Fast Algorithms for Elliptic Curve
Cryptosystems over Binary Finite Field

Yongfei Han', Peng-Chor Leong?, Peng-Chong Tan?, and Jiang Zhang'

1 APDC Security & Crypto Dept
Gemplus Corporate R & D

89, Science Park Drive #04-01/05

Singapore 118261
yfh69Chotmail.com
2 Centre for Advanced Information Systems,
School of Applied Science,
Nanyang Technological University, Singapore 639798

Abstract. In the underlying finite field arithmetic of an elliptic curve
cryptosystem, field multiplication is the next computational costly op-
eration other than field inversion. We present two novel algorithms for
efficient implementation of field multiplication and modular reduction
used frequently in an elliptic curve cryptosystem defined over GF(2").
We provide a complexity study of the two algorithms and present an
implementation performance of the algorithms over GF(2'°7).
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1 Introduction

In 1985, Neil Koblitz and Victor Miller independently proposed the elliptic curve
cryptosystem, whose security rests on the discrete logarithm problem over points
on an elliptic curve. Elliptic curve cryptography can be used to provide both a
digital signature scheme and an encryption scheme. With the apparent advantage
of high cryptographic strength relative to key size, elliptic curve cryptosystems
[9,14] have gained much popularity in the implementation of discrete logarithm
based public key protocols. The shorter key size generally leads to improved
computational efficiencies and smaller storage and bandwidth requirements. Al-
though elliptic curve cryptosystem can be based on finite field of any character-
istic, it is generally practical to implement within the prime or binary finite field
[9,14].

Certain classes of elliptic curves such as the subfield curves, supersingular and
anomalous binary curves have been proposed which provide improved efficien-
cies in implementation. However the extra structure provided by these curves
are subjected to attack and reviewed recently [17,4]. We consider only non-
supersingular and non-anomalous elliptic curves over non-composite field in the
paper. The algorithms presented are specifically for binary finite field with stan-
dard basis representation.
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Efficient implementation of elliptic curve cryptography can be focused on
2 levels. At elliptic curve group level, fast algorithms for multiplying a base
point P of an elliptic curve may be applied [5,6,7]. The computation of multi-
plying a point P of an elliptic curve group by a large integer d is analogous to
exponentiation of an element in a multiplicative group to the d** power. The
generally accepted algorithm for the computation is the “square-and-multiply”
algorithm. Signed digit representation, k-SR representation, addition chains and
sliding window methods are applied to the computation of scalar multiplication,
as the are employed to exponentiation [1,2].

For the underlying finite field arithmetic, more efficient algorithms that
speeds up computation of field multiplication and inversion may be introduced.
Field multiplication is the next costly operation other than field inversion.
Various algorithms, such as the transformation to projective coordinates trade
field inversion for field multiplication. Hence, it is desirable to provide fast and
effective field multiplication and modular reduction.

The purpose of this paper is to present new approaches for field multiplication
and a modular reduction commonly performed in elliptic curve cryptosystems
defined over binary finite field.

First, we review previous works in section 2. In section 3, we present a method
to speed up computation of field multiplication. This algorithm is applicable to
standard basis representation of elements in Galois field GF'(2™). The algorithm
is based on modified classical “shift-and-add” method. Through elimination of
extensive shiftings, our algorithm is suited for microprocessors that have small
word size, and only instruction that can shift only one bit at a time. Such mi-
croprocessors are common in 8 or 16 bit microcontrollers and smartcards. While
there exist fast binary finite field multiplication with the use of table look-up
[10], such algorithms are generally not suitable for computing multiplication of
field elements with degree > 5 using low end microprocessor with limited mem-
ory.

In section 4, we present an efficient modular reduction based on optimiza-
tion of Schroeppel’s modular reduction technique [16], and our method is more
efficient than Schroeppe;’s approach. Detailed analysis of the complexity and
performances of our algorithms will also be presented.

