
Doing More with Fewer Bits

A.E Brouwer1, R. Pellikaan1, and E. R. Verheul2

1 Department of Math. and Comp. Sc., P.O. Box 513, Eindhoven University of
Technology, 5600 MB, Eindhoven, The Netherlands. [aeb,ruudp]@win.tue.nl

2 PricewaterhouseCoopers GRMS Crypto Group P.O. Box 85096, 3508 AB Utrecht
Eric.Verheul@[nl.pwcglobal.com, pobox.com]

Abstract. We present a variant of the Diffie-Hellman scheme in which
the number of bits exchanged is one third of what is used in the clas-
sical Diffie-Hellman scheme, while the offered security against attacks
known today is the same. We also give applications for this variant and
conjecture a extension of this variant further reducing the size of sent
information.

1 Introduction

In the classical Diffie-Hellman key-exchange scheme, two system parameters are
fixed: a large prime number P and a generator g of the multiplicative group of
the basic finite field GF (P). If two parties, Alice and Bob say, want to agree on a
common secret key over an insecure channel, then Alice generates a random key
0 ≤ x < P − 1 and sends A = gx mod P to Bob. Also, Bob generates a random
key 0 ≤ y < P−1 and sends B = gy mod P to Alice. Both Alice and Bob can now
determine the common, secret key S = gxy mod P = Ay mod P = Bx mod P .
For adequate security, P should be a 1024 bit prime, such that P − 1 contains
a 160 bit prime factor (see below). In particular this means that all system
parameters (i.e. g, P) and sent information (i.e. A, B) are of size 1024 bits.
In [14], Claus Schnorr proposed a variant of the classical Diffie-Hellman scheme,
in which g does not generate the whole multiplicative group of the basic finite
field GF (P), but only a small subgroup of which the order contains a 160 bit
prime number q. As is suggested by Arjen Lenstra in [7], one can extend the
Schnorr scheme to any multiplicative subgroup G = 〈g〉 of an extension field
GF (pt). Lenstra specializes to generators g that have prime order, which we do
as well.
For solving the discrete logarithm problem for a generator g of prime order q,
one can use an index calculus (IC) based algorithm that has a heuristic expected
asymptotic running time of L(ps, 1/3, 1.923+o(1)], see [1] and [7], where s is the
smallest divisor of t such that 〈g〉 is contained in a subfield of GF (pt) isomorphic
to GF (ps). If p = 2 then the constant 1.923 can be replaced by 1.587, see
[3]. Alternatively one can use Birthday Paradox (BP) based algorithms (e.g.
Pollard’s rho algorithm [13]) that have expected running times exponential in
the size of the q. More precisely, breaking the Discrete Logarithm problem can
be solved in expected O(

√
(q)) elementary operations in GF (pt).

K. Y. Lam, E. Okamoto and C. Xing (Eds.): ASIACRYPT’99, LNCS 1716, pp. 321–332, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

322 A.E Brouwer et al.

This leads us to the conclusion from [7] that - w.r.t. attacks known today - if the
minimal surrounding subfield of g and prime order q of g are of sufficient size,
then the discrete logarithm problem 〈g〉 is intractable. The particular form of the
field itself, is not relevant. In other words, if GF (pt) is the minimal surrounding
field of a subgroup of prime order, then - w.r.t. attack known today - the discrete
logarithm in this subgroup is approximately as difficult as the discrete logarithm
in a subgroup of prime order of a basic field GF (P) if the size of P is approx-
imately equal to as t times the size of p, and the order of both subgroups are
about the same size. Hence, a suitable generator g in a field extension GF (pt)
should not be contained in one of the proper subfields and should have a suitably
large prime order. In practice, the size of the (minimal) surrounding field should
be a ≥ 1024 bit number, and the prime order of the element should at least be
of size ≥ 160 bits.
In [7], Lenstra proposes a simple, practical method for the construction of a
field extension and suitable generator. The idea is that one fixes the size of the
prime number p and a number t such that pt is “large” enough. Then one looks
for a large prime factor q in the value of the cyclotomic polynomial φt(p). The
latter can be done using trial divisions with the primes up to, say 105; any other
reasonable bound or method will do. Finally, one constructs a generator g of
order q, by looking for an element different from 1, such that g(pt−1)/q = 1.

