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Abstract. Exploiting the complex structure of relational data enables
to build better models by taking into account the additional information
provided by the links between objects. We extend this idea to the Se-
mantic Web by introducing our novel SPARQL-ML approach to perform
data mining for Semantic Web data. Our approach is based on traditional
SPARQL and statistical relational learning methods, such as Relational
Probability Trees and Relational Bayesian Classifiers.

We analyze our approach thoroughly conducting three sets of experi-
ments on synthetic as well as real-world data sets. Our analytical results
show that our approach can be used for any Semantic Web data set to
perform instance-based learning and classification. A comparison to ker-
nel methods used in Support Vector Machines shows that our approach
is superior in terms of classification accuracy.

1 Introduction

The success of statistics-based techniques in almost every area of artificial in-
telligence and in practical applications on the Web challenges the traditional
logic-based approach of the Semantic Web. We believe that we should treat
statistical inference techniques as a complement to the existing Semantic Web
infrastructure. Consequently, a big challenge for Semantic Web research is not
if, but how to extend the existing Semantic Web techniques with statistical
learning and inferencing capabilities. In this paper we (1) argue that the large
and continuously growing amount of interlinked Semantic Web data is a perfect
match for statistical relational learning (SRL) methods due to their focus on rela-
tions between objects in addition to features/attributes of objects of traditional,
propositional data mining techniques; and (2) show two concrete Semantic Web
research areas, where machine learning support is useful: service classification
[6] and semantic data prediction [1]. Moreover, we think that the fact that com-
panies such as Microsoft and Oracle have recently added data mining extensions
to their relational database management systems underscores their importance,
and calls for a similar solution for RDF stores and SPARQL respectively.

To support the integration of traditional Semantic Web techniques and ma-
chine learning-based, statistical inferencing, we developed an approach to create
and work with data mining models in SPARQL. Our framework enables to pre-
dict/classify unseen data (or features) and relations in a new data set based on
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the results of a mining model. In particular, our approach enables the usage
of SRL methods, which take the relations between objects into account. This
allows us to induce statistical models without prior propositionalization (i.e.,
translation to a single table) [2]—a cumbersome and error-prone task.

Our Contributions. We propose a novel extension to SPARQL called SPARQL-
ML to support data mining tasks for knowledge discovery in the Semantic Web.
Our extension introduces new keywords to the SPARQL syntax to facilitate the
induction of models as well as the use of the model for prediction/classification.
We, therefore, extend the SPARQL grammar with the CREATE MINING MODEL and
the PREDICT statements (among others) as explained in Section 4.

To ensure the extensibility of SPARQL-ML with other learning methods, we
created the SPARQL Mining Ontology (SMO) that enables the seamless inte-
gration of additional machine learning techniques (see Section 4). We show that
SRLs—we use Relational Probability Trees (RPTs) and Relational Bayesian
Classifiers (RBCs) [10,11]—are able to exploit the rich and complex heteroge-
neous relational structure of Semantic Web data (Section 5).

Experimental Results. To validate our approach, we perform three sets of
experiments (all in Section 5): first, in the project success experiment, we show
that, using a synthetic data set, the combination of statistical inference with
logical deduction produces superior performance over statistical inference only;
second, the Semantic Web service domain prediction experiment expands on
these findings using a well-known Semantic Web benchmarking data set; last,
the SVM-benchmark experiment shows the superiority of our approach compared
to a state-of-the-art kernel-based Support Vector Machine (SVM) [1] using a
real-world data set.

2 Related Work

Little work has been done so far on seamlessly integrating knowledge discovery
capabilities into SPARQL. Recently, Kochut and Janik [9] presented SPAR-
QLeR, an extension of SPARQL to perform semantic association discovery in
RDF (i.e., finding complex relations between resources). One of the main ben-
efits of our work is that we are able to use a multitude of different, pluggable
machine learning techniques to not only perform semantic association discovery,
but also classification and clustering.

Similarily, Gilardoni et al. [4] argued that machine learning techniques are
needed to build a semantic layer on top of the traditional Web. Therefore, the
support from tools that are able to work autonomously is needed to add the
required semantic annotations. We claim that our SPARQL-ML approach offers
this support and, thus, facilitates the process of (semi-) automatic semantic
annotation (through classification).

