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Abstract. An A3-code is an extension of A-code in which none of the
three participants, transmitter, receiver and arbiter, is assumed trusted.
In this paper we extend the previous model of A3-codes by allowing
transmitter and receiver not only to individually attack the system but
also collude with the arbiter against the other. We derive information-
theoretic lower bounds on success probability of various attacks, and
combinatorial lower bounds on the size of key spaces. We also study
combinatorial structure of optimal A3-code against collusion attacks and
give a construction of an optimal code.

1 Introduction

Authentication codes (A-codes) [7] provide protection for two trustworthy par-
ticipants against an active spoofer tampering with the messages sent by a trans-
mitter to a receiver over a public channel. In this model transmitter and receiver
are assumed trusted. An extension of this model is an authentication codes with
arbitration [3], or A%-codes for short, in which transmitter and receiver are not
trusted: transmitter may deny a message that he/she has sent, and receiver
may attribute a fraudulent message to the transmitter. In an A%-code a trusted
third party, called arbiter, resolves the dispute between transmitter and receiver.
A%-codes have been studied by various authors [3], [4] and [6].

Brickell and Stinson ([1]) introduced authentication code with dishonest ar-
biter(s), or A3-code, in which the arbiter may tamper with the communication
but it will remain trusted in her arbitration. In an A3-code each participant in
the system has some secret key information which is used to protect him/her
against attacks in the system. These codes have been also studied in [2], [3] and
[9], where some constructions were given. However none of these constructions
protect against collusion attacks.

Collusion attacks in A-codes are studied in various extensions of A-codes,
such as multisender schemes [10] where unauthorised groups of senders can col-
lude to construct a fraudulent message that is attributed to an authorised group,
and multreceiver schemes where unauthorised groups of receivers collude to con-
struct a fraudulent message that is attributed to the transmitter. The model
studied in [3] is an extension of multreceiver schemes where transmitter can
collude with unauthorised groups of receivers. In the former two cases no arbi-
tration is required as at least one side in the communication is trusted, that is
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receiver in a multisender scheme and transmitter in a multireceiver scheme are
assumed trusted. However in the last case none of the sides is trusted and there
can be a dispute between a receiver and a colluding group of the sender and
receivers. The suggestion for resolving the dispute is to either include a trusted
arbiter or, take the majority vote of the receivers.

In this paper we extend the attack model of A3-codes to include collusion
between arbiter and transmitter or receiver, against the other participants. For
example, the arbiter may collude with the transmitter to construct a message
that the transmitter can later deny sending it, or she may collude with the
receiver to impersonate the sender or substitute a message that he has sent. We
assume that the arbiter always honestly follows the arbitration rules. These rules
are public and collusion with a participant effectively means that the arbiter will
make her key information available to that participant.

The paper is organised as follows. In Section 2 we introduce the model and
derive information theoretic bounds on success probabilities of various attacks,
and combinatorial bounds on the size of key spaces for each participant. Section
3 gives combinatorial structure of Cartesian optimal A3-codes. Section 4 gives a
construction for such codes.

2 Model and Bounds

There are three participants: a transmitter, T, a receiver, R and an arbiter, A,
none of them is assumed trusted. 7" wants to send a source state s, s € 9,
to R over a public channel. Each participant has some secret key. T uses his
key information to construct a message m € M for a source state s to be sent
over the channel. R uses her key information to verify authenticity of a received
message and finally A who does not know the key information of 7" and R will
use her key information to resolve a dispute between the two. Transmitter’s key,
et, determines the encoding function e; : S — M used by the transmitter, and
receiver’s key, e,, determines the verification function e, : M — S U{F'} and so
the subset of M that R will accept as valid message. Arbiter’s key, e,, determines
a subset M (e,) C M, which the arbiter accepts as valid.

There is also an outsider, O, who has no key information. A colluding group
of attackers in general use their knowledge of the system, their key information
and all the previous communicated messages to construct fraudulent messages.

The system has the following stages.

Key Distribution: during which a triple (e, e, e,) of keys for the three
participants T, R, and A is generated and each participant’s key is securely
delivered to him/her. This stage can be either performed by a trusted party, or
by a collaboration of the three principals. A valid triple has the property that if
et(s) = m then e,(m) = s and e,(m) = s.

Authentication: T uses e; to generate an authentic message.

Verification: R uses e, to verify authenticity of a received message m. She
will also always ask for the verdict of A on the message. R will only accept a
message if both R and A accept the message as authentic. We note that in [3] a
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message is acceptable by the receiver if e,.(m) € S. This means that e,.(m) € S
implies e,(m) € S. We assume M(e,.) N M(e,) # 0 and so for every message
both conditions, e,.(m) € S and e,(m) € S, must be checked.