Using the above construction, the size of q is about ϕ(t) · |p| bits (where ϕ(.)
is Euler’s totient function) which grows as least as fast as pt/ log(log(t)). The
complexity of the BP based algorithms grows much faster, than the complexity
of the IC based algorithms. So if the size of the surrounding field is large enough
to resist the sub-exponential, IC based algorithms, then the order � will usually
be large enough “automatically” to resist the BP based algorithms as well.

In this paper we propose a variant of the Diffie-Hellman scheme, using a multi-
plicative group G of an extension field GF (p6) as indicated above. For adequate
security, the size of GF (p6) is a ≥ 1024 bit number and the order of G = 〈g〉 is
a ≥ 160 bit prime factor of φ6(p). Our scheme has the following properties:

1. Breaking our scheme, means breaking the Diffie-Hellman scheme in G, which
in (today’s) practice is as least as difficult as breaking the classical Diffie-
Hellman scheme w.r.t. a modulus of comparable size.

2. All sent information (i.e. the A, B mentioned above) is only one third of
the normal size, i.e. 342 bits. This makes our variant of the Diffie-Hellman
scheme more competitive with Elliptic curve cryptosystems.

Outline
In Section 2, mainly as an appetizer, we will present a description of the variant
of the Diffie-Hellman scheme based on Lucas sequences. In this variant all sent
information (i.e. the A, B above) is only one half of the usual size (i.e. 512 bits
in practice). In Section 3 we present an improvement of this scheme, in which
all sent information is only one third of the usual size. A discussion of some
applications of our scheme appears in Section 4, and in Section 5 we discuss and
conjecture extensions of our scheme. We summarize our results in Section 6.

Doing More with Fewer Bits 323

2 A Different View of the LUCDIF Cryptosystem

Central in the construction of the LUCDIF variant of the Diffie-Hellman key-
exchange scheme is a ≥ 512-bit prime number p, such that p + 1 contains a
prime factor q of at least 160 bits. We now consider the field extension GF (p2),
in which the multiplicative group is of order p2 − 1 = (p + 1)(p − 1). So we can
construct an element g of order q in GF (p2); the prime numbers p, q and the
generator g are the parameters of the LUCDIF system.
Now, if Alice and Bob want to agree on a common secret key, then Alice generates
a random key 0 ≤ x < q, forms A = gx+g−x (in the field GF (p2)) and sends this
to Bob. Similarly, Bob generates a random key 0 ≤ y < q, forms B = gy + g−y

and sends this to Alice. We will now first show that both Alice and Bob can
determine the common, secret key S = gxy + g−xy.

For Alice to determine this shared secret key, she will first retrieve gy from B.
If we denote gy by U , then we have the following equation

B = U + U−1 (1)

Equality (1) is a quadratic equation in U (namely U2 − B ∗ U + 1 = 0) with
coefficients in GF (p) (see below). By using standard techniques (adjoining roots
using the “abc-formula” in a symbolic way), Alice can find the two solutions
U1,2 in GF (p2) of this equation. All calculations in GF (p2) are symbolic and are
effectively performed using operations in GF (p).
These two solutions correspond exactly with gy, g−y. However, Alice has no idea
which is gy and which is g−y, but that does not matter as she can determine
Ux

1 +Ux
2 by using her random key x. This is equal to S = gxy+g−xy, independent

of the choice of U1 and U2. In a similar way, Bob can construct S from A. It is
indicated in [2], that the above scheme coincides with the variant of the Diffie-
Hellman key-exchange scheme that was proposed and analyzed by a series of
authors; [15] (where the name ’LUCDIF’ was proposed), [11], [10], [12] and [8].
We will now proceed with showing two important properties of the LUCDIF
cryptosystem: reduced size of sent information and security.