We conclude this article with the comparison of implementation results for
field multiplication and reduction over GF(2'67). Relative to the the classical
“shift-and-add” method of multiplication, our implementation result shows ap-
proximately 12 percent reduction in computation time for a general purpose 32
bits microprocessor. As for the field modular reduction, 14 percent reduction of
the computation cost can be realised.
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2 Previous Works

An elliptic curve, defined on a field K =GF(2") where n is a prime, is the set of
solution points(z,y) to an equation of the form:

Vv 4+ry=a>+ar+0b
with a,b € K.
The set of points on an elliptic curve, together with a special point called

the point of infinity can be equipped with an Abelian group structure by the
following point addition operation:

A= Y1+ Y2
T+ T2

z=a+ N+ 4z + 22

y=(r1+x)\+z+uy

And by following point doubling operation:

)\:l'l-i-ﬂ
T

1‘2=a+)\2+>\

Yo = 25 + Ao + 2

The simplest technique to compute multiplication in GF(2) is to use the
“shift-and-add” method. As no arithmetic carry over is involved, the “shift-and-
add” method is a neat and easy method for implementation. Addition in GF(2)
is simply the bitwise exclusive-or operation.

Selection of an elliptic curve is a critical step before the implementation. The
curve selected should not be a supersingular curve or anomalous curve.

For computation of field multiplication over GF'(2"), we noted that word
level multiplication in GF(2) is usually not supported in general microprocessors.
There are 2 common software implementation techniques to achieve the GF(2)
multiplication.

— Table look-up method
— Emulation using “shift-and-add” technique
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In Table look-up method [10], the field multiplication result are first pre-
computed. A simple method is to use 2 tables, to store the higher order and
lower order of the multiplication result. The tables are addressed using the bits
of the multiplier and multiplicand. Therefore a 8-bits word for GF'(2) multipli-
cation would require 2 x 2% x 28 x 8 bits = 128 Kbyte of storage space for the
look up tables. For 16 bit operands, 2 x 216 x 216 x 16 bits = 16 GByte of look
up table would be required. Although there exists techniques [10] to handle 16
bit GF'(2) multiplication using 8-bits look up table, we noted that the overheads
is not favourable for microprocessors without special shift instruction and not
practical with devices with extremely limited memory.

The simplest technique to compute multiplication in GF(2) is to use the
“shift-and-add” method. Addition in GF(2) is simply the bitwise exclusive-or
operation. As no arithmetic carry over is involved, the “shift-and-add” method
is a neat and simple method for implementation.

3 A New Approach for Multiplication

To compute the multiplication of two field elements A and B in standard basis
over GF(2™), the classical “shift-and-add” algorithm as described in [16] is com-
monly used. The classical method typically incurs computational cost of shifting
2s(n—1) bits of the intermediate results; where n is the number of bits of the field.

Our algorithm attempts to eliminate the extensive number of shift opera-
tions which inherently contributes to a large part of the computational cost.
Our method requires shifting 2s(w — 1) bits of the intermediate results; where
w is the wordsize of the microprocessor, and s = [n/w]. This contributes to
greater performance improvement, particularly for microprocessors with small
word size. It is noted that the number of field additions remains the same as
classical method since it is dependent on the hamming weight of the multiplier.
As ‘addition’ in GF'(2) operation does not involve ‘carry’, with the addition op-
erator defined as exclusive-or operation, the saving in shift operations is possible
with our new algorithm.

3.1 Efficient Field Multiplication Algorithm

Definition 1. Let A, B = (bsw—1...b1bg) € GF(2") be the bit-string representa-
tion of the multiplier B. B can be partitioned into s blocks and each block is of
length w bits, and s = [n/w]. Denote t; = A-b; - x',i € {0.n — 1}

The field multiplication result of C = AxB = A" ! 2 (Zj;é (bjw+ixj“’))
where B = (bgy—1...b1bg) € GF(2"™) can be re-expressed as:
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C = (to + tws®™ + t2,2°" + ... + t(sf1)w)$(5_1)w + (t17 + ty 1ot

+t2w+1x2w+1+...+t(3_1)w+19€(571)w+1)

o+ (12 4 tw+(w_1)xw+(w71) + t2w+(w_1)x2w+(w71)

4+ t(871)w+(w71)x(sfl)w+(w71))

= A(bO + by 2" + wa.l‘Qw + ...+ b(871)w.m(s—1)w)
+A(bl.1‘1 + bw+1.33w+1 + wa+1.I2w+1 o+ b(sfl)erl.l‘(s_l)w—i_l)

+...+ A(bw_l.l‘wil + bgw_1.332w71 + bgw_1.$3w71 + ...+ bsw_l.xswil)

= A(bo + by 2" + wa.l‘Qw + ...+ b(gfl)w.x(s—l)w)
+1‘(A(b1 + bw+1.$w + b2w+1.$2w + ...b(sfl)w+1.$(5_1)w

+ot xw_l(A(bw—l + bw+(w71)~mw + b2w+(w71)~m2w

+...+ b(sfl)er(w,l).LE(S_l)w)...)

