On the Correspondence between Classes of
Implicational and Equivalence Quantifiers

Jiri Ivanek

Laboratory of Intelligent Systems, Faculty of Informatics and Statistics, University of
Economics, W. Churchill Sq. 4, 130 67 Prague, Czech Republic, e-mail: ivanek@vse.cz

Abstract. Relations between two Boolean attributes derived from data
can be quantified by truth functions defined on four-fold tables corre-
sponding to pairs of the attributes. In the paper, several classes of such
quantifiers (implicational, double implicational, equivalence ones) with
truth values in the unit interval are investigated. The method of con-
struction of the logically nearest double implicational and equivalence
quantifiers to a given implicational quantifier (and vice versa) is descri-
bed and approved.

1 Introduction

The theory of observational quantifiers was established in the frame of the GUHA
method of mechanized hypothesis formation [4], [5]. It should be stressed that
this method is one of the earliest methods of data mining [9]. The method was
during years developed and various procedures were implemented e.g. in the
systems PC-GUHA [6], Knowledge Explorer [3], and 4FT-Miner [12]. Further
investigations of its mathematical and logical foundations are going on nowadays
[7], [10], [11]. We concentrate to the most widely used observational quantifiers,
called in four-fold table quantifiers. So far this quantifiers were treated in
classical logic as 0/1-truth functions. Some possibilities of fuzzy logic approach
are now discussed [7].

In the paper, several classes of quantifiers (implicational, double implicatio-
nal, equivalence ones) with truth values in the unit interval are investigated.
Such type of quantifications of rules derived from databases is used in modern
methods of knowledge discovery in databases (see e.g. [13]). On the other hand,
there is a connection between four-fold table quantifiers and measures of resem-
blance or similarity applied on Boolean vectors [2].

In Section 2, basic notions and classes of quantifiers are defined, and some
examples of quantifiers of different types are given. In Section 3, the method
of construction of double implicational quantifiers from implicational ones (and
vice versa) is described. This method provides a logically strong one-to-one corre-
spondence between classes of implicational and so called X-double implicational
quantifiers. An analogical construction is used in Section 4 to introduce simi-
lar correspondence between classes of Y-double implicational and X-equivalence
quantifiers. Several theorems on this constructions are proved. As a conclusion,
triads of affiliated quantifiers are introduced, and their importance in data mi-
ning applications is discussed.
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2 Classes of Quantifiers

For two Boolean attributes ¢ and 1 (derived from given data), corresponding
four-fold table < a,b,c,d > (Table 1) is composed from numbers of objects in
data satisfying four different Boolean combinations of attributes:

a is the number of objects satisfying both ¢ and 1,

b is the number of objects satisfying ¢ and not satisfying ¥,

¢ is the number of objects not satisfying ¢ and satisfying 1),

d is the number of objects not satisfying ¢ and not satisfying ).

Y |
el a b
—p| ¢ d

Table 1. Four-fold table of ¢ and v

To avoid degenerated situations, we shall assume, that all marginals of the
four-fold table are non-zero:
a+b>0,c+d>0,a+c>0,b+d>0.

Definition 1. 4FT quantifier ~ is a [0, 1]-valued function defined for all four-
fold tables < a,b,c,d >. We shall write ~ (a,b) if the value of the quantifier ~
depends only on a,b; ~ (a,b,c) if the value of the quantifier ~ depends only on
a,b,c; ~ (a,b, e, d) if the value of the quantifier ~ depends on all a,b,c,d. For
simplicity, we shall omit in this paper specification 4FT.

The most common examples of quantifiers are following ones:

Ezample 1. Quantifier = of basic implication (corresponds to the notion of a
confidence of an association rule, see [1,[4],[5]):
=0 (CL, b) = GL_H).

Ezample 2. Quantifier < ¢ of basic double implication (Jaccard 1900, [2],[5]):
=0 (a, b,C) = ﬁ.