2.1 Reduced Size of Sent Information of the LUCDIF Cryptosystem

For this property, we will show that both A and B are elements of the basic
field GF (p) and can therefore be represented by |p| (e.g. 512) bits each. To this
end, we first observe that any element h in the group generated by g, has the
following property which we shall use often: hp = h−1. This follows as the order,
q, of g (and therefore of h) divides p + 1. We now have

Ap = (gx + g−x)p = gxp + g−xp = g−x + gx = A,

which means that A is an element of GF (p) as we needed to show. It similarly
follows that B is an element of GF (p) also.

324 A.E Brouwer et al.

It easily follows from the above discussion, that it suffices to take p, q and g+g−1

as the system parameters instead of p, q and g. Hence, an additional advantage
of the LUCDIF variant is that the size of the system parameters are also about
halve the normal size. The same is realized in the setting of RSA in [6].

2.2 Security of the LUCDIF Cryptosystem

Concerning the security, we will show that if somebody (an oracle O) can break
the LUCDIF system (i.e. determining S on basis of A and B) then one can break
the Diffie-Hellman problem in the group 〈g〉 generated by g.
This would conclude the discussion security of the LUCDIF system. Indeed, the
order q of g is a divisor of p+1 = φ2(p) and we recall from the introduction that
breaking the Diffie-Hellman scheme in 〈g〉 is - w.r.t. to attacks known today -
is as infeasible as breaking the standard Diffie-Hellman scheme of a comparable
size.

To this end, suppose α = gx, β = gy are given, then one can first construct
α + αp, β + βp and use this as input for O to determine S1 = gxy + gxyp.
By applying the same technique to α and β · g = gy+1 one can also determine
S2 = gx(y+1) + gx(y+1)p = α · gxy + αp · gxyp. This means we have the following
equation: (

1 1
α αp

)
·
(

gxy

gxyp

)
=

(
S1

S2

)
(2)

By this equation one now can deduce gxy, i.e. the Diffie-Hellman shared secret
key. Observe that the matrix above is regular because α �= αp as α is not a
member of GF (p) by construction. Conversely, if somebody can break the Diffie-
Hellman scheme in 〈g〉, then it is simple to show that one can break the LUCDIF
system.

3 Our System

What is done in the LUCDIF scheme from an algebraic point of view, is repre-
senting an element z of the extension field GF (p2) not as the usual residue class
modulo a fixed irreducible polynomial of degree 2, but by its unique, minimal
polynomial, see [9]. If the element z is chosen in 〈g〉, then we can save informa-
tion as the constant term of the minimal polynomial is always one, leaving only
the first order coefficient (an element of GF (p)) to be stored or sent. However,
the minimal polynomial of z does not only represent z, but also its conjugate
zp = z−1. That is why we take the sum of the two conjugates (a symmetric
function) to represent the exchanged key in the Diffie-Hellman scheme. We have
shown that this is no problem with respect to security.

In this section we will develop a generalization of this technique in GF (p6).
Central in our generalization is a 171-bit prime number p, such that the sixth
cyclotomic polynomial φ6(p) = p2 − p + 1 (see [9]) contains a prime factor q of
at least 160 bits. As φ6(p) is a divisor of p6 − 1 (the order of the multiplicative

Doing More with Fewer Bits 325

group of GF (p6)) we can easily construct a generator g in GF (p6)∗ of order
q. The prime numbers p, q, and the generator g are the parameters of our sys-
tem. Actually, by taking a different representation of g the size of the system
parameters can be reduced, see subsection 3.1.

Now, if Alice and Bob want to agree on a common secret key, then Alice generates
a random key 0 ≤ x < q, and forms the minimal polynomial P (X) of gx, i.e.

PA(X) =
5∏

i=0

(X − gxpi

) = X6 + A5X
5 + A4X

4 + A3X
3 + A2X

2 + A1X + 1,

where all Ai are in GF (p). Note that the constant term of PA(X) is 1 as φ6(p)
divides 1 + p + ... + p5 = (p6 − 1)/(p − 1). Then, Alice sends (A1, A2) to Bob.
Bob also generates a random key 0 ≤ y < q, and forms the minimal polynomial
P (X) of gy, i.e.