Arbitration: A dispute occurs in a number of situations. In the following
we list possible disputes and the rules for resolving the disputes. We note that
the rules are public and A’s arbitration can be later verified by everyone.

1. Arbitration Rule I (AR I): T denies sending a message m.
— T wins if m is acceptable by e, and e,.
— T looses otherwise.
2. Arbitration Rule IT (AR II): R attributes a message m to T but T denies
it.
— R wins if m is valid under e,.
— R looses otherwise.

The system is subject to the following attacks.

1. Attack O;: Observing a sequence of 7 legitimate messages my, mao, - - -, m;,
the opponent places another message m into the channel. He is successful if both
the receiver and the arbiter accept m as an authentic message.

2. Attack R;: Receiving a sequence of i legitimate messages, mq, mao, -+ -, m;,
and using her key, e,., R claims that she has received a message m #
mi,me, -+, m;. She is successful if A accepts m under the arbitration rule
11.

3. Attack A;: Knowing a sequence of 7 legitimate messages my, ma, -+ -, m;,
and using her key e,, the arbiter puts another message m into the channel. She
is successful if the message is valid for R.

4. Attack Tp: Using his key (an encoding rule) e;, transmitter sends a
fraudulent message m which is not valid under e;. He succeeds if both the receiver
and the arbiter accept the message.

5. Collusion Attack RA;: Having received a sequence of i legitimate mes-
sages my, ma, - -+, my;, R and A collude to construct a message which R claims it
is sent by the transmitter. They succeed if m can be generated by the transmitter
under e;.

6. Collusion Attack TA: A and T, using their keys e; and e,, collude to
construct a message m which is not valid under e; but using AR I makes T a
winner.

Let Er, Er and E4 be the set of transmitter’s, receiver’s and arbiter’s keys,
respectively, and assume p(x,y, z) is the joint probability distribution on Ep x
Er x E4. Also assume there is a probability distribution on the set of source
states S. Denote the support of the joint probability distribution by

ET © ER © EA = {(etae’rvea) :p(etve’l‘vea) > 0}

The joint probability distribution determines the marginal distributions:
pler, eq), plet), pler) and p(e,). Similarly denote

EroEs={(er,eq):pler,eq) >0}
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We will also use the following notations.

Ez=(m") = {(e;,e4) € Ero E4 : both €,,e, accept m'},
Err(er) = {(er,eq) € Ero E4 = pleg, er,eq) > 0}

Let M be the set of all possible messages, and M denote the set of sequences
of i distinct messages.

Using these notations, success probabilities in various attacks are given as
follows.

Po, = max max p(R and A accept m | R and A accept m’) (1)
mieM? meM

Pr, =  max max p(A accepts m | A accepts m’, e,) (2)
mieMie.c Er meM

Py, =  max max p(R accepts m | R accepts m', e,) (3)
mieMie, e Ep mEM

Pr, = max ménj\?icet)p(R and A accept m | e;) (4)

P~ = max max max p(T generates m | T generates m', e, e, )(5
RA; mteEM? (er,eq)EEROEA mEM ( | v a)( )

P = t
TA ert%aE}; einéaEXA mEM(rgaa)‘}\(M(et)p(R accepts m | “t ea) (6)

We note that Pp, and Pp, are different from similar attacks given in [3]
as we define success of an attacker as successful verification by the receiver
and successful acceptance by the arbiter while in [3] only the first condition is
required.

2.1 Information Theoretic Bounds
We will use following notations throughout the paper.

Ex(m') = {e, € Ex : m' is available for e, }.
Ex(ey) ={es € Ex : p(ez, ey) > 0}.
M(ey) = {m € M : m is available for e, }.

Theorem 1 gives the information-theoretic lower bounds on the above 6 types
of attack.

Theorem 1. In an A3-code against collusion attacks we have
Po, > QH(ER,Ea|M™ ) —H(ER,E4|M")
Pg, > QH(EA|M'™ Ep)—H(EA|M",ER)
P4, > QH(ER|M™ " Ex)~H(Er|M",Ea)
Pr, > 2H(Er.EalM.Er)—H(Er,Ea|Br)

Pe > oQH(Er|M™ Ep,EA)—H(Er|M' ,Er,Ea)

Prz
fori=0,1,2,---.

SURINCE

)

> 2H(ER‘M,ET,EA)—H(ER‘ET,EA).
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2.2 Combinatorial Bounds on Key Spaces

To derive combinatorial bounds we will assume that the probability distribution
on EroEroE 4 is uniform. With this assumption we have the following theorem.

Theorem 2. In an A3-code if all siz kinds of attacks meet their lower bounds,

then
1 _
1. |E7| >(Hz o Prz,)” "(ITizo Po.) ™"
_ 1
2. ‘ER| 2 PTD (Hi:O POi) 1(Hi:0 PRi)'
3. |Eal > Pr'(ITio Po.) ™ Prx(ITizo Pas)-
4. |EroEal > P (ITi_y Po,) ™"

An A3-code is called [-optimal if,

(i) all six types of attacks meet their lower bounds in theorem 1, and

(ii) all inequalities in theorem 2 are satisfied with equalities.

