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Abstract. This paper presents an approach to automated discovery of
high-order multivariate polynomials by inductive Genetic Programming
(iGP). Evolutionary search is used for learning polynomials represented
as non-linear multivariate trees. Optimal search performance is pursued
with balancing the statistical bias and the variance of iGP. We reduce
the bias by extending the set of basis polynomials for better agreement
with the examples. Possible overfitting due to the reduced bias is conter-
acted by a variance component, implemented as a regularizing factor of
the error in an MDL fitness function. Experimental results demonstrate
that regularized iGP discovers accurate, parsimonious, and predictive
polynomials when trained on practical data mining tasks.

1 Introduction

Inductive Genetic Programming (iGP) is considered a specialization of the Ge-
netic programming (GP) paradigm [7] for automated knowledge discovery from
data. The reasons for this specialization are [9]: 1) inductive knowledge disco-
very is a search problem and GP is a versatile framework for exploration of large
search spaces; 2) GP provides genetic operators that can be tailored to the par-
ticular data mining task; and 3) GP flexibly reformulates program solutions. An
advantage of iGP is that it automatically discovers the size of the solutions.

Previous research showed that iGP is successful for various data mining ap-
plications like: financial engineering [7], classification [2], time-series prediction
[I1], [5], etc.. A commonality in these evolutionary systems is that they discover
non-linear model descriptions, and construct non-linear discriminant boundaries
among the example data. This observation inspires us to consider Kolmogorov-
Gabor polynomial models represented as non-linear multivariate trees.

An iGP system for evolutionary discovery of multivariate high-order poly-
nomials, STROGANOFF [B], is enhanced. The intention is to achieve optimal
search performance which acquires solutions that are not only parsimonious and
accurate but also highly predictive. Our strategy to improving the performance
trades-off between the statistical bias and the statistical variance of iGP. Stati-
stical bias is the set of basis polynomials with which iGP constructs the target
polynomials. Statistical variance is the deviation of the learning efficacy from one
sample of examples to another sample that suggest the same target polynomial.
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The iGP control balances the statistical bias and variance in the following
way: 1) an extended set of basis polynomials is used to reduce the statistical
bias, thus to fit flexibly the examples; 2) a regularization technique is applied
to the fitness function to diminish the variance, in the sense of tendency to
overfit the particularities and noise in the examples. The effect of balancing the
statistical bias with a variance factor is increasing the degree of generalization
and improving the global search performance.

We implement an iGP system with the regularized MDL function, proportio-
nal selection, and application of the crossover and mutation operators dependent
on the tree size [9]. Mutation and crossover points are chosen with recombinative
guidance by the largest error in the tree nodes [3]. Empirical evidence for the
efficiency of this regularized iGP on data mining tasks is provided.

The next section of the paper gives the representation of multivariate high-
order polynomials as trees and explains how an extended basis set impacts the
search performance. Section three defines the regularized MDL-based fitness
function. The iGP performance with this fitness formula is investigated in section
four. Finally, a discussion is made and conclusions are derived.

2 Knowledge Discovery and Regression

The problem of inductive knowledge discovery can be formulated as a nonpa-
rametric regression problem. Given examples D = {(x;,;)}Y; of instantiated
vectors of independent variables x; = (1, s2, ..., Zi) € ]Rl7 and the dependent
variable y; € IR, the goal is to find models y = f(x). Due to noise perturbations,
the goal becomes to find the best approximation f(x) of the regression function
f (x) = Ely|x] by minimizing the empirical error on the examples. When the
normal distribution is considered, the least squares fitting criterion is used to
search for function f(x) that minimizes the average squared residual ASR:
LN
ASR = N Z(yi - f(x))* (1)

i=1

where y; is the true outcome of the i-th example, f(x;) is the estimated outcome
with this example x;, and N is the sample size.

2.1 Polynomials as Trees

We develop a knowledge discovery system that deals with high-order multi-
variate polynomials represented by non-linear multivariate trees [5). They are
interpreted as Kolmogorov-Gabor polynomials:

f(x) =ao+ Zaixi + Z Zaijwifrj + Z Z Zaijkxixjxk +... (2
i i i j ok

There are three main issues in the automated discovery of polynomial models:
1) how to find the polynomial coefficients; 2) which terms with which variables
to select; and 3) how to avoid overfitting with the example data.
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2.2 Set of Basis Polynomials