We are aware of two independent studies that focus on data mining techniques
for Semantic Web data using Progol—an Inductive Logic Programming (ILP)
system. Edwards et al. [3] conducted an empirical investigation of the quality
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of various machine learning methods for RDF data classification, whereas Hart-
mann [5] proposed the ARTEMIS system that provides data mining techniques
to discover common patterns or properties in a given RDF data set. Our work ex-
tends their suggestions in extending the Semantic Web infrastructure in general
with machine learning approaches, enabling the exploration of the suitability of
a large range of machine learning techniques (as opposed to few ILP methods)
to Semantic Web tasks without the tedious rewriting of RDF data sets into logic
programming formalisms.

A number of studies relate to our experiments in Section 5. The study of Hess
and Kushmerick [6] presented a machine learning approach for semi-automatic
classification of web services. Their proposed application is able to determine
the category of a WSDL web service and to recommend it to the user for further
annotation. They treated the determination of a web service’s category as a text
classification problem and applied traditional data mining algorithms, such as
Naive Bayes and Support Vector Machines. Our second experiment (see Section
5.2) is similar in that it employs OWL-S service descriptions. In contrast to [6],
we employ SRL algorithms to perform service classification.

Last, Bloehdorn and Sure [1] explored an approach to classify ontological
instances and properties using SVMs (i.e., kernel methods). They presented a
framework for designing such kernels that exploit the knowledge represented
by the underlying ontologies. Inspired by their results, we conducted the same
experiments using our proposed SPARQL-ML approach (see Section 5.3). Initial
results show that we can outperform their results by a factor of about 10%.

3 Background—A Brief Introduction to SRL

We briefly review the two statistical relational learning (SRL) methods we use
in this paper: Relational Bayesian Classifiers (RBCs) and Relational Probability
Trees (RPTs). These methods have been shown to be very powerful for SRL,
as they model not only the intrinsic attributes of objects, but also the extrinsic
relations to other objects [2,10,11].

3.1 Relational Bayesian Classifiers (RBCs)

An RBC is a modification of the traditional Simple Bayesian Classifier (SBC)
for relational data [11]. SBCs assume that the attributes of an instance are con-
ditionally independent of its class C. Hence, the probability of the class given an
example instance can be computed as the product of the probabilities of the ex-
ample’s attributes A1, . . . , An given the class (e.g., P (C = Y ES | A1, . . . , An) =
αP (C = Y ES)

∏n
i=1 P (Ai | C = Y ES), where α is a scaling factor dependent

only on the attributes A1, . . . , An). RBCs apply this independence assumption
to relational data. Before being able to estimate probabilities, RBCs decompose
(flatten) structured examples down to the attribute level.

Figure 1 shows an example instance (subgraph) to predict the success of a
business project in a relational data set. This heterogeneous instance is trans-
formed to homogenous sets of attributes shown in the table on the right. The
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Member
Member

Member

Member
Member

Company Project

Experience Age

Success Member’s Age Member’s Exp.
YES {23,25,37,32,41} {2,4,3,1,12}
YES {18,25} {1,7}
NO {17,26,45} {1,3,17}
... ... ...

Fig. 1. Example relational data represented as subgraph [11] on the left, and decom-
posed by attributes on the right

attributes for the prediction of the project success include the age and experi-
ence distributions of the project members. Each row in the table stands for a
subgraph, each column represents one of its attributes, and the cells contain the
multisets (or distributions) of values of attributes.

Learning an RBC model then basically consists of estimating probabilities for
each attribute. Such estimation methods include, but are not limited to, average-
value and independent-value estimations [11]. As an example for average-value
estimation, the probability of a business project B to be successful (i.e., C =
Y ES) based only on the attribute “Member Age” (i.e., the project members
age distribution) could be estimated by P (C = Y ES | B) = αP (AverageAge ≥
33 | C = Y ES)P (C = Y ES). For an elaborate treatment of this estimation
techniques, please refer to the papers of Neville et al. [10,11].

3.2 Relational Probability Trees (RPTs)

RPTs extend standard probability estimation trees (also called decision trees)
to a relational setting, in which data instances are heterogeneous and interde-
pendent [10]. The algorithm first transforms the relational data to multisets
of attributes (Figure 1). It then attempts to construct an RPT by searching
over the space of possible binary splits of the data based on the relational
features, until further processing no longer changes the class distributions
significantly.

