown
applied to a movie website. On the basis of a movie ontology and the user
behaviour, user profiles were constructed, which are used for online recommen-
dations. In the center of our aproach are e-Government websites consisting of
forms, services and information.

Comparing our work with standard models for adaptive hypermedia systems
like e.g. AHAM [20], we observe that they use several models like conceptual,
navigational, adaptational, teacher and learner models. Compared to our ap-
proach, these models correspond to ontologies presented in Section 4, but miss
their formal representation. Moreover, we express adaptation functionalities as
encapsulated and reusable OWL-DL rules, while the adaptation model in AHA
uses a rule based language encoded into XML.

The Personal Reader [21] provides a framework for designing, implementing
and maintaining Web content readers, which provide personalized enrichment of
Web content for each individual user. The adaptive local context of a learning

" This situation is even impossible with respect to the ontology. However, we make
use of SWRL bultins to achieve the addition of new instances to the ontology.

8 ECA rules are event driven rules in the form of: ON (event) IF (condition) DO
(action).

748 K.-U. Schmidt et al.

resource is generated by applying methods from adaptive educational hyperme-
dia in a semantic Web setting. Similarly [22] focuses on content adaptation, or,
more precisely, on personalizing the presentation of hypermedia content to the
user. However, both approaches do not focus on the on-line discovery of the pro-
file of the current user that is one of the main features of our approach. Another
difference would be the self-adaptivity.

In [23] the authors suggest the use of ontologies and rules in order to find
related content on the Web, based on the content currently displayed to the
user. We enhance this work by not only adapting the content based on concept
similarity but rather based on accumulated Web usage data. Furthermore we
show a way how to link semantics and content. Still the main difference remains
the introduction of the autonomous client, as we are dealing with Rich Internet
Applications and not with common dynamic Web applications executed on a
Web server.

8 Conclusions and Future Work

In this paper we presented a novel approach that holistically combines page
annotations, semantic Web usage mining, user modeling, ontologies and rules to
adapt AJAX pages. We showed and evaluated how our concept of an autonomous
client works. With our prototypical implementation we demonstrated the proof
of concept and our motivating example taken form the e-Government domain
emphasized the practical relevance of our work. Currently, we are investigating
the Rete algorithm with respect to its adoption for client-side rule processing. We
expect a better run-time performance by substituting the sequential algorithm
with the Rete algorithm. Furthermore we plan to extend SWRL from deduction
rules to event ECA rules to allow complex event processing directly on the client
side. Then the transformer component of the design-time cycle can automatically
generate event handlers based on the ECA rules.

Acknowledgements

The work is based on research done within the FIT project - Fostering self-
adaptive e-Government service improvement using semantic technologies. The
FIT project is co-funded by the European Commission under the ”Information
Society Technologies” Sixth Framework Program (2002-2006).

References

1. Brusilovsky, P.: Methods and techniques of adaptive hypermedia. User Model.
User-Adapt. Interact. 6(2-3), 87-129 (1996)

2. Mobasher, B., Cooley, R., Srivastava, J.: Automatic personalization based on web
usage mining. Commun. ACM 43(8), 142-151 (2000)

3. Garrett, J.J.: Ajax: A new approach to web applications (2005),
http://www.adaptivepath.com/publications/essays/archives/000385.php

http://www.adaptivepath.com/publications/essays/archives/000385.php

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

An User Interface Adaptation Architecture for Rich Internet Applications 749

Schmidt, K.-U., Stojanovic, L., Stojanovic, N., Thomas, S.: On enriching ajax with
semantics: The web personalization use case. In: Franconi, E., Kifer, M., May, W.
(eds.) ESWC 2007. LNCS, vol. 4519, pp. 686—700. Springer, Heidelberg (2007)
Thomas, S., Schmidt, K.-U.: D4: Identification of typical problems in e-government
portals. Technical report, FIT consortium (July 2006),
http://www.fit-project.org/Documents/D4.pdf

Maedche, A., Staab, S.: Semi-automatic engineering of ontologies from text. In:
Proceedings of the 12th International Conference on Software Engineering and
Knowledge Engineering (2000)

Stojanovic, L., Ma, J., Stojanovic, N.: D9: Methods and tools for semi-automatic
learning of a domain ontology that models the content of a front office. Technical
report, FIT consortium (January 2007),
http://www.fit-project.org/Documents/D9.pdf