The polynomials are modeled according to the Group Method of Data Handling

(GMDH) [6]. A polynomial is a composition of bivariate basis polynomials in the

nodes and independent variables in the leaves. We extend the basis @ into a set

with all complete and incomplete, first and second order polynomials in order to

increase the flexibility of iGP to fit the data. The complete basis polynomial is:

fi(x) =a’h(x) (3)

which if all coefficients in a = (ag, a1, ..., a5) are non-zero, i.e. each a; # 0, 0 <
1 < 5, expands to:

fi(h(x)) = apho(x) + a1h1(x) + ... + ashs(x) (4)

) consists of simple

The vector h =(ho(x), h1(x), ha(x), hs(x), ha(x), hs(x
functions h; that produce the polynomial terms: ho(x) = 1, hi(x) = 1, ha(x) =
Ta, h3(X) = 2129, hy(x) = 22, and hs(x) = 23.

The basis set is derived from the complete second-order polynomial (4). The
total number of the incomplete polynomials is 25 from all 2° combinations of
monomials a;h;(x),l < i < 5, and the leading constant term ag, that contain
both the variables z1 and 5. We use a subset {$} = 17 of them after elimination
of the symmetric polynomials. The target polynomial f(x) is built by bottom-up
tree traversal, and composing the basis polynomials in the nodes.

The benefit of this cascaded tree-like representation of the polynomials is
that it allows tractable evaluation of complex, high-order models due to the
composition of simple functions with parameters that are computed fast. The
coeflicients at each tree node are calculated with the matrix formula:

a=(H'H)'H'y (5)
where H is a N x 6 matrix of vectors h; = (h;o, hi1, ..., his), it = 1.N, and y is
a N x 1 output vector. This is a solution of the ordinary least-squares (OLS)
fitting problem by the method of normal equations.

—_

2.3 Genetic Operators

The second issue in discovering high-order multivariate polynomials, raised in
subsection 2.1, concerns the organization of the iGP search for polynomial terms.
We use specific mutation and crossover operators.

The mutation operator is context-preserving [9]. It modestly transforms a
tree with three elementary submutations: 1) substitution of an arbitrary node
by another one; 2) insertion of a node as a parent of a subtree so that the subtree
becomes leftmost child of the new node; and 3) deletion of a node only when no
subtree below is to be cut. This mutation is applied with probability p,, = m|g|?,
where m is a free parameter and |g| is size of tree g.

The iGP crossover splices two trees with probability p. = ¢/ \/H , where ¢
is a free parameter, or swaps them. This crossover operator produces offsprings
with larger size than their parents if the parents are of very small size.

The convergence of the evolutionary iGP search process is accelerated by
recombinative guidance [5]. The tree nodes in which the basis polynomials have
largest ASR error are deterministically chosen for mutation and crossover.
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3 Regularization Approach to iGP

The third issue in discovering polynomials, raised in subsection 2.1, concerns
overfitting avoidance. The problem is to determine the polynomial terms and
coefficients with which it optimally approximates the data without overfitting.
Criteria for learning parsimonious and accurate models are given by the Mini-
mum Description Length (M DL) principle. The regularization theory provides
heuristics for increasing the predictability.

3.1 The MDL-Based Fitness Function

Adapted for the purpose of polynomial discovery, the MDL principle can be
stated as follows: given a set of examples and an effective enumeration of their
polynomial models, prefer with greatest confidence the polynomial which has

together high learning accuracy, and low structural complexity. We adopt the
following M D L-based fitness function []:

MDL = ASR + %02 log(N) (6)

where ASR is the average squared residual, A is the number of coefficients, IV
are the examples, 02 is a rough estimate of the error variance.

3.2 Statistical Bias and Variance
When trying to find polynomials from a fixed and finite example set the ASR
error may be low but this is not enough to anticipate a high generalization. The
reason is that often the examples are noisy. This may be combat by decomposing
of the error into a statistical bias and a variance component [4]. The statistical
bias, proportional to (Ep|[f(x)] — E[y|x])?, accounts only for the degree of fit-
ting the examples, but not for the level of extrapolation. This is the variance,
proportional to Ep[(f(x) — Ep[f(x)])?], that accounts for the generalization.

The risk of overfitting the examples could be minimized if a variance factor is
added to the error component of the fitness function. We introduce a correcting
complexity that penalizes large coefficients in a regularized average error RAE:

| X A
RAE = (3 (i — f(x:))* + k)_a3) (7)
i=1 j=1

where k is a regularization parameter. Motivation for this definition is that large
coeflicients imply a fluctuating polynomial with large amplitudes that overfits the
examples, while small coefficients imply more ”regular” approximation. We use
RAF in the M DL function instead ASR, which is called from now on M DLg.