Figure 2 shows an example RPT for the task of predicting whether or not a
business project is successful. The leaf nodes show the distribution of the training
examples (that “reached the leaf”) and the resulting class probabilities of the
isSuccessful target label. Note that the probability estimates are smoothed by a
Laplace correction (i.e., p+1

N+C , where p is the number of examples of a specific
class, N the total number of examples, and C the number of classes). For the
topmost left leaf this evaluates to P (Y ES) = 0+1

117+2 = 0.008 [13].
The features for splitting the data are created by mapping the multisets of

values into single value summaries with the help of aggregation functions [10].
For our business project example in Figure 1 the root node splits the data (i.e.,
the projects) along the summary count(Non-Managers) into projects with less
than 4 non-managers and those with four or more non-managers.
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count([type.class]=
ex:Non-Manager)>=4

count([type.class]=
ex:Manager)>=3

mode([hasTeam.
member])=ex:P17

P(YES)=0.008 (0/117)
P(NO)=0.992 (117/117)

P(YES)=0.976 (40/40)
P(NO)=0.024 (0/40)

P(YES)=0.25 (0/2)
P(NO)=0.75 (2/2)

P(YES)=0.767 (32/41)
P(NO)=0.233 (9/41)

Y

Y

Y

N

N

N

Fig. 2. Example RPT (pruned) to predict the successfulness of business projects

4 Our Approach: SPARQL-ML

SPARQL-ML (SPARQL Machine Learning) is an extension of SPARQL that
extends the Semantic Web query language with knowledge discovery capabilities.
Our extensions add new syntax elements and semantics to the official SPARQL
grammar described in [15]. In a nutshell, SPARQL-ML facilitates the following
two tasks on any Semantic Web data set: (1) train/learn/induce a model based
on training data using the new CREATE MINING MODEL statement (Section 4.1);
and (2), apply a model to make predictions via two new property functions
(Section 4.2). The model created in the CREATE MINING MODEL step follows the
definitions in our SPARQL Mining Ontology (SMO) presented in Section 4.1.

We implemented SPARQL-ML as an extension to ARQ—the SPARQL query
engine for Jena.1 Our current version of SPARQL-ML 2 supports, but is not
limited to Proximity3 and Weka4 as data mining modules. Note that to preserve
the readability of this paper we focus solely on supervised induction methods
(in particular classification/regression), even though SPARQL-ML supports the
whole breadth of machine learning methods provided by its data mining modules.

4.1 Learning a Model

SPARQL-ML enables to induce a classifier (model) on any Semantic Web train-
ing data using the new CREATE MINING MODEL statement. The chosen syntax was
inspired by the Microsoft Data Mining Extension (DMX) that is an extension
of SQL to create and work with data mining models in Microsoft SQL Server
Analysis Services (SSAS) 2005.5

The extended SPARQL grammar is tabulated in Table 1 and Listing 1.1
shows a particular example query (used in Section 5.1). Note that we omit pre-
fixes in all queries for compactness. Our approach adds the CreateQuery symbol
to the official SPARQL grammar rule of Query [15]. The structure of Create-
Query resembles the one of SelectQuery, but has complete different semantics:
1 http://jena.sourceforge.net/
2 Available at http://www.ifi.uzh.ch/ddis/sparql-ml.html
3 http://kdl.cs.umass.edu/proximity/index.html
4 http://www.cs.waikato.ac.nz/ml/weka/
5 http://technet.microsoft.com/en-us/library/ms132058.aspx

http://jena.sourceforge.net/
http://www.ifi.uzh.ch/ddis/sparql-ml.html
http://kdl.cs.umass.edu/proximity/index.html
http://www.cs.waikato.ac.nz/ml/weka/
http://technet.microsoft.com/en-us/library/ms132058.aspx
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Table 1. Extended SPARQL grammar for the CREATE MINING MODEL statement

[1] Query ::= Prologue( SelectQuery | ConstructQuery | DescribeQuery | AskQuery |
CreateQuery )

[2] CreateQuery ::= CREATE MINING MODEL’ SourceSelector ’{’ Var ’RESOURCE’ ’TARGET’ (
Var ( ’RESOURCE’ | ’DISCRETE’ | ’CONTINUOUS’ ) ’PREDICT’? )+ ’}’
DatasetClause* WhereClause SolutionModifier UsingClause

[1.2] UsingClause ::= ’USING’ SourceSelector BrackettedExpression

1 ������ �����	 �
��� <http://www.example .org/projectSuccess >
2 { ?project ��

���� ���	��

3 ?success ��
����� ������� {’YES’,’NO’}
4 ?member ��

����

5 ?class ��

����

6 }
7 �����

8 { # SPARQL Basic Graph Pattern (BGP) matching part (lines 9 -11)
9 ?project ex:isSuccess ? success .

