Semantic Sitemaps: Efficient and Flexible
Access to Datasets on the Semantic Web

Richard Cyganiak, Holger Stenzhorn, Renaud Delbru,
Stefan Decker, and Giovanni Tummarello

Digital Enterprise Research Institute (DERI),
National University Ireland, Galway

Abstract. Increasing amounts of RDF data are available on the Web for
consumption by Semantic Web browsers and indexing by Semantic Web
search engines. Current Semantic Web publishing practices, however, do
not directly support efficient discovery and high-performance retrieval
by clients and search engines. We propose an extension to the Sitemaps
protocol which provides a simple and effective solution: Data publishers
create Semantic Sitemaps to announce and describe their data so that
clients can choose the most appropriate access method. We show how
this protocol enables an extended notion of authoritative information
across different access methods.

Keywords: Sitemaps, Datasets, RDF Publishing, Crawling, Web, Search,
Linked Data, SPARQL.

1 Introduction

Data on the Semantic Web can be made available and consumed in many dif-
ferent ways. For example, an online database might be published as one single
RDF dump. Alternatively, the recently proposed Linked Data paradigm is based
on using resolvable URIs as identifiers to offer access to individual descriptions
of resources within a database by simply resolving the address of the resources
itself [I]. Other databases might offer access to its data via a SPARQL endpoint
that allows clients to submit queries using the SPARQL RDF query language
and protocol.

If several of these options are offered simultaneously for the same database, the
choice of access method can have significant effects on the amount of networking
and computing resources consumed on the client and the server side.

For example, a Semantic Web search engine that wants to index an entire
database might prefer to download the single dump file, instead of crawling the
data piecemeal by fetching individual Linked Data URIs. A client interested in
the definition of only a few DBpedia [2] resources would, on the other hand,
be well-advised to simply resolve their URIs. But if the client wants to execute
queries over the resources, it would be better to use the available SPARQL
service.

S. Bechhofer et al.(Eds.): ESWC 2008, LNCS 5021, pp. 690 2008.
© Springer-Verlag Berlin Heidelberg 2008



Semantic Sitemaps: Efficient and Flexible Access 691

Such choices can have serious implications: For example, on February the 2nd
2007, Geonamed]] was hit by what appeared to be the first distributed denial of
service attack against a Semantic Web sited.

What happened, however, was not a malicious attack but rather a Semantic
Web crawler bringing down the site by rapid-firing requests to Geonames’ servers
up to the point where the site’s infrastructure could not keep up. One could
simply judge this as a case of inconsiderate crawler behavior but, it highlights an
important issue: What crawling rate should a crawler have on a Semantic Web
site and would this be compatible with the size of the datasets? Considering
that results are generated from semantic queries, it might be sensible to limit
the query rate to one document per second, for example. It has to be noted
however that crawling Geonames’ 6.4M RDF documents would take 2.5 months
under this condition, so that periodic recrawls to detect changes would take the
same unsatisfactory amount of time and it would be impossible to have data in
a fresh state.

Conceptually, the Geonames incident could have been avoided: Geonames
offers a complete RDF dump of their entire database so this could have been
bulk imported instead of crawling. But how is an automated crawler able to
know about this dump and to know that the dump contains the entire Geonames
database?

This paper describes a methodology with the primary goal to allow publishers
to provide exactly such information and thus enable the smart selection of data
access methods by clients and crawlers alike.

The methodology is based on extending the existing Sitemap Protocol
(section ) by introducing several new XML tags for announcing the presence of
RDF data and to deal with specific RDF publishing needs (section [B]).

2 The Sitemap Protocol and robots.txt

The Sitemap Protocol defines a straighforward XML file for automatic agents
(e.g. crawlers) that holds a list of URLs they should index. This is possible
through tags that describe the location of each crawlable resource along with
meta-information such as, for example, the expected rate of change for each
individual URL or the date when this was last modified. An example of a sitemap
is shown in the following listing:

<?xml version="1.0" encoding="UTF-8"7>
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
<url>
<loc>http://www.example.com/</loc>
<lastmod>2005-01-01</lastmod>

! http://geonames.org/

2 http://geonames . wordpress . com/2007/02/03/friendly-fire-semantic-web-
crawler-ddos/

3http://www.sitemaps.org/protocol.php


http://geonames.org/
http://geonames.wordpress.com/2007/02/03/friendly-fire-semantic-web-
crawler-ddos/
http://www.sitemaps.org/protocol.php

692 R. Cyganiak et al.

<changefreg>monthly</changefreq>
<priority>0.8</priority>
</url>
</urlset>

Once a sitemap has been created, it must be saved in a file on the server. The
protocol defines a way to extend the robot.txt file, so that a robot can find the
location of the sitemap file on a given site.