The manner for calculating the polynomial coefficients can be derived from
the minimum of the function Zi]\il(yi —f(x)?+k Zle a3 with respect to the
coefficients a;, 1 < j < A, assuming the least squares fitting criterion:

a= (H'H+kI)"'H "y (8)

where I is the identity matrix. We select values for k relying on a proof that as
long as 0 < k < 202 /a’a the mean squared error of the identified polynomial is
smaller than this of the best estimator without correction.
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4 Search Performance

We present experimental results trying to answer the questions: whether the
reqularization approach to iGP can find polynomials with better predictive ca-
pacities than the ordinary iGP, assuming the old system STROGANOFF? How
does the regularization affects the generalization quality?

The iGP performance is studied with four data mining tasks from the ma-
chine learning repository [8]: Iris, Ionosphere, Glass, Credit, and Vehicle. Because
of the character of the system, experiments were conducted with iGP to find one
polynomial for each particular class from each of these tasks.

In Table 1 we give results, measured by the percentage of correctly recognized
training examples. The two iGP systems are related to a knowledge discovery
system Ltree that uses oblique decision trees, since it also finds non-linear
approximations of the data, and to the decision tree learning system C4.5 [10].
An oblique or a decision tree classifies the data into all classes, and the com-
parison with the polynomials is not straightforward. That is why, we computed
the average iGP variances from each group of polynomials that together learn
all classes of a task. The variances are evaluated by 10-fold cross-validation.

Data/class Best Ordinary iGP|Regularized iGP|  Ltree Cc4.5
Iris variance(%)| 99.7440.16 99.95+0.21 |97.15+£2.85(95.154+4.85
accuracy (%) 99.965 99.982 100 100
Tonosphere|variance(%)| 89.23+0.75 90.14+0.26 90.64+4.0 | 90.9+£5.0
accuracy(%) 92.44 93.37 94.6 95.9
Glass variance(%) | 72.5545.04 78.10+3.62 65.5£8.0 | 67.7+12.0
accuracy (%) 80.05 82.18 73.7 79.7
Credit variance(%)| 77.154+3.48 81.06+2.52 73.6£5.0 | 70.9+4.0
accuracy (%) 81.53 83.75 78.6 74.9
Vehicle variance(%)| 75.1145.12 79.47+2.85 77.5£5.0 | 71.2+4.0
accuracy (%) 80.22 83.44 82.5 75.2
Table 1. Variance of the discovered tree-models by Regularized iGP using RAFE

with £ = 0.01, Ordinary iGP, Ltree and C4.5, and accuracy of the best tree-models.

Table 1 shows that the regularized iGP converges to more accurate polynomi-
als than the ordinary STROGANOFF, and also the variances of the regularized
polynomials are smaller, therefore they feature higher generalization.

One may observe that iGP discovers better solutions of complex tasks, like
Glass, Credit, and Vehicle. The reason is that iGP may evolve very high-order
polynomials that closely approximate the data. The non-evolutionary systems
Ltree and C4.5 are slightly better on the simpler data sets Iris and Tonosphere.

On the complex tasks iGP discovers shorter trees, for example of size 8 with
24 coefficients on the Glass data while Ltree produces trees of size approximately
34 and C4.5 acquires trees of size 44. Although the iGP system induces trees
of almost equal size to these learned by Ltree and C4.5 on the simple tasks, 5
on the Iris data set and respectively 12, 15, 19 on the lonosphere data set, the
evolved polynomials include more terms.
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5 Discussion

An essential advantage of this iGP is that the polynomial coefficients are rapidly
computed as least-squares solutions by the method of normal equations. The
regularization improves the previous ordinary iGP STROGANOFF providing a
reliable scheme for computing the coefficients and, thus, avoiding problems of
ill-posedness of the example matrix.

The iGP approaches from the STROGANOFF family as well as GMDH
[10] and MAPS [2] have the ability to find automatically the structure of the
polynomials. iGP performs search in the space of whole polynomials, while the
other iteratively grow a single polynomial. When GMDH and MAPS learn one
polynomial layer by layer, they constrain the feeding of higher tree layers since
they restrict the search considering subsets of some plausible basis polynomials.

6 Conclusion

This paper contributes to the research into discovery of high-order multiva-
riate polynomials by iGP. It demonstrated an iGP system that can be used
for applied nonparametric approximation due to the following advantages: 1) it
discovers automatically the model structure; 2) it generates explicit analytical
representations in the form of polynomials; and 3) it makes the polynomials
well-conditioned suitable for practical purposes.
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