10 ?project ex:hasTeam ?member .
11 ?member rdf:type ?class .
12 } �
��	 <http://kdl.cs.umass.edu/proximity/rpt>

Listing 1.1. SPARQL-ML CREATE MINING MODEL query

the CreateQuery expands to Rule 1.1 adding the new keywords CREATE MINING
MODEL to the grammar followed by a SourceSelector to define the name of the
trained model. In the body of CreateQuery, the variables (attributes) to train
the model are listed. Each variable is specified with its content type, which
is currently one of the following: RESOURCE—variable holds an RDF resource
(IRI or blank node), DISCRETE—variable holds a discrete/nominal literal value,
CONTINUOUS—variable holds a continuous literal value, and PREDICT—tells the
learning algorithm that this feature should be predicted. The first attribute is
additionally specified with the TARGET keyword to denote the resource for which
a feature should be predicted (cf. Neville et al. [10]).

After the usual DatasetClause, WhereClause, and SolutionModifier, we in-
troduced a new UsingClause. The UsingClause expands to Rule 1.2 that adds
the new keyword USING followed by a SourceSelector to define the name and
parameters of the learning algorithm.
Semantics of ������ �����	 �
��� Queries. According to Pérez et al. [12],
a SPARQL query consists of three parts: the pattern matching part, the solution
modifiers, and the output. In that sense, the semantics of the CREATE MINING
MODEL queries is the construction of new triples describing the metadata of the
trained model (i.e., a new output type). An example of such metadata for a
particular model is shown in Listing 1.2, which follows the definitions of our
SPARQL Mining Ontology (SMO) in Figure 3. The ontology enables to perma-
nently save the parameters of a learned model, which is needed by the predict
queries (see next section). The ontology includes the model name, the used learn-
ing algorithm, all variables/features being used to train the classifier, as well as
additional information, such as where to find the generated model file. In Listing
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Model Algorithm

Feature

MiningApp

Param

ModelFile

hasFeature

hasModelFile hasMiningApp

usesAlgorithm

hasParam

CONTINUOUS

STRING

hasVarName

DISCRETE

RESOURCE

hasFeatureType

INTEGER

isPredict

STRING

STRING

hasModelName

hasDescrip�on

STRING

hasName

ANYTYPE

hasValue

STRING

hasAlgorithmName

STRING

hasDescrip�on

STRING STRING

hasAppNamehasDescrip�on

hasNominalValues

rdf:Bag

STRING

creator

STRING

rdf:li

Link

hasLink
linkFrom

STRING

linkName

linkTo

Fig. 3. SPARQL-ML Mining Ontology (SMO)

1.2, lines 1–7 show the constructed triples of a model with name projectSuccess,
while lines 9–15 show the metadata for a particular feature of the model.

4.2 Making Predictions

After inducing a model with CREATE MINING MODEL, SPARQL-ML allows the
user to make predictions with the model via two new property functions (i.e.,
sml:predict and sml:mappedPredict).6 The concept behind property func-
tions is simple: whenever the predicate of a triple pattern is prefixed with a
special name (i.e., sml), a call to an external function is made and arguments
are passed to the function (in our case by the object of the triple pattern).

The example query in Listing 1.3 explains the usage of sml:mappedPredict
(line 7). As arguments, the function takes the identifier of the previously learned
model (Section 4.1) and the instance as defined by the parameters used whilst
training the model (in our case specified by the variables ?project, ?success,
?member, and ?class). In Listing 1.1, we induced a classifier to predict the value
for the variable ?success on the training data. This classifier is then used on
line 7 in Listing 1.3 to predict the value for ?award on the test data. The result
of the prediction, either ’YES’ or ’NO’, and its probability are finally bound on
line 6 to the variables ?prediction and ?probability respectively.

One benefit of the chosen approach is that we are able to use a number of dif-
ferent models in the same query. In some sense, the property functions introduce
virtual triples [8] (i.e., for the predictions and probabilities) into the query result
set that are computed at run-time rather than present in the knowledge base.