3 The State of RDF Publishing

Even though there is no universal agreement on how information should be best
published on the Semantic Web, we can characterize some of the options that are
in widespread use today; list some of the limitations imposed by those options;
and look at existing proposals to address these limitations.

3.1 Access Methods to RDF Data

Several different access methods to RDF data are in widespread use today. They
vary widely along several dimensions. Two dimensions warrant closer attention,
namely discoverability and cost of access.

The RDF Web and Linked Data. The traditional World Wide Web can be char-
acterized as the HTML Web. It consists of a large number of HTML documents
made available via the HTTP protocol and connected by hyperlinks. By anal-
ogy, the RDF Web consists of the RDF documents that are available via HTTP.
Each RDF document can be parsed into an RDF graph. Often, different docu-
ments share URIs, and therefore merging the documents results in a connected
graph. Unlike HTML hyperlinks, statements in these RDF graphs usually do not
connect the URIs of documents, but instead they connect the URIs of resources
described in those documents.

RDF uses URIs to identify resources of interest, but does not prescribe any
particular way of choosing URIs to name resources. Experience shows that it is
a good idea to choose URIs so that a Web lookup (an HTTP GET operation) on
the URI results in fetching the RDF document that describes them. This effect
is typically achieved by either appending a fragment identifier (e.g. #me) to the
document URI, or by employing HTTP’s 303 See Other status code to redirect
from the resource’s URI to the actual document.

Datasets on the RDF Web are typically served so that resolving the URI of
a resource will return only the RDF statements closely describing the resource,
rather than resolving to a file containing the entire dataset. This is usually
achieved by using a properly configured server which creates such descriptions
on demand.

The cost of accessing this publishing method is usually relatively low. Descrip-
tions of a single resource are usually much smaller than the description of an
entire knowledge base. Similarly, the computational complexity for generating
resource descriptions is limited, albeit non negligible.



Semantic Sitemaps: Efficient and Flexible Access 693

RDF dumps. Like documents on the RDF Web, RDF dumps are serializations of
an RDF graph made available on the Web. But they usually contain descriptions
of a large number of resources in a single file, the resource identifiers usually
do not resolve to the dump itself, and the file is often compressed. Many RDF
datasets are published in this way on the Web and they cannot be easily browsed,
crawled or linked into. It should be noticed, however, that:

— dumps are obviously useful to provide the entire knowledge behind a dataset
at a single location (e.g. the Geonames dump as a single file to process it
directly)

— RDF datasets that are not crawlable or do not contain resolvable resources
may exist for perfectly valid technical reasons.

— Producing RDF dumps is technically less challenging than operating a
SPARQL endpoint or serving Linked Data which makes RDF dumps a pop-
ular option.

Again, the cost of accessing this publishing method is computationally very
low, as dumps are usually precomputed and can be easily cached. Since dumps
represent the entire knowledge base, they can be however expensive in terms of
network traffic and memory requirements for processing them.

SPARQL endpoints. SPARQL endpoints can provide descriptions of the re-
sources described in a knowledge base and can further answer relational queries
according to the specification of the SPARQL query language.

While this is the most flexible option for accessing RDF data, the cost of this
publishing method is high:

— For simple tasks such as obtaining a single resource description, it is more
involved than a simply resolving a URI. A query needs to be written ac-
cording to the correct SPARQL syntax and semantics, the query needs to
be encoded, the results need to be parsed into a useful form.

— It leaves a Semantic Web database open to potential denials of service due
to queries with excessive execution complexity.

Multiple access methods. It is a common scheme for publishers to provide large
RDF datasets through more than one access method. This might be partially
explained by the early state of the Semantic Web, where there is no agreement
on the best access method; but it also reflects the fact that the methods’ different
characteristics enable fundamentally different applications of the same data. Our
proposal embraces and formalizes exactly this approach.

3.2 Current Limitations

In this section we list some limitations imposed by current RDF publishing
practices which we want to address with the Semantic Sitemaps proposal.

Crawling performance. Crawling large Linked Datasets takes a long time and is
potentially very expensive in terms of computing resources of the remote server.



694 R. Cyganiak et al.

Disconnected datasets. Not all datasets form a fully connected RDF graph.
Crawling such datasets can therefore result in an incomplete reproduction of
the dataset on the client side.