In the following we give structural properties of [-optimal codes in order to

analyse their combinatorial structure.

Corollary 1. In an optimal A-code against collusion attacks the following

properties are satisfied.

1. If Egx(m®) # 0, then |Exz(m')| is independent of m".

2. If Ex(m®) N Er(er,eq) # 0, then |Ex(m®) N Er(er,eq)| is independent of

i
m', e, and eg.

3. If Er(m*) N Eg(eq) # 0, then |Er(m?) N Eg(eq)| is independent of m* and

€q-

4. If Ex(m®) N Ea(e,) # 0, then |[Ea(m?) N Ea(e,)| is independent of m* and

er.
5. If Er(m z) # 0, then |Er(m?)| is independent of m®.
6. If Er(m®) # 0, then |Er(m?)| is independent of m!.
7. If Ea(m?) # 0, then |Es(m?)| is independent of mt.

An A3-code is called a Cartesian A>-code if for any message m, there is a

unique source state s which can be encoded to m.

This means that in a Cartesian code M can be partitioned into M (s1),

M (s2), - - such that messages in M (s;) only correspond to s;.
More precisely, for an s € S and (e,,e,) € Er o Ea, define

M(s) = {m : s can be encoded to m by some e; € Ep}.

Then using Corollary 1, we have |M(s)| = A2Zl
1M]

M for all s € S.
T = M)

= TBr(m)] is a constant. So
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3 Connection with Combinatorial Designs

In this section we study the combinatorial structure of Cartesian l-optimal A3-
code against collusion attacks. In particular we give a combinatorial structure
of Er,Er,Eq and Ero E4.

First we recall some definitions.

Definition 1. A block design is a pair (V,B), where V is a set of v points and
B is a family of k-subsets (called blocks) of V.

Definition 2. A block design (V,B) is called a-resolvable if the block set B is
partitioned into classes C1,Ca,- - ,C, with the property that in each class, every
point occurs in exactly o blocks.

We will be interested in a-resolvable designs with the following property:
There is an integer 1,0 < [ < n, such that property (P1) below is satisfied.

(P1) Any collection of ¢ blocks, from i different classes either intersect in
1; points or do not intersect, i (1 <7 <[+ 1).

For each participant we define an incidence structure which defines the map-
ping given by the participant’s keys. For receiver and arbiter, the incidence
structure is given by a 0,1 matrix, whose rows are labelled by the participant’s
keys and columns are labelled by M, and the element in row e and column m
is 1 if e(m) € S and 0, otherwise. For transmitter, it is given by a matrix whose
rows are labelled by transmitter’s key, and its columns are labelled by S and the
element in row e and column s is m if e;(s) = m.

In the following subsections we will study the relationships between combi-
natorial designs and each participant’s incidence structure.

3.1 Egr

Theorem 3. In an l-optimal A3-code against collusion attacks, design (Eg,

{Eg(m) : m € M}) is a(R)-resolvable with property (P1). It has the parameters:
a(R) = 5Py,
ul(R) = ‘ERKPODPOI T Poi—l)(PROPRl T PRi71)717 I1<i<i+1

3.2 Ea

By 7 of Corollary 1 |E4(m)| is a constant. So (E4,{Ea(m) : m € M}) forms a
block design.

Theorem 4. In an l-optimal A3-code against collusion attacks, design (Ea,
{E4a(m) :m € M}) is a(A)-resolvable with property (P1). It has the parameters:

Oé(A) = %PRO;

Nl(A) = |EA|(PODP01 ...Poi—l)(PAOPAl "'PAi71)717 1<i<i+1
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3.3 EROEA

Note that in an optimal code Er o E4 corresponds to an a-resolvable design as
well. It has the following properties:

(P2) For any collection of I + 1 blocks Bj,, Bj,,- - -, Bj,., from different classes
Cj,Cjyy -+, Cj.y, and any u (# ji, j2,- - -, Ji+1), there exists a unique block B, €
C. such that

Bj, N---NB;

Ji+1

# ). Furthermore, for any B € C,\{B.}, |Bj,N---NB;

NB,=B;,N---NB;

Ji+1
if B;, N+ -NB;
1.
(P3) The point set V is partitioned into subsets Vi, Vs, -+, V} such that for
each subset V;, (V;, Bl) is an a-resolvable design with property (P1) and (P2).
Here we use B to denote {B; N V; # 0 : B; € B}.
;From 1 of Corollary 1 we know |Ez—(m)| is a constant for all m € M. Then
(Er o Ea,{Ezz(m) : m € M}) forms a block design. For this block design we
have following theorem.