Ezample 3. Quantifier = of basic equivalence (Kendall, Sokal-Michener 1958,

21, [5):

— _ a+d
=0 (a,b, C7d) = aFbterd”

If the four-fold table < a,b,c,d > represents the behaviour of the derived
attributes ¢ and 1 in given data, then we can interpret above quantifiers in the
following way:

The quantifier of basic implication calculates the relative frequency of objects
satisfying 1 out from all objects satisfying ¢, so it is measuring in a simple way
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the validity of implication ¢ = 9 in data. The higher is a and the smaller is b,
the better is validity =¢ (a,b) = ;5.

The quantifier of basic double implication calculates the relative frequency
of objects satisfying ¢ At out from all objects satisfying ¢ V1), so it is measuring
in a simple way the validity of bi-implication (¢ = 1) A (¢ = ¢) in data. The
higher is a and the smaller are b, ¢, the better is validity <, (a,b,c) = ﬁ.

The quantifier of basic equivalence calculates the relative frequency of objects
supporting correlation of ¢ and 1 out from all objects, so it is measuring in a
simple way the validity of equivalency ¢ = 1 in data. The higher is a,d and the
smaller are b, ¢, the better is validity =¢, (a,b,¢,d) = M‘gim.

Properties of basic quantifiers are in the core of the general definition of
several useful classes of quantifiers [4], [5],[L1]:

(1) I - class of implicational quantiffiers,

(2) DI - class of double implicational quantiffiers,

(3) X'DI - class of Y-double implicational quantiffiers,

(4) E - class of equivalence quantiffiers,

(5) XFE - class of Y-equivalence quantiffiers.

Each class of quantifiers ~ is characterized in the following definition by a
special truth preservation condition of the form: fact that the four-fold table
< a,b,d,d > is in some sense (implicational, ...) better than < a,b,¢,d >
implies that ~ (a/,¥',¢/,d’) > ~ (a,b,c,d).

Definition 2. Let a,b,c,d,a’,b’,c’,d mean frequencies from arbitrary pairs of
four-fold tables < a,b,c,d > and < da’',b',c,d >.
(1) A quantifier ~ (a,b) is implicational, ~ € I, if always
a>a NV <b implies ~ (a',V) > ~ (a,b).
(2) A quantifier ~ (a,b,c) is double implicational, ~ € DI, if always
a>a ANV <b A <c implies ~ (a',b,) >~ (a,b,c).
(8) A quantifier ~ (a,b,c) is X-double implicational, ~ € X' DI, if always
a>a ANbV+d <b+c implies ~ (d,V,d)> ~ (a,b,c).
(4) A quantifier ~ (a,b, c,d) is equivalence, ~ € E, if always
a>a N <bAd<cANd>d implies ~ (a',VV,c,d) >~ (a,b,c,d).
(5) A quantifier ~ (a,b,c,d) is Y-equivalence, ~ € Y'E, if always
a+d>a+d ANV 4+ <b+c implies ~ (a',b,d,d) >~ (a,b,c,d).

Example 4. =p€ I, ©pc XY DI, =€ YE.

Proposition 3. IC DICFE, ¥DI C DI, YE C E.

In the original GUHA method [4],[5], some statistically motivated quantifiers
were introduced. They are based on hypotheses testing, e.g.: Given 0 < p < 1,
the question is if the conditional probability corresponding to the examined
relation of Boolean attributes ¢ and 1 is > p. This question lead to the test of
the null hypothesis that corresponding conditional probability is > p, against
the alternative hypothesis that this probability is < p. The following quantifiers
are derived from the appropriate statistical test.
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Ezxample 5. Quantifier :>z?> of upper critical implication

a

:>; (a7 b) _ Z i'(C(La_S-be!i)'pi(l _ p)a-‘rb—i
i=0 :

is implicational [4],[5].

Ezample 6. Quantifier <:>;'; of upper critical double implication

2 . - (a+b+c)! atbtc—i
<, (a,b,c) = Zmp (1-p)
i=0

is X-double implicational [5],[IT].