Scattered RDF files. To find scattered, poorly linked RDF documents, an ex-
haustive crawl of the HTML Web is necessary. This is likely not cost-effective
for clients primarily interested in RDF, leading to missed documents.

Cataloging SPARQL endpoints. Even a full HTML Web crawl will not reveal
SPARQL endpoints because support for the SPARQL protocol is not advertised
in any way when requests are made to a specific SPARQL endpoint URI.

Discovering a SPARQL endpoint for a given resource. If all we have is a URI
then we can resolve it to reveal some data about it. But how can we discover a
potentially existing SPARQL endpoint for asking more complex queries about
the resource?

Provenance. Provenance is a built-in feature of the Web, thanks to the grounding
of HTTP URIs in the DNS. But control over parts of a domain is often delegated
to other authorities. This delegation is not visible to the outside world.

Identifying RDF dumps. An HTML Web crawl will reveal links to many com-
pressed archive files. Some of them may contain RDF data when uncompressed,
but most of them will most likely contain other kinds of files. Downloading and
uncompressing all of those dumps is likely not cost-effective.

Closed-world queries about self-contained data. RDF semantics is based on the
open-world assumption. When consuming RDF documents from the Web, we can
never be sure to have complete knowledge and therefore cannot with certainty
give a negative answer to questions like “Does Example, Inc. have an employee
named Eric?”

This list will serve a double purpose: First, it motivates several requirements
for Semantic Sitemaps. Second, it serves as the basis for the evaluation of our
proposal, as discussed in section [l

3.3 Related Work

Most of the problems listed above have emerged just recently due to an increase
in the amount and diversity of data available on the Semantic Web. The emer-
gence of generic protocols for accessing RDF, especially the SPARQL protocol
and Linked Data, enables the development of generic clients such as Tabulator [1]
letting the user explore RDF documents anywhere on the Web. Equipped with
a SPARQL API and a working knowledge of the query language, developers can
interrogate any SPARQL endpoint available on the Web. As a result of these
standardized protocols and tools, talking to data sources has become much eas-
ier. By contrast, efficient discovery and indexing of Semantic Web resources has
become an important bottleneck that needs to be addressed quickly. A number
of protocols and ideas have been evaluated and considered to address this.



Semantic Sitemaps: Efficient and Flexible Access 695

It is clear that the problem of indexing datasets is tightly linked to the problem
of indexing the Deep Web. Our Semantic Sitemaps proposal “piggy backs” on
the Sitemap protocol, a successful existing approach to indexing the Deep Web.

Semantic Web Clients such as Discd] and Tabulator [1] are also somewhat
related since they could ideally make use of this specification, e.g., to locate
SPARQL endpoints. Use cases to serve search engines such as Sindice [3], SWSE
[4] and Swoogle [5] have been of primary importance in the development of these
specifications.

There many examples of services which index or provide reference to collec-
tions of RDF documents using diverse methodologies. PingTheSemanticWekﬂ
for example, works by direct notifications from data producers of every file put
online or updated. SchemaWeb.infdd offers a large repository of RDF documents
submitted by users. Even Google provides a good amount of RDF files when
asked specifically with a filetype:rdf query.

Related proposals include POWDERE, a method for stating assertions about
sets of resources. A POWDER declaration can assert that all resources starting
with a certain URI prefix are dc:published by a specific authority. In fact, a
GRDDL transform could be used to turn a Semantic Sitemap into a POWDER
declaration.

Finally, the Named Graph proposal provides a vocabulary for assertions and
quotations with functionalities which can be used in conjunctions with these
specifications [6].

4 The Semantic Sitemaps Extension

This section introduces the Semantic Sitemaps proposal. We will start by clari-
fying the notion of a dataset, then list the key pieces of information that can be
provided in a Semantic Sitemap, and finally look at two specific issues: obtaining
individual resource descriptions from a large dump; and the topic of authority
on the Semantic Web.

4.1 Datasets

A dataset represents a knowledge base which is a very useful notion for the
following reasons:

— Different access methods, such as those mentioned above, can and should
indeed be simply thought of as only “access methods” to the same knowledge
base.