The efficient field multiplication is based on the following model of computing
the intermediate results of (to,fw, ..., t(s—1)w) first and progressively on the next
tuple (t1,tw1, cst(s—1)w+1), until all the intermediate results are computed in
which the last tuple is (fw—1, Lyt (w—1)» - Es—1)wt(w—1))-
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Fig. 1. Model of improved multiplication algorithm

Algorithm 1 Denote LeftShift(X ) as left shifting the coefficient representation
of the polynomial X by 1 bit and C[j] denotes the j*" word of the coefficient
representation of polynomial C' where j € {0..(s — 1)}.

NEW-METHOD-FOR-FIELD MULTIPLICATION(A, B)

1 C«0

2 for j«—w—1down to 0

3 dop<—0

4 for k <+ 1 down to s

5 do if Byy—1 =1

6 then for i < (s — 1) +p down to p
7 do C[i] « C[i] ® Ali — p)
8 p—p+1

9 LeftShift(C)

10 LeftShift(B)

11 return C
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No. of shift operations
Shift operation cost “Shift-and-add” method Our method
Number of shift operation on C 2s(n — 1) 2s(w — 1)
Number of shift operation on B s(w —1) s(w—1)
Total shift operations 2s(n—1)+s(w—1) |2s(w—1)+ s(w —1)

Table 1. Computational time cost comparison for field multiplication

Using the classical “shift-and-add” method, 2s(n — 1) shift operations are
required to compute the field multiplication in GF(2"). With the new ap-
proach, only 2s(w — 1) shift operations are incurred without any need for pre-
computation. The relation between the number of bits n of the underlying field
and the word size, w would determine if the new algorithm would be more ef-
ficient compared to the binary method. The new algorithm will perform even
more efficiently than the binary method when

2s(w — 1) < 2s(n — 1) or equivalently w < n

The word size of general microprocessor are usually 8, 16, 32 and 64 bits
and for elliptic curve over GF(2"), n is usually chosen to be about 160 bits.
It is noted that when the field size of the elliptic curve is increased, the new
algorithm will perform more efficiently compare to the classical “shift-and-add”
field multiplication method. This is because the number of shift operation per-
formed on element C would remain unchanged for the new approach, whereas
the number of shift operations using the “shift-and-add” method would depend
on the field size n.

Table 2 compares the two methods based on a typical 167 bits field for el-
liptic curve cryptosystem, with s defined as the number of words, and w as the
wordsize of the microprocessor.

167 bits field No. of shift operations

w S “Shift-and-add” method|Our method|Percentage Savings
8 21 7119 441 94%

16 11 3817 495 87%

32 6 2178 558 74%

64 3 1185 567 52%

Table 2. Computational time cost comparison for GF (2167) field multiplication
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4 Modular Reduction

The result of field multiplication requires storage length of 2 x sw. Modular
reduction can be done very efficiently with an irreducible polynomial, such as
trinomial and pentanomial using shifts and additions. The idea is to zero out
the upper bits and add the representation of each original term right shifted by
some quantity. Schroeppel et al. describes a practical approach of working on
one computer word at a time to systematically perform the polynomial modular
reduction [16].

We consider a trinomial modulus of the expression " +z*+1, where n = 167,
k = 6. After each field multiplication or squaring, the result must be reduced
modulo F(z) = 217 + 26 4 1.