Ezxample 7. Quantifier E; of upper critical equivalence

a+d
? Z (a+bt+ct+d! +btctd—i
= — 2 1_ a (& K3
p (a/7bacyd) P Z'(a+b+c+d—l)‘p( p)

is X-equivalence [5],[11].

Let us note, that all the above mentioned quantifiers are used (among others)
in the GUHA procedure 4FT-Miner [12].

Some more examples of double implicational and equivalence quantifiers can
be derived from the list of association coefficients (resemblance measures on
Boolean vectors) included in [2].

In the next sections, one-to-one correspondence with strong logical properties
will be shown

i) between classes of quantifiers I, ¥ DI by means of the relation:

<* (a,b,¢) = =" (a,b+ c),

and, analogously,

ii) between classes of quantifiers X DI, X FE by means of the relation:

=* (a,b,¢,d) = =" (a+d,b,c).

First, let us prove the following auxiliary propositions.

Lemma 4. A quantifier <* is X -double implicational iff the following conditi-
ons hold:

(i) for all a,b,c,V', ¢ such that b+ =b+ ¢

<* (a,b, ) = <* (a,b,¢) holds,

(i) the quantifier =* defined by =* (a,b) = <* (a,b,0) is implicational.

Proof. For X-double implicational quantifiers, (i), (ii) are clearly true. Let <*
is a quantifier satisfying (i), (ii), and ¢’ > a AV 4+ ¢ < b+ ¢. Then

s (a0, )= (/U +,0)==" (a0 +) >

> =*(a,b+¢) =" (a,b+¢,0) = " (a,b,¢).
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Ezample 8. Quantifier < (Kulczynski 1927, see [2]):

4+ (a7b7 C) = %(%er + aic)

is double implicational but not X-double implicational, <€ DI — X' DI; for
instance <4 (1,1,1) = <4 (1,2,0) does not hold.

%

Lemma 5. A quantifier =* is X -equivalence iff the following conditions hold:
(i) for all a,b,c,d,a’ V', ', d" such that o' +d' =a+d, 0V +c =b+c¢
=* (a/,V,c,d) = =* (a,b,c,d) holds,
(ii) the quantifier <* defined by <* (a,b,c) = =* (a,b,c,0) is X-double
implicational.

Proof. For Y-equivalence quantifiers, (i), (ii) are clearly true. Let =*

tifier satisfying (i), (i), and o’ +d' > a+d AV + ¢ < b+ c. Then
= (a0, d) = =" (' +d,V,c,0) = & (@ +d.V,d)>
> <" (a+d,b,c) =="(a+d,b,c) = =" (a,b,c,d).

is a quan-

Ezample 9. Quantlﬁer =4 (Sokal Sneath 1963, see [2]):

=4 (a,b,¢,d) = (a+b + a+c + d+b + d+c)
is equivalence but not Y-equivalence, =, € F — Y F,

for instance =4 (1,1,1,1) = =4 (2,1,1,0) does not hold.

We shall use the following definition to state relations between different quan-
tifiers:

Definition 6. A quantifier ~1 is less strict than ~2 (or ~9 is more strict
than ~1) if for all four-fold tables < a,b,c,d >

~1 (a,b,¢,d) > ~s (a,b,c,d).

From the (fuzzy) logic point of view, it means that in all models (data) the
formula @ ~1 1 is at least so true as the formula ¢ ~o 1, i.e. the deduction rule

2% s correct.
1t

Example 10. < is more strict than =, and less strict than =g
& is more strict than <.

3 Correspondence between Classes of ¥-Double
Implicational Quantifiers and Implicational Ones

Let =* be an implicational quantifier. There is a natural task to construct some
X-double implicational quantifier <* such that from formula ¢ <* ¢ logically
follow both implications ¢ =* 9, ¥ =* ¢, i.e. deduction rules Wz ﬁ i:*w are
correct. Such a quantifier <* should be as less strict as posmble to be near to
="

Following two theorems show how to construct the logically nearest >-double
implicational quantifier from a given implicational quantifier and vice versa.
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Theorem 7. Let =* be an implicational quantifier and <* be the quantifier
constructed from = for all four-fold tables < a,b,c,d > by the formula

<* (a,b,c) = =* (a,b+c).