— The knowledge base is more than just the sum of its parts: by itself, it is
of informational value whether a piece of information belongs to a dataset

4http://sites.wiwiss.fu-berlin.de/suhl/bizer/ng4j/disco/
® http://pingthesemanticweb.com/

Shttp://schemaweb.info

"http://www.w3.org/2007/powder/


http://sites.wiwiss.fu-berlin.de/suhl/bizer/ng4j/disco/
http://pingthesemanticweb.com/
http://schemaweb.info
http://www.w3.org/2007/powder/

696 R. Cyganiak et al.

or not and queries using aggregates can make this explicit. For example,
the question “Is Berlin the largest city mentioned in DBpedia?” cannot
be answered by only getting the description of the resource itself (in case
of Linked data though resolving their Berlin URI). On the contrary, such
queries can be answered only the entire content of the dataset is available.

The Semantic Sitemap extension has the concept of dataset at its core:
Datasets are well defined entities which can have one or more access methods. It
is well defined what properties apply to a certain access method and what prop-
erties apply to a given dataset. Therefore properties that apply to that dataset
will be directly related to all the data that can be obtained, independently from
the access method.

This statement of existence of an underlying dataset implies that in case of
multiple offered access methods, then they will provide information consistent
with each other. The specification mandate that this in fact must be the case,
with the exceptions only limited to:

— operational issues such as delays in the publication of dumps.

— information that pertains only to a certain access method, such as
rdfs:seelAlso statements that link together the documents of a linked data
deployment.

A publisher can host multiple datasets on the same site and can describe them
independently using different sections of the Semantic Sitemap. While there is
nothing that prevents information overlap or contradictions between different
datasets, it is expected that this is not the case.

4.2 Adding Dataset Descriptions to the Sitemap Protocol

The Semantic Sitemap extension allows the description of a dataset via the
tag <sc:dataset>, to be used at the same level as <url> tags in a regu-
lar sitemap. Access options for the datasets are given by additional tags such
as <sc:dataDump>, <sc:sparqlEndpoint> and <sc:linkedDataPrefix>. If a
sitemap contains several dataset definitions which are treated independently.
The following example shows a sitemap file applying the extension.

<?xml version="1.0" encoding="UTF-8"7>
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9"
xmlns:sc="http://sw.deri.org/2007/07/sitemapextension">
<sc:dataset>
<sc:datasetLabel>
Example Corp. Product Catalog
</sc:datasetLabel>
<sc:datasetURI>
http://example.com/catalog.rdf#catalog</sc:datasetURI>
<sc:linkedDataPrefix sc:slicing="subject-object">
http://example.com/products/</sc:linkedDataPrefix>



Semantic Sitemaps: Efficient and Flexible Access 697

<sc:sampleURI>
http://example.com/products/widgets/X42</sc:sampleURI>
<sc:sampleURI>
http://example.com/products/categories/all</sc:sampleURI>
<sc:sparqlEndpoint sc:slicing="subject-object">
http://example.com/sparql</sc:sparqlEndpoint>
<sc:dataDump>
http://example.com/data/catalogdump.rdf.gz</sc:dataDump>
<sc:dataDump>
http://example.org/data/catalog_archive.rdf.gz</sc:dataDump>
<changefreq>weekly</changefreq>
</sc:dataset>
</urlset>

The dataset is labeled as the Example Corp. Product Catalog and identi-
fied by http://example.com/catalog.rdf#catalog. Hence it is reasonable
to expect further RDF annotations about the dataset http://example.com/
catalog.rdf.

The “things” described in the dataset all have identifiers starting with
http://example.com/products/, and their descriptions are served as Linked
Data. A dump of the entire dataset is available, split into two parts and the
publisher states that dataset updates can be expected weekly.

RDF dataset dumps can be provided in formats such as RDF /XML, N-Triples
and N-Quads (same as N-Triples with a fourth element specifying the URI of
the RDF document containing the triple; the same triple might be contained
in several different documents). Optionally, dump files may be compressed in
GZIP, ZIP, or BZIP2 format.

4.3 Other Elements
Other interesting elements in the specifications include:

<sc:sparqlGraphName>. If this optional tag is present, then it specifies the
URI of a named graph within the SPARQL endpoint. This named graph is
assumed to contain the data of this dataset. This tag must be used only if
<sc:sparqlEndpointLocation> is also present, and there must be at most one
<sc:sparqlGraphName> per dataset. If the data is distributed over multiple
named graphs in the endpoint, then the publisher should either use a value of
* for this tag, or create separate datasets for each named graph. If the tag is
omitted, the dataset is assumed to be available via the endpoint’s default graph.

<sc:datasetURI>. An optional URI that identifies the current dataset. Resolv-
ing this URI may yield further information, possibly in RDF, about the dataset,
but this is not required.