Semantics of Predict Queries. The semantics of our predict queries is ba-
sically that of a prediction join:7 (1) mappedPredict maps the variables in the

6 http://jena.sourceforge.net/ARQ/extension.html#propertyFunctions
7 http://msdn2.microsoft.com/en-us/library/ms132031.aspx

http://jena.sourceforge.net/ARQ/extension.html#propertyFunctions
http://msdn2.microsoft.com/en-us/library/ms132031.aspx
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1 <http://www.example .org/projectSuccess >
2 smo:hasModelFile <http://www.example .org/ projectSuccess/model_RPT.xml > ;
3 smo:hasFeature <http://www.example .org/ projectSuccess#project > ;
4 smo:hasFeature <http://www.example .org/ projectSuccess#success > ;
5 smo:usesAlgorithm <http://kdl.cs.umass.edu/ proximity/rpt > ;
6 smo:hasModelName "projectSuccess" ;
7 a smo:Model .
8
9 <http://www.example .org/ projectSuccess#success >

10 smo:hasVarName "success " ;
11 smo:isPredict "1" ;
12 smo:hasFeatureType " DISCRETE " ;
13 smo:hasLink <http://www.example .org/ projectSuccess/link/isSuccessful > ;
14 smo:hasNominalValues _:b1 ;
15 a smo:Feature .
16
17 <http://www.example .org/ projectSuccess/link/isSuccessful >
18 smo:linkName "isSuccess" ;
19 smo:linkFrom <http://www.example .org/ projectSuccess#project > ;
20 a smo:Link .
21
22 _:b1 rdf:li "NO" ;
23 rdf:li "YES" ;
24 a rdf:Bag .

Listing 1.2. Example metadata for a learned classifier

1 
����� ��
����� ?person ?award ?prediction ?probability
2 �����

3 { ?person ex:hasAward ?award .
4 ?person ex:hasFriend ? friend .
5 ?friend rdf:type ?class .
6 ( ?prediction ?probability )
7 sml:mappedPredict ( <http://www.example .org/projectSuccess >
8 ’?project = ?person ’ ’?success = ?award ’
9 ’?member = ?friend ’ ’?class = ?class ’ )

10 }

Listing 1.3. SPARQL-ML example predict query 1: apply the model on a data set
with a different ontology structure

Basic Graph Pattern (BGP) to the features in the specified model, which al-
lows us to apply a model on a data set with a different ontology structure; (2)
mappedPredict creates instances out of the mappings according to the induced
model; (3) the model is used to classify an instance as defined in the CREATE
MINING MODEL query (Listing 1.1); and (4), the values of the prediction and its
probability are bound to variables in the predict query (line 6 in Listing 1.3).
Note that we also defined a shorter version for mappedPredict in case the model
is used on the same data set (i.e., sml:predict; Listing 1.4).

5 Experimental Analysis

The goal of our experiments was to show the usefulness and the simplicity of
the integration of machine learning methods with the existing Semantic Web
infrastructure. Furthermore, we wanted to show the advantage that the com-
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1 
����� ��
����� ?project ?success ?prediction ?probability
2 �����

3 { ?project ex:isSuccess ? success .
4 ?project ex:hasTeam ?member .
5 ?member rdf:type ?class .
6 ( ?prediction ?probability )
7 sml:predict ( <http://www.example .org/projectSuccess >
8 ?project ?success ?member ?class )
9 }

Listing 1.4. SPARQL-ML example predict query 2: apply the model on a data set
with the same ontology structure

bination of logic deduction and statistical induction holds over induction only.
Last, we wanted to compare the performance of the SRL algorithms that we
integrated into SPARQL-ML with another state-of-the-art approach. To that
end, we conducted three experiments. The project success experiment and the
Semantic Web service domain prediction experiment both show the ease of use
as well as the advantage of the combination of induction and deduction. The
SVM-benchmark experiment compares the prediction performance of our ap-
proach to another state-of-the-art method. In the following, we present each of
the experiments in detail describing our experimental setup and discussing the
empirical results.

5.1 The Project Success Experiment

Evaluation Procedure and Data Set. In order to show the ease of use and
predictive capability of our system, we put together a proof of concept setting
with a small, artificially created data set. We chose an artificial data set to better
understand the results and to reduce any experimental noise. The constructed
business project data set consists of different business projects and the employees
of an imaginary company. The company has 40 employees each of which having
one out of 8 different occupations. Figure 4 shows part of the created ontol-
ogy in more detail. 13 employees belong to the superclass Manager, whereas 27
employees belong to the superclass Non-Manager.