PB(X) =
5∏

i=0

(X − gypi

) = X6 + B5X
5 + B4X

4 + B3X
3 + B2X

2 +B1X + 1 (3)

where all Bi are in GF (p). Bob then sends (B1, B2) to Alice.
The shared secret key will be the pair (C1, C2), i.e. the first and second order
coefficients of the polynomial PC(X) given by:

PC(X) =
5∏

i=0

(X − gxypi

) = X6 + C5X
5 + C4X

4 + C3X
3 + C2X

2 + C1X + 1

For Alice to determine this shared secret key, she will first retrieve the polynomial
PB(X) from (B1, B2). To do this, she needs to reconstruct the B3, B4, B5 from
B1, B2. To this end, as p3 = −1 mod p2 − p + 1 it follows that the polynomial
PB(X) is symmetric, i.e. B5 = B1 and B4 = B2.
It also follows that if we denote gy by β, and βi = βpi

for i = 0, 1, 2, 3, 4, 5 then

β0 = β, β1 = βp, β2 = βp−1, β3 = β−1, β4 = β−p, β5 = β1−p. (4)

By equation (3) one can write B3 in terms of the β0, β1, β2, β3, β4, β5, and by
using the reductions from (4), one can easily verify that:

B3 = −2 ·
5∑

i=0

βi −
5∑

i=0

β2
i − 2,

which is a symmetric polynomial in β0, β1, β2, β3, β4, β5 of degree 2, and which
can hence be written in the first and the second elementary polynomials of
β0, β1, β2, β3, β4, β5 by the so-called Newton equalities. Of course the value of the
first symmetric polynomial equals −B1 and the value of the second symmetric
polynomial equals B2. This leads to the following, easily verified formula.

B3 = −2 + 2 ∗ B1 − B2
1 + 2 ∗ B2.

326 A.E Brouwer et al.

So, starting from (B1, B2), Alice is able to retrieve the polynomial PB(X). She
can then adjoin a root ρ of this polynomial to obtain GF (p6), next she can use
her secret key x, to determine the minimal polynomial of ρx, which is equal
to PC(X). That is, Alice is able to determine the shared secret key (C1, C2).
Similarly, Bob is able to determine (C1, C2) from (A1, A2) and his secret key y.

3.1 Reduced Size Property of Our System

Alice and Bob only send two coefficients in GF (p) to each other, which corre-
sponds to only 2|p| bits of data.

It easily follows from the above discussion, that it suffices to take p, q and the
first and second order coefficients (elements of GF (p)) of the minimal polynomial
of g, as system parameters. Hence, a typical size of the system parameters of our
scheme would be 673 bits, consisting of 171+160 = 331 bits for representing p and
q plus 342 bits for representing g. The system parameters of a comparative Diffie-
Hellman scheme would be 2048 bits (even 2208 bits for the Schnorr variant),
which is more than three times as large.

3.2 Security of Our System

We’ll first show that the security of our variant of the Diffie-Hellman scheme
is equivalent to the security of the Diffie-Hellman scheme in 〈g〉. This would
conclude the discussion security of our system, as we recall that from the in-
troduction that breaking the Diffie-Hellman scheme in 〈g〉 is - w.r.t. to attacks
known today - is as infeasible as breaking the standard Diffie-Hellman scheme
of a comparable size.
To this end, consider the following two functions Z1(.), Z2(.) : 〈g〉 → GF (p6)
defined by:

Z1(h) =
5∑

i=0

hpi

,

Z2(h) =
∑

0≤i�=j≤5

hpi+pj

Then, in the terminology of the previous section,

A1 = Z1(gx), B1 = Z1(gy), C1 = Z1(gxy)
A2 = Z2(gx), B2 = Z2(gy), C2 = Z2(gxy)

We have the following result, the proof of which is similar to the argument used
in proving the security of the LUCDIF system in Section 2.2

Lemma 3.1 For i = 1, 2, the problem of determining Zi(gxy) from Zi(gx), Zi(gy)
is as least as difficult as solving the Diffie-Hellman problem in 〈g〉.