<sc:datasetLabel> An optional label that provides the name of the dataset.


http://example.com/catalog.rdf
http://example.com/catalog.rdf

698 R. Cyganiak et al.

<sc:sampleURI>. This tag can be used to point to a URI within the dataset
which can be considered a representative sample. This is useful for Semantic Web
clients to provide starting points for human exploration of the dataset. There
can be any number of sample URIs.

4.4 Defining the DESCRIBE Operator

Publishing an RDF dataset as Linked Data involves creating many smaller RDF
documents, each served as a response when accessing the URI itself via HT'TP.

This is usually the result of a SPARQL DESCRIBE query performed giving
as argument the resource’s identifier. But the SPARQL specification does not
specify how DESCRIBE queries are actually answered: it is up to the data
provider to choose the amount of data to return as a description.

It is important that the Semantic Sitemap provides a way to specify how this
description process is most likely to happen. Knowing this enables a process that
we call “slicing” of the dataset, i.e. turning a single large data dump into many
individual RDF models served online as description of the resource identifiers.
This process is fundamental for creating large indexes of online RDF documents
descriptions, as illustrated in section [5.11

For this, the <sc:1linkedDataPrefix> and <sc:sparqlEndpointLocation>
tags can have an optional sc:slicing attribute taking a value from the list
of slicing methods below and which mean that the description of a resource X
includes:

— subject: All triples whose subject is X.

— subject-object: All triples whose subject or object is X.

— CBD: The Concise Bounded Description [7] of X.

— SCBD: The Symmetric Concise Bounded Description [7] of X.
MSG: All the Minimal Self-Contained Graphs [§] involving X.

Publishers that want to use a slicing method that is not in the list should pick
the value that most closely matches their desired method, or they may omit the
sc:slicing attribute. If the slicing method is very different from any in the list,
it is recommended to publish a dump in N-Quads format.

4.5 Sitemaps and Authority

While there is no official definition of authoritative information specifically for the
Semantic Web, many currently agree on extending the standard definition given
in Architecture of the World Wide Web, Volume One [9], which links authority to
the ownership of the domain name in which the URIs are minted.

For example, a piece of information coming from the owner of the domain
example.com would be considered authoritative about the URI http://
example.com/resource/JohnDoe. Following this definition, any information ob-
tained by resolving the URI of information resources served as Linked Data can
be considered authoritative, as it comes from the same domain where the URI
is hosted.


http://example.com/resource/JohnDoe
http://example.com/resource/JohnDoe

Semantic Sitemaps: Efficient and Flexible Access 699

However, no mechanism is currently defined to get information about such an
authority: The only possibility for this is via DNS domain records, which are
outside the actual Web architecture.

For this reason the Semantic Sitemap extension proposes an <sc:authority>
element, which is used at the top level of a sitemap file to specify a URI identi-
fying the person, organization or other entity responsible for the sitemap’s URI
space. This is only useful if the URI is resolvable and yields additional informa-
tion about the authority. The authority URI has to be within the sitemap’s URI
space, which makes the authority responsible for providing their own description.

The semantics of <sc:authority> is such that, given an authority URI
a, for any document d within the sitemap’s URI space, there is an im-
plied RDF statement d dc:publisher a. For example, if a sitemap file in
the root directory of http://example.com/ declares an sc:authority of
http://example.com/foaf.rdf#me, then the entity denoted by that URI
is considered to be the publisher of all documents whose URI starts with
http://example.com/. It has to be kept in mind that publication does not
necessarily imply endorsement; it merely means that a is responsible for making
d available. To express a propositional attitude, like assertion or quotation, addi-
tional means are necessary, such as the Semantic Web Publishing Vocabulary [6].

Delegation of authority. The boundaries of DNS domains do not always match
the social boundaries of URI ownership. An authority sometimes delegates re-
sponsibility for chunks of URI space to another social entity. The Semantic
Sitemap specification accounts for this pattern. If another sitemap file is placed
into a sitemap’s URI space, then the second sitemap’s URI space is considered
to be not under the authority of the first. For example, publishing a sitemap
file at http://example/~alice/sitemap.xml delegates the subspace rooted at
http://example.com/~alice/.

Furthermore, robots.txt must link to a sitemap index file that in turn links
to both of the sitemap files. This ensures that all visitors get identical pictures
of the site’s URI space. The approach is limited: It only allows the delegation of
subspaces whose URIs begin with the same URI as the secondary sitemap file.

This feature proves to be very useful in properly assigning authority to Se-
mantic Web information published in popular URI spaces like purl.org.