We then created business projects and randomly assigned up to 6 employees
to each project. The resulting teams consist of 4 to 6 members. Finally, we
randomly defined each project to be successful or not, with a bias for projects
being more successful, if more than three team members are of type Manager.
The resulting data set contains 400 projects with different teams. The prior
probability of a project being successful is 35%. We did a 50:50 split of the data
and followed a single holdout procedure, swapping the roles of the testing and
training set and averaged the results.
Experimental Results. Listing 1.1 shows the CREATE MINING MODEL query
that we used in the model learning process. We tested different learning algo-
rithms with and without the support of inferencing. With the reasoner disabled,
the last triple pattern in the WHERE clause (line 11) matches only the direct type
of the received employee instance (i.e., if an employee is a ’direct’ instance of
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Person

Non-ManagerManager

DivisionMgrProduc�onMgrBoardMember SalesMgr SalesProduc�onAdministra�on Marke�ng

Fig. 4. Example business ontology

class Manager). This is the typical situation in relational databases without the
support of inheritance. With inferencing enabled, the last triple pattern also
matches all inferred types, indicating if an employee is a Manager or not.

Given the bias in the artificial data set, it is to be expected that the ability
to infer if a team member is a Manager or not is central to the success of the
induction procedure. Consequently, we would expect that models induced on
the inferred model should exhibit a superior performance. The results shown in
Figure 5 confirm our expectations. The Figure shows the results in terms of pre-
diction accuracy (ACC; in legend), Receiver Operating Characteristics (ROC;
graphed), and the area under the ROC-curve (AUC; also in legend). The ROC-
curve graphs the true positive rate (y-axis) against the false positive rate (x-axis),
where an ideal curve would go from the origin to the top left (0,1) corner, before
proceeding to the top right (1,1) one [14]. It has the advantage to show the pre-
diction quality of a classifier independent of the distribution (and, hence, prior)
of the underlying data set. The area under the ROC-curve is, typically, used
as a summary number for the curve. Note that a random assignment whether
a project is successful or not is also shown as a line form the origin (0,0) to
(1,1). The learning algorithms shown are a Relational Probability Tree (RPT),
a Relational Bayes Classifier (RBC), both with and without inferencing, and, as
a baseline, a k-nearest neighbor learning algorithm (k-NN) with inferencing and
k = 9 using a maximum common subgraph isomorphism metric [16] to compute
the closeness to neighbors.

As the Figure shows, the relational methods clearly dominate the baseline
k-NN approach. As expected, both RPT and RBC with inferencing outperform
the respective models without inferencing. It is interesting to note, however, that
RPTs seem to degrade more with the loss of inferencing than RBCs. Actually,
the lift of an RBC with inferencing over an RBC without inferencing is only
small. These results support our assumption that the combination of induction
and deduction should outperform pure induction. The major limitation of this
finding is the artificial nature of the data set. We, therefore, decided to conduct
a second experiment with the same goal using a real-world data set, which we
present next.

5.2 The Semantic Web Service Domain Prediction Experiment

Evaluation Procedure and Data Set. Our first experiment showed that
SPARQL-ML can easily induce and apply accurate models that rely on inferred
data. The goal of our second set of experiments was to provide further support
for these findings using a real-world test-collection in a non-binary classifica-



488 C. Kiefer, A. Bernstein, and A. Locher

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

RPT w/ inf: acc = 0.928, auc = 0.980
RPT w/o inf: acc = 0.783, auc = 0.835
RBC w/ inf: acc = 0.895, auc = 0.948

RBC w/o inf: acc = 0.873, auc = 0.934
k-NN w/ inf: acc = 0.730, auc = 0.806

random

Fig. 5. ROC-Curves of business project success prediction

tion task. Specifically, we used the OWLS-TC v2.1 service retrieval test collec-
tion that contains 578 OWL-S Semantic Web service descriptions.8 OWLS-TC
contains OWL-S services in seven service categories: communication, economy,
education, food, medical, travel, and weapon. The prior distribution of the ser-
vices is communication = 5.02%, economy = 35.63%, education = 23.36%,
food = 4.33%, medical = 8.99%, travel = 18.34%, and weapon = 4.33% (i.e.,
economy is the domain with most services).

For our experiments, we induced an RPT to predict the service category of a
service based on its input and output concepts. We limited our investigations to
the I/O parameters as we believe that they are most informative for this task.
Again, we ran the experiment once on the asserted and once on the (logically)
inferred model. Furthermore, we performed a 10-fold cross validation, where 90%
of the data was used to learn a classification model and the remaining 10% to
test the effectiveness of the learned model. This approach is standard practice
in machine learning.

Experimental Results. Listing 1.5 shows the CREATE MINING MODEL query
that we used in the model learning step. By using OPTIONAL patterns, we enable
the inclusion of services with no outputs or inputs. The additional OPTIONAL
pattern for the rdfs:subClassOf triple enables us to run the same query on the
asserted and the inferred data.