I+1 l+lﬁB‘ =

Theorem 5. In an l-optimal A-code against collusion attacks, design (Eg o
Ea,{Egzz(m) : m € M}) is a-resolvable with properties (P1), (P2) and (P3).
It has the parameters:

pi = |Er o Eal[[iZg Po,, 1<i<i+1.

3.4 Er
In order to describe Er, we recall some definitions to be used later.

Definition 3. A t-design is a block design (V, B) so that any t-subset of V
occurs in exactly A blocks.

Definition 4. A partially balanced t-design is a block design (V, B), where every
t-subset of V' either occurs in exactly A blocks or does not occur in any block.

We denote this design by ¢t — (v, k; {\, 0})-design, where v is the total number
of points and k is the size of a block.

Definition 5. A t— (v, k;{\,0})-design (V, B) is a strong partially balanced ¢-
design if it is a i — (v, k; {\;, 0})-design, for anyi,1 < i < t, and also a 1-design.

Definition 6. A t— (v, k; {\,0})-design (V, B) is a resolvable partially balanced
t-design if the block set can be partitioned into classes Cy,Co,---,C,/ with the

property: For each j(1<j<n'), (V, Cj)isat— (W', k; {\',0})-design.

Definition 7. A strong partially balanced t — (v, k; {\,0})-design (V, B) is re-

solvable if it is resolvable with classes Cv,Cs,---,C, and property: For each

j(1<j<n), (V,C)) is a strong partially balanced t — (v, k; {\', 0})-design.
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Now consider design (M, Er).
Theorem 6. In an [-optimal A®-code against collusion attacks, design (M, E1)

is a (I+1) — (|M],]S]; {1, 0})-design which is strong and resolvable, it has pa-
rameters as follows:

A= )\H—l = 17
\; = (POiPOi+1 .. .Pol)*l(PmiPmH_l '“sz)il’ 1< <,
A= (Pﬂipﬂiﬂ “.sz)il’ l=isl

It is known that in an optimal A-code, the transmitter and the receiver
have a partially balanced t-design (see [5]), or an orthogonal array if the code
is Cartesian (see [1]). In an optimal Cartesian A?-code the transmitter has a
partially balanced t-design, while the receiver has an a-resolvable design (see [0]).
Our results in this section show that in an optimal Cartesian A3-code against
collusion attacks, the transmitter has a partially balanced t-design, while the
receiver and the arbiter have a-resolvable designs each.

4 Optimal Code from Finite Geometry

In this section we show an example of 1-optimal A3-code against collusion at-
tacks.

Let GF(q) be a field of g elements, PG(n,q) be a n-dimensional projec-
tive space over GF(q). Every point on PG(n,q) has a homogeneous coordi-
nate (xo,x1,Z2, -, &y, ), here not all ; are zero. Two homogeneous coordinates
(zo, 21, -+, 2p) and (x;),x/l, e ,x;L) identify the same point if and only if there
is a nonzero constant ¢ such that (zg,z1, -, z,) = c(x;),m/l, e ,x;L) A k-flat
Hi (0 <k <n)on PG(n,q) is defined as a system of n — k linear equations:

a10To + a11x1 + - - + a1y = by,
a20To + 2121 + -+ - + a2pTp = ba,

An—k,0T0 + An—k,1T1 T+t A gn Ty = bn—ka

where the rank of coefficient matrix (a;;) is n — k. Thus a 0-flat is a point, a
1-flat is a line, a 2-flat is a plane, and so on.

Now consider PG(4, ) to construct our code. Let each message correspond to
a 3-flat in PG(4,q). Fix a line Lg in PG(4, q). Let the points on Lg be regarded
as source states. Let the transmitter’s encoding rule be a 2-flat e; not intersecting
Lg. Let the receiver’s decoding rule and the arbiter’s arbitration rule be points
e, and e, respectively. The pair (e, e, e,) is valid if and only if e,, e, are on
e¢. A source state s will be encoded to m =< s,e; > which is a 3-flat passing
through s and e;. The receiver accepts a message m if and only if e, is in m, the
arbiter arbitrates that m should be accepted by the receiver if and only if e, is
in m. This code is optimal with the parameters:
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|S|= q+1,
| M| = q¢*+¢°,
|Er| = 4",

|Er|=q"+ ¢* + ¢,
|Eal=q"+ ¢ + ¢,

Conclusion

In this paper we introduced a new model for A3-codes, obtained information
theoretic and combinatorial bounds on security and efficiency parameters of

the

codes, defined optimal codes and finally derived combinatorial structure

of optimal Cartesian codes. Our study of the optimal A3-codes is limited to
Cartesian codes. Combinatorial structure of optimal A3-codes in the general
case is an open problem.
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