Joining URI spaces. Besides partitioning of URI spaces, it is sometimes neces-
sary to join URI spaces by delegating responsibility of additional URIs to an
existing sitemap. This is particularly useful when a single dataset spans over
multiple domains, for example, if the SPARQL endpoint is located on a different
server. The joining of URI spaces is achieved by placing a sitemap file into each
of the spaces and having the <sc:subSitemap> element point to the other’s URI.
The sub-sitemap also needs a reciprocating <sc:parentSitemap> element. This
prevents fraudulent appropriation of URI spaces.

Authoritative descriptions from SPARQL endpoints and dumps. An RDF de-
scription of a URI w is considered authoritative if resolving u yields an RDF
document containing that description. An authoritative description is known to



700 R. Cyganiak et al.

originate directly from the party owning the URI u, and thus can be considered
to be definitive with regard to the meaning of u.

Providing authoritative information thus requires the publication of RDF in
the “RDF Web” style. Descriptions originating from SPARQL endpoints or RDF
dumps cannot be considered authoritative, because it cannot be assumed that
information about u from a SPARQL endpoint at URI e is indeed authorized
by the owner of u. The presence of a Semantic Sitemap, however, changes this.
If e and w and d are in the same sitemap’s URI space, then they originate from
the same authority, and therefore we can treat information from the SPARQL
endpoint as authoritative with respect to u even if u is not resolvable. This has
two benefits. First, it allows RDF publishers to provide definitive descriptions of
their URIs even if they choose not to publish RDF Web-style documents. Second,
it allows RDF consumers to discover authoritative descriptions of URIs that are
not resolvable, by asking the appropriate SPARQL endpoint or by extracting
from the RDF dump.

5 Evaluation

We now revisit the challenges identified in section and will show how the
Semantic Sitemaps proposal can address each of them.

Crawling performance. Crawling large Linked Data deployments takes a long
time and is potentially very expensive in terms of computing resources of the
remote server. An RDF publisher can make a dump of the merged Linked
Data documents available and announce both the <sc:1linkedDataPrefix> and
<sc:dataDump> in a sitemap file. Clients can now discover and download the
dump instead of crawling the site, thus dramatically reducing the required time.

Disconnected datasets. Not all datasets form a fully connected RDF graph.
Crawling such datasets can result in an incomplete reproduction of the dataset
on the client side. Sitemaps address this in two ways. Firstly, clients can again
choose to download a dump if it is made available. Secondly, by listing at least
one jsc:sampleURI; in each component of the graph, the publisher can help to
ensure a complete crawl even if no dump is provided.

Scattered RDF files. To find scattered, poorly linked RDF documents, an ex-
haustive crawl of the HTML Web is necessary. This is likely not cost-effective
for clients primarily interested in RDF, leading to missed documents. Site op-
erators can provide an exhaustive list of those documents using <sc:dataDump>
or <sc:sampleURI>.

Cataloging SPARQL endpoints. Even a full HTML Web crawl will not reveal
SPARQL endpoints, because support for the SPARQL protocol is not adver-
tised in any way when requests are made to a SPARQL endpoint URI. How-
ever, if a sitemap has been provided, the crawler can discover the services via
<sc:sparqlEndpoint>.



Semantic Sitemaps: Efficient and Flexible Access 701

Discovering a SPARQL endpoint for a given resource. If all we have is a URI, we
can resolve it to reveal some data about it. But to discover a potentially existing
SPARQL endpoint for asking more complex queries we can look for a sitemap
on the URI’s domain and inspect it for <sc:sparqlEndpoint> elements.

Provenance. Provenance is a built-in feature of the Web, thanks to the ground-
ing of HTTP URIs in the DNS. But control over parts of a domain is often
delegated to other authorities. Semantic Sitemaps allow site operators to make
this delegation visible, by appropriate placement of multiple sitemap files, and
also by employing <sc:subSitemap> and <sc:parentSitemap> elements.

Identifying RDF dumps. An HTML Web crawl will reveal links to many com-
pressed archive files. Some of them may contain RDF data when uncompressed,
but most of them will most likely contain other kinds of files. Downloading and
uncompressing all of those dumps is likely not cost-effective. Semantic Sitemap
files explicitly list the locations of RDF dumps in the <sc:dataDump> element
and therefore allow crawlers to avoid the cost of inspecting dumps that turn out
not to contain any RDF.