The averaged classification accuracy of the results of the 10 runs is 0.5102
on the asserted and 0.8288 on the inferred model. Hence, the combination of
logical deduction with induction improves the accuracy by 0.3186 over pure
induction. The detailed results in Table 2 further confirm the results for all
seven domains by listing the typical data mining measures false positive rate
(FP Rate), Precision, Recall, and F-measure for all categories. As the results of
the t-test show, the differences for Recall and F-measure are (highly) significant.
The results for Precision just barely misses significance at the 95% level.

8 http://projects.semwebcentral.org/projects/owls-tc/

http://projects.semwebcentral.org/projects/owls-tc/
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1 ������ �����	 �
��� <http://www.ifi.uzh.ch/ddis/services >
2 { ?service ��

���� ���	��

3 ?domain ��
����� �������

4 { ’communication’,’economy ’,’education’,’food’,’medical ’,’travel ’,
5 ’weapon ’
6 }
7 ?profile ��

����

8 ?output ��

����

9 ?outputType ��

����

10 ?outputSuper ��

����

11 ?input ��

����

12 ?inputType ��

����

13 ?inputSuper ��

����

14 }
15 �����

16 { ?service service :presents ?profile .
17 ?service service : hasDomain ?domain .
18 
���
���

19 { ?profile profile : hasOutput ?output .
20 ?output process : parameterType ?outputType .
21 
���
���

22 { ?outputType rdfs:subClassOf ?outputSuper . }
23 }
24 
���
���

25 { ?profile profile :hasInput ?input .
26 ?input process : parameterType ?inputType .
27 
���
���

28 { ?inputType rdfs:subClassOf ?inputSuper . }
29 }
30 } �
��	 <http://kdl.cs.umass.edu/proximity/rpt> (’maxDepth ’ = 6)

Listing 1.5. CREATE MINING MODEL query for service classification

Table 2. Detailed results for the Semantic Web service classification experiments

Domain FP Rate Precision Recall F-measure
w/o inf w/ inf w/o inf w/ inf w/o inf w/ inf w/o inf w/ inf

communication 0.007 0.004 0.819 0.900 0.600 0.600 0.693 0.720
economy 0.081 0.018 0.810 0.964 0.644 0.889 0.718 0.925
education 0.538 0.090 0.311 0.716 0.904 0.869 0.463 0.786
food 0 0.002 0 0.960 0 0.800 0 0.873
medical 0.006 0.030 0 0.688 0 0.550 0 0.611
travel 0 0.069 1 0.744 0.245 0.873 0.394 0.803
weapon 0.002 0.002 0.917 0.964 0.367 0.900 0.524 0.931
average 0.091 0.031 0.551 0.848 0.394 0.783 0.399 0.807
t-test (paired, one-tailed) p=0.201 p=0.0534 p=0.00945 p=0.0038

When investigating the structure of the relational probability trees, the trees
induced on the inferred model clearly exploit inheritance relations using the
rdfs:subClassOf predicate, indicating that the access to the newly inferred
triples improves the determination of a service’s category. These observations
further support our finding that a combination of deduction and induction is
useful for Semantic Web tasks and can be easily achieved with SPARQL-ML.

5.3 The SVM-Benchmark Experiment

Evaluation Procedure and Data Set. With our third set of experiments, we
aimed to show possible advantages of SPARQL-ML over another state-of-the-art
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method. Specifically, we compared the off-the-shelf performance of a simple 19-
lines SPARQL-ML statement (see Listing 1.6) with a Support Vector Machine
(SVM) based approach proposed by Bloehdorn and Sure [1] following exactly
their evaluation procedure.9 In their work, they introduced a framework for the
design and evaluation of kernel methods that are used in Support Vector Ma-
chines, such as SV M light [7]. The framework provides various kernels for the
comparison of classes as well as datatype and object properties of instances.
Moreover, it is possible to build customized, weighted combinations of such ker-
nels. Their evaluations include two tasks: (1) prediction of the affiliation a person
belongs to (person2affiliation), and (2) prediction of the affiliation a publication
is related to (publication2affiliation).

As a dataset they used the SWRC ontology—a collection of OWL annota-
tions for persons, publications, and projects, and their relations from the Uni-
versity of Karlsruhe.10 The data contains 177 instances of type Person, 1155
of type Publication, as well as some instances of types Topic, Project, and
ResearchGroup.