Doing More with Fewer Bits 327

The security of our variant of the Diffie-Hellman scheme is equivalent to the
difficulty of determining Z1(gxy), Z2(gxy) from,

Z1(gx), Z1(gy), Z2(gx), Z2(gy).

Hence, it immediately follows from Lemma 3.1 that solving this problem is equiv-
alent with solving the Diffie-Hellman problem in 〈g〉. With respect to the attacks
known today, this is just as difficult as breaking the Diffie-Hellman scheme in a
basic field GF (P) of size |P | = 6 ∗ |p|.
So as we only need to exchange two coefficients of |p| bits each, all sent infor-
mation is one third of the size of the standard Diffie-Hellman scheme, while the
offered security is the same.

It is shown in [16] that Lemma 3.1 is a consequence of a much broader result.
To this end, let t > 1 be an integer (t = 6 in the current setting). Let n be a
non-negative number and consider the integers e1, , en (the “exponents”) and the
elements λ1, ..., λn ∈ GF (pt) \ {0} (the “multipliers”) and consider the following
summing function Z(.) : 〈g〉 → GF (pt) defined by:

Z(κ) =
n∑

i=1

λi · κei , for κ ∈ 〈g〉

The number n is called the degree of the summing function and the number
d = gcd(e1, e2, ..., en, ord(g)) is called the order of the summing function. It is a
simple verification, that the above introduced Z1(.), Z2(.) are summing functions
of order 1.
Now the following “hardness” result is shown in [16].

Theorem 3.2 In the above terminology, let Z(.) be a summing function of order
d. Also let O be an oracle that on basis of any γx and γy computes Z(γxy). Then
there exists a polynomial time algorithm that computes γxyd on basis of γx and
γy. That is, for d = 1 there exists a polynomial time algorithm that solves the
whole Diffie-Hellman problem in 〈γ〉.

3.3 Implementation of Our System

In determining a shared secret key in our system a participant typically has to
perform the following operations:

1. Restore the minimal polynomial he received, and adjoin a root ρ to GF (p)
satisfying this polynomial, giving a copy of the field GF (p6).

2. Determining φ, i.e. ρ raised to his random key in the representation given
by the root ρ and its minimal polynomial, i.e. as a linear combination of ρi,
with i = 0, 1, 2, 3, 4, 5.

3. Determine the values of the first and second order coefficients of the minimal
polynomial of φ.

328 A.E Brouwer et al.

The first operation is of negligible complexity. For the second operation a re-
peated square-and-multiply algorithm should be used, taking O(36 ·ln(q)·ln(p)2)
bit operations. For the final step, the representations of the conjugates of φ, i.e.
φpi

for i = 1, 2, 3, 4, 5, have to be determined. As p3 = −1 mod p2 − p + 1, only
φp, φp2

need to be calculated. As furthermore

φp2−p+1 = φp2 · φ−p · φ = 1

it follows that only the representation of φp needs to be calculated with a re-
peated square-and-multiply algorithm; the representations of the remaining con-
jugates can be determined by taking inverses. This takes an additional O(36 ·
ln(q) · ln(p)2) bit operations. The values of the first and second order coefficients
of the minimal polynomial of φ can now be easily determined as the values of
the first and second elementary symmetric polynomials of the conjugates of ρ.
Given the representation of these conjugates, this is of negligible complexity. All
and all, determining a shared secret key in our system by a participant takes
O(36 · ln(q) · ln(p)2) bit operations, which is at least asymptotically comparable
with the number of operations needed for a Diffie-Hellman key-exchange in a
basic field of comparable size.
It’s rather unfortunate that it seems that we can not fix the representation of
GF (p6) to the one proposed by Arjen Lenstra in [7], in which an optimal normal
basis can be used, such that exponentiation can carried out even more efficiently
than in a basic field of the same size.