Closed-world queries about self-contained data. RDF semantics is based on
the open-world assumption and hence, when consuming RDF documents from
the Web, we can never be sure to have complete knowledge. So we can-
not with certainty give a negative answer to the question “Does Example,
Inc. have an employee named Eric?”. Datasets defined in Semantic Sitemaps
are natural candidates for applying local closed-world semantics. Drawing on
<sc:datasetLabel>, this allows us to give a stronger answer: “Example, Inc.
has not given information about such an employee in the dataset labeled Exam-
ple, Inc. Employee List.”

5.1 Processing of Large RDF Dumps

A major motivation for our proposal is its potential to reduce the cost, both
in raw time and computing resources, of indexing the largest RDF datasets
currently available on the RDF Web. These datasets are usually also available
as RDF dumps, and Semantic Sitemaps enable clients to download the dump
and avoid crawling. This section presents the results of some experiments into
quantifying the benefits of this approach and showing the general feasibility
of processing very large RDF dumps. We employ the Hadoop frameworkd for
parallel data processing on a “mini” cluster of low cost machines (single core,
4gb ram).

The issue with crawling large collections of RDF documents from a single
host, such as the UniProt datasets available on http://purl.uniprot.org, is
that a crawler has to space its request by a reasonable amount of time in order
to avoid overloading the server infrastructure. Semantic Web servers are likely

8 http://lucene.apache.org/hadoop/


http://lucene.apache.org/hadoop/

702 R. Cyganiak et al.

to be experimental and not optimized for high load. Therefore submitting more
than one request per second seems to be unadvisable for RDF crawlers.

The UniProt datasefd contains approximately 14M RDF documents. A full
crawl at this rate would take more than five months, and a full re-crawl to detect
updated documents would take another five months.

UniProt provides a dump (over 10 GB in size, compressed). The time for
gathering the data can thus be reduced to downloading of the dump files, plus
subsequent local data processing to slice the dumps into parts that are equivalent
to the individual documents. Each part describes a single resource. The parts can
be passed on to our indexing system grouped in .TAR.GZ files each containing
10000 individual RDF files.

The first step in our processing was to convert the dumps from the RDF /XML
format to N-Triples. The line-based N-Triples format can be more easily pro-
cessed with Hadoop’s off-the-shelf classes. We observed processing rates of about
60k triples/s for this format conversion. We did not attempt to further optimize
or parallelize this step.

For the actual slicing of the dumps we used Hadoop’s MapReduce [10] facility.
In the mapping phase, each triple is sorted into buckets based on the URIs
mentioned in the subject and object position. In the reduce phase, the triples in
each bucket are written to a separate file.

To gather some proof-of-concept results, we first processed the file uniref .nt
(270M triples) on a single machine, then two machines and then four. We then
ran a test on the complete UniProt dataset (1.4B triples) on four machines.

# Machines 1 2 4 4
# Triples 272M  272M 272M 1.456M
Conversion  1:17:01 1:19:30 1:19:10 6:19:28
MapReduce 10:04:35 5:18:55 2:56:54 16:36:26

These preliminary results show that processing of a very large RDF dump to
obtain slices equivalent to the documents that are being served as description
of the resources using the Linked Data paradigm is feasible. The processing
task can be parallelized, and the results indicate that, unlike with the crawling
approach, the data retrieval step is unlikely to be a bottleneck.

6 Adoption

Currently, the Sitemap Specification is currently available in its 5th releasdld.
The specification creation process involved a great deal of interaction with data
producers and developers alike. Most of this interaction happened in specialized
Mailing Lists and trough technical workshop dissemination [IT].

9 Available from
ftp://ftp.uniprot.org/pub/databases/uniprot/current release/rdf
19 http://sw.deri.org/2007/07/sitemapextension/


ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/rdf
http://sw.deri.org/2007/07/sitemapextension/

Semantic Sitemaps: Efficient and Flexible Access 703

The process has so far been very interactive, with data producers proposing
features and clarifications they considered important such as, for example split
datasets for DBpedia, and details on how to use a sitemap on shared domains
like purl.org.

Thanks to this direct interaction, adoption at Data Producer level has so far
been very satisfactory. Most large datasets provide a Semantic Sitemap and in
general we report that data producers have been very keen to add one when
requested given the very low overhead and the perceived lack of negative conse-
quences.

At consumer level and as discussed earlier, the Sindice Semantic Web indexing
engine adopts the protocol [3] and thanks to it has indexed, as today, more than
26 million RDF documents.

We can report that the SWSE Semantic Web Search Engine [4] will also soon
be serving data obtained thanks to dumps downloaded using this extension.