For the person2affiliation task, we used the worksAtProject and worksAt-
Topic (essentially workedOnBy) object properties as well as properties pointing
to the publications of a given person (publication). For the publication2af-
filiation task, we used the isAbout and author object properties pointing to
associated topics and authors respectively. In order to predict the affiliation a
publication is related to, we defined the affiliation to be the research group,
where the major part of the authors of this publication belong to.

Experimental Results. Table 3 summarizes the macro-averaged results that
were estimated via Leave-One-Out Cross-Validation (LOOCV). We applied both,
an RBC and an RPT learning algorithm to both tasks. The table also reports the
best-performing SVM results from Bloehdorn and Sure’s experiments. The RBC
clearly outperformed the RPT in both predictions, hence, we report only on the
results given by the RBC. For both tasks the performance of the inferred model
is not very different from the one induced on the asserted model. When consult-
ing Listing 1.6 (for person2affiliation) it is plausible to conclude that the only
inferred properties (types of persons and publications) do not help to classify a
person’s or a publication’s affiliation with an organizational unit.

As Table 3 also shows, our method clearly outperforms the kernel-based ap-
proach in terms of prediction error, recall, and F-Measure, while having an only
slightly lower precision. The slightly lower precision could be a result of the limi-
tation to just a few properties used by an off-the-shelf approach without a single
parameter setting, whereas the SVM approach is the result of extensive testing
and tuning of the kernel method’s properties and parameters.

We conclude from this experiment, that writing a SPARQL-ML query is a
simple task for everyone familiar with the data and the SPARQL-ML syntax.
Kernels, on the other hand, have the major disadvantage that the user has to

9 We would like to thank them for sharing the exact data set used in their paper.
10 http://ontoware.org/projects/swrc/

http://ontoware.org/projects/swrc/
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1 ������ �����	 �
��� <http://www.ifi.uzh.ch/ddis/affiliations >
2 { ?person ��

���� ���	��

3 ?group ��

���� �������

4 ?project ��

����

5 ?topic ��

����

6 ?publication ��

����

7 ?pertype ��

����

8 ?pubtype ��

����

9 }
10 �����

11 { ?person swrc:affiliation ? group .
12 ?person rdf:type ? personType .
13 
���
��� { ?person swrc: worksAtProject ? project . }
14 
���
��� { ?person swrc: worksAtTopic ?topic . }
15 
���
���

16 { ?person swrc: publication ?publication .
17 ?publication rdf:type ?publicationType .
18 }
19 } �
��	 <http://kdl.cs.umass.edu/proximity/rbc>

Listing 1.6. CREATE MINING MODEL query for the person2affiliation task

Table 3. LOOCV results for the person2affiliation and publication2affiliation tasks

person2affiliation publication2affiliation

algorithm err prec rec F1 algorithm err prec rec F1

sim-ctpp-pc, c=1 4.49 95.83 58.13 72.37 sim-cta-p, c=10 0.63 99.74 95.22 97.43
RBC w/o inf 3.53 87.09 80.52 83.68 RBC w/o inf 0.09 98.83 99.61 99.22
RBC w/ inf 3.67 85.72 80.18 82.86 RBC w/ inf 0.15 97.90 99.25 98.57

choose from various kernels, kernel modifiers, and parameters. This constitutes
a major problem for users not familiar with kernels and SVM algorithms.

6 Conclusions, Limitations, and Future Work

We have presented a novel approach we call SPARQL-ML that extends tradi-
tional SPARQL with data mining support to perform knowledge discovery in
the Semantic Web. We showed how our framework enables to predict/classify
unseen data in a new data set based on the results of a mining model. In par-
ticular, we demonstrated how models trained by statistical relational learning
(SRL) methods outperform models not taking into account additional deduced
(or inferred) information about the links between objects.

We fully analyzed SPARQL-ML on synthetic and real-world data sets to show
its excellent prediction/classification quality as well as its superiority to other
related approaches, such as kernel methods used in Support Vector Machines.
Our approach is extensible in terms of the supported machine learning algorithms
and generic as it is applicable for any Semantic Web data set.

We note that the performance loss when mining on inferred knowledge bases
(see Table 3) is a limitation of the employed ontologies (or data sets) and not
of our approach and the used techniques themselves. We speculate that the loss
could be eliminated by using more comprehensive ontologies.
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Future work will evaluate further relational learning methods such as the ones
proposed by NetKit11 or Alchemy.12 Finally, given the usefulness and the ease
of use of our novel approach, we believe that SPARQL-ML could serve as a
standardized approach for data mining tasks on Semantic Web data.
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