Stojanovic, L., Stojanovic, N., Ma, J.: An approach for combining ontology learn-
ing and semantic tagging in the ontology development process: egovernment use
case. In: Benatallah, B., Casati, F., Georgakopoulos, D., Bartolini, C., Sadiq, W.,
Godart, C. (eds.) WISE 2007. LNCS, vol. 4831, pp. 249-260. Springer, Heidelberg
(2007)

Bechhofeer, S., van Harmelen, F., Hendler, J., Horrocks, 1., McGuinness, D., Patel-
Schneider, P., Stein, L.A.: Owl - web ontology language reference. Recommenda-
tion, W3C, February 10 (2004)

Dai, H., Mobasher, B.: Using ontologies to discover domain-level web usage profiles.
In: 2nd Semantic Web Mining Workshop at ECML/PKDD-2002 (2002)

Berendt, B., Hotho, A., Mladenic, D., van Someren, M., Spiliopoulou, M., Stumme,
G.: A roadmap for web mining: From web to semantic web. In: Berendt, B., Hotho,
A., Mladeni¢, D., van Someren, M., Spiliopoulou, M., Stumme, G. (eds.) EWMF
2003. LNCS (LNAI), vol. 3209, pp. 1-22. Springer, Heidelberg (2004)

Stumme, G., Hotho, A., Berendt, B.: Semantic web mining: State of the art and
future directions. Semantic Grid —The Convergence of Technologies 4(2), 124-143
(2006)

Spiliopoulou, M., Mobasher, B., Berendt, B., Nakagawa, M.: A framework for the
evaluation of session reconstruction heuristics in web usage analysis. INFORMS
Journal of Computing, Special Issue on Mining Web-Based Data for E-Business
Applications 15 (2003)

Stojanovic, L., Ma, J., Yu, J., Stojanovic, N., Schmidt, K.-U., Thomas, S., Rah-
mani, T.: D18: Methods and tools for mining the log data by taking into account
background knowledge. Technical report, FIT consortium (July 2007),
http://www.fit-project.org/Documents/D18.pdf

Horrocks, 1., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: Swrl:
A semantic web rule language combining owl and ruleml. Technical report, W3C
Member submission, May 21 (2004)

Crockford, D.: Rfc4627: Javascript object notation. Technical report, IETF (2006)
Berstel, B., Bonnard, P., Bry, F., Eckert, M., Patranjan, P.-L.: Reactive rules on the
web. In: Antoniou, G., ABmann, U., Baroglio, C., Decker, S., Henze, N., Patranjan,
P.-L., Tolksdorf, R. (eds.) Reasoning Web. LNCS, vol. 4636, pp. 183-239. Springer,
Heidelberg (2007)

Forgy, C.L.: Rete: a fast algorithm for the many pattern/many object pattern
match problem. Artificial Intelligence 19, 17-37 (1982)

Dai, H., Mobasher, B. (eds.): Using Ontologies to Discover Domain-Level Web
Usage Profiles (2002)

http://www.fit-project.org/Documents/D4.pdf
http://www.fit-project.org/Documents/D9.pdf
http://www.fit-project.org/Documents/D18.pdf

750 K.-U. Schmidt et al.

20. Romero, C., Ventura, S., Hervdas Martinez, C., De Bra, P.: In: Proceedings of
the Fifth International Conference on Human System Learning, ICHSL, Europia
(November 2005)

21. Dolog, P., Henze, N., Nejdl, W., Sintek, M.: The personal reader: Personalizing and
enriching learning resources using semantic web technologies. In: De Bra, P.M.E.,
Nejdl, W. (eds.) AH 2004. LNCS, vol. 3137, pp. 85-94. Springer, Heidelberg (2004)

22. Frasincar, F., Houben, G.-J.: Hypermedia presentation adaptation on the semantic
web. In: De Bra, P., Brusilovsky, P., Conejo, R. (eds.) AH 2002. LNCS, vol. 2347,
pp. 133-142. Springer, Heidelberg (2002)

23. Ankolekar, A., Tran, D.T., Cimiano, P.: Rules for an ontology-based approach to
adaptation. In: 1st International Workshop on Semantic Media Adaptation and
Personalization, Athen, Greece (December 2006)

	An User Interface Adaptation Architecture for Rich Internet Applications
	Introduction
	Motivating Example
	Logical System Architecture: The Adaptation Loop
	Design-Time Architecture
	Ontology Creation and Portal Annotation
	Semantic Web Usage Mining
	Design of Adaptation Rules
	Ontology Transformer

	Run-Time Architecture
	Evaluation
	Computational Evaluation
	Theoretical Evaluation

	Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