Then <* is the X -double implicational quantifier which is the least strict from
the class of all X-double implicational quantifiers ~ satisfying for all four-fold
tables < a, b, c,d > the property

~ (a,b,c) < min(=" (a,b), =" (a,c)).

Remark. Let us mention that this means the following:
. o*h = .
(1) deduction rules 3;=>—*¢, i=>_*w are correct;
(2) if ~ is a X-double implicational quantifier such that deduction rules
e oY gre correct,

p=FYT =T

then ~ is more strict than <*, i.e. also fg—% is correct.
Proof. Since =* is an implicational quantifier, <* is a X-double implicational
quantifier; moreover,

<* (a,b,¢) = =* (a,b+ ¢) < min( =" (a,b), =* (a,c))

for all four-fold tables < a, b, c,d >.

Let ~ is a X-double implicational quantifier satisfying the property

~ (a,2,y) < min( =" (a,2), =" (a,y))

for all four-fold tables < a,x,y,d >.

Then we obtain using Lemma 4

~ (a,b,c) =~ (a,b+¢,0) < =% (a,b+¢) = <" (a,b,¢)

for all four-fold tables < a,b, ¢, d >, which means that ~ is more strict than
SF,

Ezample 11. (1) For the basic implication =4 (a,b) = -2, the basic double

a+tb’
implication <, (a,b,c) = ﬁ is the least strict X-double implicational quan-

. NP . e ey
tifier satisfying deduction rules oo T op
(2) For the upper critical implication

a a+b)! i a+b—1
:>; (a,b) = > i, %p (1—p)rtor,

the upper critical double implication

? _ a a+b+c)! 7 a+b+c—1
“p (a7b7c) = Zi:O mp (1 _p) ot

is the least strict X-double implicational quantifier satisfying deduction rules

™Y e’y
= b=l

Theorem 8. Let <™ be a X -double implicational quantifier and =* be the quan-
tifier constructed from <* for all four-fold tables < a,b,c,d > by the formula

=* (a,b) = &* (a,),0).

Then =" is the implicational quantifier which is the most strict from the class
of all implicational quantifiers ~ satisfying for all four-fold tables < a,b,c,d >
the property

min(~ (a,b),~ (a,c)) > <* (a,b,c).
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Remark Let us mention that this means the following;:

deduction rules £22%  £2°% a16 correct;
p=*Y0 Y=t

(2 ) if ~ is an implicational quantifier such that deduction rules
PP pe’Y
prvih 0 e .

then ~ is less strict than =*, i.e. also fif is correct.

are correct,

Proof. Since <* is a X-double implicational quantifier, =* is an implicational
quantifier; moreover,

<* (a,b,¢) = ©* (a,b+¢,0) < min( &* (a,b,0), ©* (a,c,0))

= min( =* (a,b), =" (a,¢))

for all four-fold tables < a, b, c,d >.

Let ~ is an implicational quantifier satisfying the property

min(~ (a,b),~ (a,c)) > <" (a,b,c)

for all four-fold tables < a, b, c,d >.

Then we obtain

~ (a,b) > <* (a,b,0) = =* (a,b) for all four-fold tables < a, b, c,d >,

which means that ~ is less strict than =*.

4 Correspondence between Classes of Y-Equivalence
Quantifiers and Y-Double Implicational Ones

This section will be a clear analogy with the previous one:

Let <* be an Y-double implicational quantifier. There is a natural task to
construct some Y-equivalence =* such that the formula ¢ =* 1) logically follows
both from the formula ¢ <* v, and from the formula —p <* =), i.e. deduction
rules 2 w M are correct. Such a quantifier =* should be as strict as
pos&bfe to be near to <*

Following theorems show how to construct the logically nearest Y-equivalence
quantifier from a given Y-double implicational quantifier and vice versa. The
proofs of these theorems are similar to the proofs of Theorems 7,8, so we shall

omit them for the lack of space.