4 Applications of Our System

Our system can not only be used to obtain a variant of the Diffie-Hellman scheme
where the exchanged data is one third of the usual size, but it can also be used
to construct variants of schemes which are related to this scheme such as the
ElGamal encryption scheme [4]. In this variant Bob’s public key takes the form
(Z1(y), Z2(y)), where y = gx and where 0 ≤ x < q is Bob’s private key. An
encryption for Bob (e.g. by Alice) of an element S in GF (p) takes the form

[(Z1(gk), Z2(gk)), S + Z1(yk)]

where k is taken randomly less than q. It follows from the discussion of the
previous section, that Alice is indeed capable to determine this encryption, and
Bob is indeed capable to decrypt this and recover S. It easily follows that the
ability to break this system, means the ability to solve the Diffie-Hellman system
in 〈g〉, which is, as far as is known today, just as difficult as breaking the Diffie-
Hellman scheme in a basic field GF (P) of size |P | = 6 ∗ |p|.
Of course, many other variants are possible, such as using Z2(.) instead of Z1(.).
In this variant the size of the public keys (342 bits) is one third of the “normal”
size. Moreover, the total encryption of an element of GF (p) takes a total size of
3 ∗ 171 = 513 bits. So, when using hybrid encryption (only encrypting a random
session key asymmetrically) for a non-interactive application (e.g. email), the

Doing More with Fewer Bits 329

data requirement for our ElGamal variant is even less than for an RSA encryption
of the same security. Actually, as in such cases only a random session key is
required, one can use Z1(yk) (with k random) as the session key, and include
(Z1(gk), Z2(gk)), with the message. In this fashion, only one third of the size is
required for the asymmetric part of what is usually used for an RSA encryption.

Apart from asymmetric schemes for confidentiality, the scheme can be used to
make variants of digital signature schemes like the Digital Signature Algorithm
[5], with public keys that are only a third of the usual size. The idea is that a
verification of type v = gu1 · yu2 , occurring in the verification part of the Digital
Signature Algorithm where v, u1, u2 are constructed from the digital signature,
can be recovered from (Z1(g), Z2(g)) and (Z1(y), Z2(y)), albeit not in a unique
fashion: there are 6 · 6 = 36 possibilities, leading to 36 verifications one of which
should hold. Of course, several straight-forward techniques can be employed
to reduce this number of verifications. For instance, at the cost of a one time
distribution of the (whole) generator g, instead of its minimal polynomial, one
can reduce the number of verifications to six.

5 Extensions of Our System

Consider a prime number p and an integer t such that:

1. the multiplicative group of GF (pt) is large enough to withstand the Index
Calculus based attacks;

2. the t-th cyclotomic polynomial φt(p) contains a prime factor q that is large
enough to withstand the Birthday Paradox based algorithms.

Next a generator g is chosen of order q. Any element h ∈ 〈g〉 can be represented as
an element of GF (pt) using t · |p| bits. However, the degree of the t-th cyclotomic
polynomial is equal to ϕ(t), where ϕ(.) is Euler’s totient function. So, in principle
only ϕ(t)·|p| bits are required to represent any element h ∈ 〈g〉. A straightforward
way to do this is to write h = gx for some 0 ≤ x < q and to represent h by x.
However, this means solving the discrete logarithm problem for h with respect to
g. What we aim for, is a technique to represent (“compress”) h by only ϕ(t) · |p|
bits, without solving the discrete logarithm problem for h with respect to g.
With this technique, Alice and Bob can agree on a common secret key in 〈g〉 by
sending each other only ϕ(n) · |p| bits.

Motivated by the techniques from Sections 2 and 3 we conjecture the following
“compressed” form of the Diffie-Hellman scheme.