The product of two polynomials of degree 166 produces a polynomial of
degree 332. Assume the polynomial to be reduced is:

P(l‘) = a332x332 +...+a1r+ag

Then the reduction modulo 67 +2%+1 proceeds by reducing each term modulo
the trinomial and subtracting it from the result. We noted that:

2167 =48 11

"= xn—161 +xn—167 (mod F(l‘))

Instead of working on one computer word at a time, and lowering the degree of
the polynomial by a word, proceeding from the high order terms to the low, our
approach is to work on § words at a time and lowering the degree by 3. For our
approach to be effective, it is therefore desirable to choose a trinomial with low
k degree.

Algorithm 2 Let A be the result of field multiplication or squaring prior to
modular reduction. A has degree of at most 2n — 2. A can be partitioned into
2s blocks and each block is of length w bits. Let A; denotes the it" block of the
partition of field element A. CarryRightShift(Q,d, T) denotes right shifting the
memory location range in @ by d bits making use of the word shift with carry
istruction available in general microprocessor, and that the carry bits are stored
i T. Templ and Temp2 are registers of wordsize w. The following algorithm
performs the modular reduction on A using the trinomial modulus, 2" = z* + 1
(mod 2™ + 2% + 1), when k < [Z] and n — k > w.
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NEW-METHOD-FOR-TRINOMIAL-MODULAR-REDUCTION(A)
1 p+« ((n—k)mod w)

2 g |77
3 u <« (nmod w)
1o 2]
5 Templ <+ 0
6 Temp2«—0
7 CarryShiftRight (Ags—1...A, [5]:P Templ)
8 for j «+ 2s—1 down to 28—’7%—‘
9 do Aj,t — Aj,t D Aj
10 AQs [ -| e 1<—A25_[%'| i 1@T empl
11 CarryShiftRight (Ags—_1... s—[s] U= P Templ)
12 for j < 2s — 1 down to 28 — (%W
13 do A;_, — A;_ B A
14 A2S [$]-q-1 — A2sf|_§-|7q71 @& Templ
15 CarryShiftRight (As—1+L§J . As,p, Templ)
16 forj<—s—1+L§J down to s
17 do Aj—t — Aj—t D Aj
18 Asftfl — Asftfl 2] Temp]—
19  CarryShiftRight (As—1+L§J wAs,u—p,Templ)
20 forj<—s—1+L§J down to s
21 dO Aj—q “— Aj—q ) Aj
22 Ag_g1 — Ag_g—1 ®Templ
23 mask — (2¥ — 1) < (n mod w)
24 Templ «— As_1 N mask
25  CarryShiftRight (Templ, p, Temp?2)
26 A(Sfl),q — A(Sfl),q @& Templ
27 A(sfl)qul — A(S 1)— 1 @ Temp?2
28 return C « (A;_q).. Ao)

Table 3 compares the computational cost on the number of shift and addition
operations required for Schroeppel’s method and our improved method.

No. of operations
Operation cost Schroeppel’s method| Improved method
No. of shift operations on A|  s(p+ (w —p)) s(maz(p,u))
No. of shift operations on
temporary variables p+ (w—p) 3x max(p,u)
Total shift operations (s+1) xw (s + 3) x (max(p,u))
Total no. of Field Additions 4s+2 25+ 6

Table 3. Computational cost comparison for field modular reduction
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A careful choice of reduction trinomial that has small value of p = ((n —
k) mod w) and v = (n mod w) will boost efficiencies in our new algorithm. Fur-
ther to the elimination of extensive shifting, the number of field additions is also
reduced by a factor of 2 in our approach, this is achieved with the alignment on
the degrees of the congruent terms with the microprocessor word size.

5 Performance of Implementation

The following table present the performance benchmark of the improved field
multiplication and modular reduction in an elliptic curve cryptosystem defined
over GF(267). The computation is based on C source codes compiled with Mi-
crosoft Visual C++ 5.0 without compiler’s optimization. An Intel Pentium I 32
bit microprocessor running at 333 MHz was used to conduct the benchmarking.

Field Arithmetic |Classical method|Our method|Percentage Savings
Multiplication 0.27ms 0.20ms 12%
Modular Reduction 0.07ms 0.06ms 14%

Table 4. Computational timing cost for field multiplication and modular reduc-
tion

Comparing our new approaches of field multiplication and modular reduction
to the classical methods, the timing results shows about 12 percent improvement
for the multiplication, and approximately 14 percent improvement is achieved
for the modular reduction.
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