7 Future Work

While it is unlikely that the current specifications will change profoundly, we
envision that future versions of the Semantic Sitemaps will address issues such
as: Data published in formats such as RDFa and using GRDDL transformations,
datasets available in multiple versions, enhance SPARQL endpoint descriptions,
mirrored datasets and copyright and legal related information.

8 Conclusion

In this paper we have discussed an extension to the original Sitemap Protocol to
deal with large Semantic Web datasets. We have highlighted several challenges
to the way Semantic Web data have been previously published and subsequently
showed how these can be addressed by applying the proposed specifications, thus
allowing both clients and servers alike to provide and important novel function-
alities.

We have further verified the feasibility of an important use case: server side
“dump splitting” to efficiently process and index millions of documents from the
Semantic Web. We have showm that this task can be performed efficiently and
in a scalable fashion even with modest hardware infrastructures.

Acknowledgements

Many people have provided valuable feedback and comments about Semantic
Sitemaps including Chris Bizer (Free University Berlin), Andreas Harth (DERI
Galway), Aidan Hogan (DERI Galway), Leandro Lopez (independent), Stefano
Mazzocchi (SIMILE - MIT), Christian Morbidoni (SEMEDIA - Universita’ Po-
litecnica delle Marche), Michele Nucci (SEMEDIA - Universita’ Politecnica delle
Marche), Eyal Oren (DERI Galway), Leo Sauermann (DFKI)



704 R. Cyganiak et al.
References
1. Berners-Lee, T.: Tabulator: Exploring and Analyzing linked data on the Semantic

10.

11.

Web. In: Procedings of the The 3rd International Semantic Web User Interaction
Workshop (2006)

. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: Dbpedia: A

nucleus for a web of open data. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D.,
Lee, K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber,
G., Cudré-Mauroux, P. (eds.) ISWC 2007. LNCS, vol. 4825, pp. 722-735. Springer,
Heidelberg (2007)

. Tummarello, G., Oren, E., Delbru, R.: Sindice.com: Weaving the open linked data.

In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L., Golbeck,
J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.)
ISWC 2007. LNCS, vol. 4825, pp. 547-560. Springer, Heidelberg (2007)

. Harth, A., Hogan, A., Delbru, R., Umbrich, J., O’Riain, S., Decker, S.: Swse:

Answers before links! In: Semantic Web Challenge 2007, 6th International Semantic
Web Conference (2007)

. Ding, L., Finin, T., Joshi, A., Pan, R., Cost, R.S., Peng, Y., Reddivari, P., Doshi, V.,

Sachs, J.: Swoogle: a search and metadata engine for the semantic web. In: CIKM
2004: Proceedings of the thirteenth ACM international conference on Information
and knowledge management, pp. 652-659. ACM, New York (2004)

. Carroll, J., Bizer, C., Hayes, P., Stickler, P.: Named Graphs. Journal of Web Se-

mantics 3(4), 247-267 (2005)

. Stickler, P.: CBD - Concise Bounded Description (2005) (retrieved 09/25/2006),

http://www.w3.org/Submission/CBD/

. Tummarello, G., Morbidoni, C., Puliti, P., Piazza, F.: Signing individual fragments

of an rdf graph. In: WWW 2005: Special interest tracks and posters of the 14th
international conference on World Wide Web, pp. 1020-1021. ACM, New York
(2005)

. Jacobs, 1., Walsh, N.: Architecture of the World Wide Web, Volume One - W3C

Recommendation (2004) Retrieved 09/25/2006, http://www.w3.org/TR/webarch/
Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters.
In: OSDI 2004: Proceedings of the 6th conference on Symposium on Operating
Systems Design and Implementation, pp. 137-150 (2004)

Tummarello, G.: A sitemap extension to enable efficient interaction with large
quantity of linked data. In: Presented at W3C Workshop on RDF Access to Rela-
tional Databases (2007)


http://www.w3.org/Submission/CBD/
http://www.w3.org/TR/webarch/

	Semantic Sitemaps: Efficient and Flexible Access to Datasets on the Semantic Web
	Introduction
	The Sitemap Protocol and robots.txt
	The State of RDF Publishing
	Access Methods to RDF Data
	Current Limitations
	Related Work

	The Semantic Sitemaps Extension
	Datasets
	Adding Dataset Descriptions to the Sitemap Protocol
	Other Elements
	Defining the DESCRIBE Operator
	Sitemaps and Authority

	Evaluation
	Processing of Large RDF Dumps

	Adoption
	Future Work
	Conclusion



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