If Alice and Bob want to agree on a common secret key, then Alice generates
a random key 0 ≤ x < q, and forms the minimal polynomial PA(X) of gx

and somehow represents this with using only ϕ(t) · |p| bits and sends this to
Bob. Similarly, Bob generates a random key 0 ≤ y < q, and forms the minimal
polynomial PB(X) of gy and somehow represents this with using only ϕ(t) · |p|
bits and sends this to Alice. Using this representation, Alice is able to determine

330 A.E Brouwer et al.

the minimal polynomial PB(X), and to adjoin a root ρ of PB(X) to GF (p) and
to determine a representation of GF (pt). Using this she is able to determine
the minimal polynomial PC(X) in GF (p) of ρx, which is equal to the minimal
polynomial of gxy. Alice uses the coefficient S of the first order term in PC(X)
(i.e. the sum all conjugates of gxy) as a secret key. Similarly, Bob is able to
determine S using the representation of PA(X) and his private key.

With such a scheme, one obtains a version of the Diffie-Hellman scheme in which
one only sends a ϕ(t)

t part of the information one would normally send. If t is the
product of the first k prime numbers, then one can easily show that this fraction
goes to zero if k goes to infinity. So the achieved reduction gets better all the
time. Also, using Theorem 3.2 one can show that (given such a representation)
breaking this scheme, means solving the Diffie-Hellman problem in 〈g〉, which
is suitable intractable, as far as is known today. Moreover, several other, secure
choices (values of a symmetric function in all conjugates of gxy) for the shared
secret key S are possible.

Of course, the problem is how to represent such minimal polynomials by only
ϕ(t)·|p| bits. In Sections 2 and 3 we have given such representations for t = 2 and
t = 6. If t is a prime number r, then such a representation is straightforward.
Indeed, as φt(p) divides (pt − 1)/(p − 1), the constant term of the minimal
polynomials is 1. Hence only r − 1 = ϕ(r) coefficients are unknown, each of size
|p| bits.

Moreover, the representation used for t = 6 can be extended to the case where t
is of type 2r where r is prime as follows. Let, as before, PA(X) be the minimal
polynomial of degree t of gx in GF (p). Then, PA(X) splits as a product of two
polynomials PA1(X), PA2(X) of degree r in GF (p2). Let us denote:

PA1(X) = Xr + ar−1,1X
r−1 + ...a1,1X + 1 (5)

PA2(X) = Xr + ar−1,2X
r−1 + ...a1,2X + 1. (6)

The constant terms of both polynomials are 1 as φ2r(p) divides (p2r−1)/(p2−1).
Then it easily follows that

(ai,1)
p = ai,2 for all i = r − 1, ..., 2. (7)

It also follows that the reciprocal polynomial of PA1(X) coincides with PA2(X),
i.e.:

Xr · PA1(1/X) = PA2(X). (8)

Now, suppose one possesses the first (r−1)/2 non-trivial coefficients of PA1(X),
i.e. ar−1,1, ..., a(r−1)/2−1,1, then using formula (7) one obtains the first (r − 1)/2
non-trivial coefficients of PA2(X), i.e. a(r−1)/2,2, ..., a(r−1)/2−1,2. From these and
formula (8) it follows that one obtains the remaining (r − 1)/2 non-trivial coef-
ficients of PA1(X), i.e. a(r−1)/2,1, ..., a1,1.
That is, from the first (r − 1)/2 non-trivial coefficients of PA1(X) one can re-
construct PA1(X), and hence PA(X).

Doing More with Fewer Bits 331

Hence, we can represent PA(X) by (r − 1)/2 coefficients in GF (p2) for which
one only needs (r − 1)/2 · 2|p| = (r − 1)|p| = bits, which is in accordance with
our conjecture.

Problem How to find representations of minimal polynomials of only ϕ(t) · |p|
bits for general t?

Irrespective of their existence, we note that the number of extensions of our
system, as discussed above, that are more efficient in practice is quite low. To
illustrate, assuming that for the coming years a classical (e.g. RSA) asymmetric
key length between 1024 and 2048 bits gives adequate security for most (com-
mercial) applications, then there are actually only two possible more efficient
practical extensions. The first one, corresponds with t equal to 30 = 2 · 3 · 5,
where a reduction of ϕ(30)/30 = 4/15 can then be achieved. The characteris-
tic of the used field would be a prime number between 35 and 70 bits length.
The second one, corresponds with t equal to 210 = 2 · 3 · 5 · 7, where a reduc-
tion of ϕ(210)/210 = 8/35 can then be achieved. The characteristic of the used
field would be a prime number between 5 and 10 bits length. For t equal to
2310 = 2 · 3 · 5 · 7 · 11, the used field size would have to larger than a 2048 bit
number.