—k

Theorem 9. Let <™ be a X -double implicational quantifier and =* be the quan-
tifier constructed from <* for all four-fold tables < a,b,c,d > by the formula

=* (a,b,c,d) = &* (a+d,b,c).

Then =* is the X-equivalence which is the most strict from the class of all
X -equivalences~ satisfying for all four-fold tables < a,b,c,d > the property

~ (a,b,e,d) > maz( <* (a,b,¢), <* (d,b,c)).

Ezample 12. (1) For the basic double implication < ¢, (a,b,¢) =
+d
a+Z+c+d ’

vy oeeeTY
p=Ty . .LPE*IL/) . . .
(2) For the upper critical double implication

? _ a a+b+c)! a+b+c—1i
<:>p (a,b,c)— Zz Omp(l_p)Jr+ )

the basic
a+b+c’
equivalence =g, (a,b, ¢, d) = is the most strict X-equivalence satisfying

deduction rules
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the upper critical equivalence

=’ - +d _(atbtetd)! botdi
=p (a b, c, d) = ngo m})l(l —p)a-i' +c+d—i
<:>7w —\cp@;—v(/)
p=*Y? ="y

is the most strict Z-equivalence satisfying deduction rules 2

Theorem 10. Let =* be an X-equivalence quantifier and <* be the quantifier
constructed from =* for all four-fold tables < a,b,c,d > by the formula

<* (a,b,¢) = =* (a,b,¢,0).

Then <* is the X -double implicational quantifier which is the least strict from
the class of all X-double implicational quantifiers ~ satisfying for all four-fold
tables < a, b, c,d > the property

max(~ (a,b,c),~ (d,b,c)) < =* (a,b,c,d).

5 Conclusions

The theorems proved in the paper show that quantifiers from classes I, ¥ DI, Y'F
compose logically affiliated triads =*, <*, =*, where

=" is implicational quantifier,

<* is Y-double implicational quantifier,

=* is Y-equivalence.

Examples of such triads included in this paper are:

Example 13. Triad of basic quantifiers =, <, =g, where

=5 (a,b) = <o (a,b,c) = =5 (a,b,¢,d) = atd

_a —a _aTa
a+b’ a+b+c’ a+b+c+d*

E:cample 14 ’Hiad of statistically motivated upper critical quantifiers
é @pv 7p’ (a+b)!
a + —
p (avb) - Zz 0 mp (1 _p)a+b Zv
7 +b+ ; —i
e (a.b,0) = T migaemp' (L - p)rtite,

_7 o at+d (a+b+c+d)! i(1 _ n\a+btctd—i
=p (aabv C, d) = Zi:o il(atbtctd—i)! (1 p) ’

where

Let us stress that to each given quantifier from classes I, ¥’ DI, Y F, such triad
can be constructed. This can naturally extend the metodological approach used
to the particular quantifier’s definition for covering all three types of relations
(implication, double implication, equivalence).

We proved that following deduction rules are correct for the triads:

P 9T Y 9T mp ST Y
=Pl =l o=ty o=y
These deduction rules can be used in knowledge discovery and data mining
methods in various ways:
(1) to organize efectively search for rules in databases (discovering some rules
is a reason to skip over in search, because of some other rules simply follows from
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discovered ones; nonvalidity of some rules means that some others are also non
valid, ...);

(2) to filter results of data mining procedure (results which follows from
others are not so interesting for users);

(3) to order rules according different (but affiliated) quantifications.

In practice, some of the above described ideas were used in the systems
Combinational Data Analysis, ESOD [§], Knowledge Explorer [3], and 4FT-

Miner [12].

This research has been supported by grant VS96008 of the Ministry of Educa-
tion, Youth and Sports of the Czech Republic. The author is grateful to J.Rauch
and R.Jirousek for their valuable comments on the preliminary version of the

paper.
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