6 Conclusion

We have presented a variant of the Diffie-Hellman scheme in which all sent
information is one third of the size of the standard Diffie-Hellman scheme, while
the offered security, as far as is known today, is the same. We have also given
applications for this construction. Finally, we have given a conjecture for an
extension of our scheme in which all sent information is only a factor ϕ(t)/t of
the size of the standard Diffie-Hellman scheme.

References

1. M. Adleman, J. DeMarrais, A subexponentional algorithm over all finite fields,
CRYPTO ’93 Proceedings, Springer-Verlag, pp. 147-158. 321

2. D. Bleichenbacher, W. Bosma, A.K. Lenstra, Some remarks on Lucas-Based Cryp-
tosystems, CRYPTO ’95 Proceedings, Springer-Verlag, pp. 386-396. 323

3. D. Coppersmith, Fast evaluation of logarithms in fields of characteristic two, IEEE
Transactions on Information Theory, 30, (1984), pp. 587-594. 321

4. T. ElGamal, A Public Key Cryptosystem and a Signature scheme Based on Discrete
Logarithms, IEEE Transactions on Information Theory 31(4), 1985, pp. 469-472.
328

5. FIPS 186, Digital signature standard, Federal Information Processing Standards
Publication 186, U.S. Department of Commerce/ NIST, 1994. 329

6. A.K. Lenstra, Generating RSA moduli with a predetermined portion, Asiacrypt ’98
proceedings, Springer-Verlag, pp. 1-10. 324

332 A.E Brouwer et al.

7. A.K. Lenstra, Using Cyclotomic Polynomials to Construct Efficient Discrete Log-
arithm Cryptosystems over Finite Fields, Information Security and Privacy -
ACISP97 Proceedings (Sydney 1997), Lect. Notes in Comp. Sci. 1270, Springer-
Verlag, pp. 127-138. 321, 321, 322, 322, 328

8. R. Lidl, W.B. Müller, Permutation Polynomials in RSA-cryptosystems, Crypto ’83
Proceedings, Plemium Press, pp. 293-301. 323

9. R. Lidl, H. Niederreiter, Finite Fields, Addison-Wesley, 1983. 324, 324
10. W.B. Müller, Polynomial functions in modern cryptology, Contributions to general

Algebra 3, Proceedings of the Vienna Conference (1985), pp. 7-32. Proceedings,
Springer-Verlag, pp. 50-61. 323

11. W.B. Müller, W. Nöbauer, Cryptanalysis of the Dickson-Scheme, Eurocrypt ’85
Proceedings, Springer-Verlag, pp. 50-61. 323

12. W. Nöbauer, Cryptanalysis of the Rédei Scheme, Contributions to general Algebra
3, Proceedings of the Vienna Conference (1985), pp. 255-264. 323

13. J.M. Pollard, Monte Carlo methods for index computation (modp), Mathematics
of Computation, 32, (1978), pp. 918-924. 321

14. C.P. Schnorr, Efficient signature generation by smart cards, Journal of Cryptology,
4, pp. 161-174 (1991). 321

15. P. Smith, C. Skinner, A public-key cryptosystem and a digital signature system
based on the Lucas function analogue to discrete logarithms, Asiacrypt ’94 pro-
ceedings, Springer-Verlag, pp. 357-364. 323

16. E.R. Verheul, Certificates of Recoverability with Scalable Recovery Agent Security,
in preparation. 327, 327

	Introduction
	A Different View of the LUCDIF Cryptosystem
	Reduced Size of Sent Information of the LUCDIF Cryptosystem
	Security of the LUCDIF Cryptosystem

	Our System
	Reduced Size Property of Our System
	Security of Our System
	Implementation of Our System

	Applications of Our System
	Extensions of Our System
	Conclusion

