
General Adversaries in Unconditional

Multi-party Computation�

Matthias Fitzi, Martin Hirt, and Ueli Maurer

Department of Computer Science
ETH Zurich

CH-8092 Zurich, Switzerland,
{fitzi,hirt,maurer}@inf.ethz.ch

Abstract. We consider a generalized adversary model for uncondition-
ally secure multi-party computation. The adversary can actively corrupt
(i.e. take full control over) a subset D ⊆ P of the players, and, addi-
tionally, can passively corrupt (i.e. read the entire information of) an-
other subset E ⊆ P of the players. The adversary is characterized by
a generalized adversary structure, i.e. a set of pairs (D, E), where he
may select one arbitrary pair from the structure and corrupt the players
accordingly. This generalizes the classical threshold results of Ben-Or,
Goldwasser and Wigderson, Chaum, Crépeau, and Damg̊ard, and Rabin
and Ben-Or, and the non-threshold results of Hirt and Maurer.
The generalizations and improvements on the results of Hirt and Maurer
are three-fold: First, we generalize their model by considering mixed (ac-
tive and passive) non-threshold adversaries and characterize completely
the adversary structures for which unconditionally secure multi-party
computation is possible, for four different models: Perfect security with
and without broadcast, and unconditional security (with negligible error
probability) with and without broadcast. All bounds are tight. Second,
some of their protocols have complexity super-polynomial in the size of
the adversary structure; we reduce the complexity to polynomial. Third,
we prove the existence of adversary structures for which no polynomial
(in the number of players) protocols exist.
The following two implications illustrate the usefulness of these results:
The most powerful adversary that is unconditionally tolerated by pre-
vious protocols among three players is the one that passively corrupts
one arbitrary player; using our protocols one can unconditionally tolerate
an adversary that either passively corrupts the first player, or actively
corrupts the second or the third player.
Moreover, in a setting with arbitrarily many cheating players who want
to compute an agreed function with the help of a trusted party, we can
relax the trust requirement into this helping party: Without support
from the cheating players the helping party obtains no information
about the honest players’ inputs and outputs.

Keyword: General adversaries, mixed model, multi-party compu-
tation, unconditional security.

� Research supported by the Swiss National Science Foundation (SNF), project
no. SPP 5003-045293.

K. Y. Lam, E. Okamoto and C. Xing (Eds.): ASIACRYPT’99, LNCS 1716, pp. 232–246, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

General Adversaries in Unconditional Multi-party Computation 233

1 Introduction

1.1 Secure Multi-Party Computation

Consider a set of n players who do not trust each other. Nevertheless they want
to compute an agreed function of their inputs in a secure way. Security means
achieving correctness of the result of the computation while keeping the players’
inputs private, even if some of the players are corrupted by an adversary. This
is the well-known secure multi-party computation problem, as first stated by
Yao [Yao82].

As the first general solution to this problem, Goldreich, Micali, and Wigder-
son [GMW87] presented a protocol that allows n players to securely compute
an arbitrary function even if an adversary actively corrupts any t < n/2 of
the players and makes them misbehave maliciously. However, this protocol as-
sumes that the adversary is computationally bounded. In a model with secure
and authenticated channels between each pair of players (the secure-channels
model), Ben-Or, Goldwasser, and Wigderson [BGW88], and Chaum, Crépeau,
and Damg̊ard [CCD88] proved that unconditional security is possible if at most
t < n/2 of the players are passively corrupted, or alternatively, if at most t < n/3
of the players are actively corrupted. The bound t < n/3 for the active model was
improved by Rabin and Ben-Or [RB89], Beaver [Bea91], and Cramer, Damg̊ard,
Dziembowski, Hirt, and Rabin [CDD+99] to t < n/2 by assuming the existence
of a broadcast channel.

Secure multi-party computation can alternatively, and more generally, be
seen as the problem of performing a task among a set of players. The task is
specified by involving a trusted party, and the goal of the protocol is to replace
the need for the trusted party. In other words, the functionality of the trusted
party is shared among the players. Secure function evaluation described above
can be seen as a special case of this more general setting. Most protocols de-
scribed in the literature in the context of secure function evaluation also apply
in the general context. This also holds for the protocols described in this paper.

1.2 General Adversaries

Ito, Saito, and Nishizeki [ISN87] and Benaloh and Leichter [BL88] introduced
the notion of general (non-threshold) access structures for secret sharing. For
a set P of players, an access structure Γ is the set of all subsets of P that
are qualified to reconstruct the secret. Hirt and Maurer [HM97] transferred and
adjusted this notion to the field of general multi-party computation: for a set P
of players, an adversary structure Z is a set of all subsets of P that are tolerated
to jointly cheat without violating the security of the computation. A multi-party
computation protocol is called Z-secure if its security is not affected even if an
adversary corrupts the players in one particular set in Z.

234 Matthias Fitzi et al.

1.3 Contributions

The main results of [HM97] state that in the passive model, every function can
be computed unconditionally Z-securely if and only if no two sets in Z cover
the full set P of players. In the active model, every function can be computed
Z-securely if and only if no three sets in Z cover P . Assuming the existence of
broadcast channels and allowing some negligible error probability, every function
can be computed Z-securely if and only if no two sets in Z cover P .

We unify these models and introduce a new model in which the adversary
may actively corrupt some players, and, at the same time, passively corrupt some
additional players. The adversary is characterized by a generalized adversary
structure, a set of classes (D, E) of subsets of the player set P (i.e. D, E ⊆ P),
where the players of one specific class (D, E) in the adversary structure may
be corrupted — actively for the players in D (disruption) and passively for the
players in E (eavesdropping).

For example, the adversary structure Z =
{

({p1}, {p2, p3}), ({p2}, {p4})
}

describes an adversary that may either simultaneously corrupt player p1 actively
and the players p2 and p3 passively, or simultaneously corrupt player p2 actively
and player p4 passively. Note that it is not known in advance which class of
the structure will be corrupted by the adversary (and this is typically even not
known at the end of the protocol).

For this unified model, the necessary and sufficient conditions for secure
multi-party computation to be achievable for all functions are derived. In order
to characterize these conditions, we introduce three predicates: Let P be a set
of players and let Z be an adversary structure for P . Then Q(2,2)(P,Z) is the
predicate that is satisfied if and only if the players of no two classes in Z cover
the full set P of players, Q(3,2)(P,Z) is the predicate that is satisfied if and only
if the players of no two classes in Z together with the players in the active set
of any other class in Z cover P , and finally, Q(3,0)(P,Z) is the predicate that is
satisfied if and only if the players in the active sets of any three classes in Z do
not cover P . Formally,

Q(2,2)(P,Z) ⇐⇒ ∀(D1, E1), (D2, E2) ∈ Z : D1 ∪ E1 ∪ D2 ∪ E2
= P ,

Q(3,2)(P,Z) ⇐⇒ ∀(D1, E1), (D2, E2), (D3, E3) ∈ Z : D1 ∪ E1 ∪ D2 ∪ E2 ∪ D3
= P ,

Q(3,0)(P,Z) ⇐⇒ ∀(D1, E2), (D2, E2), (D3, E3) ∈ Z : D1 ∪ D2 ∪ D3
= P .

We characterize the necessary and sufficient conditions on the existence of un-
conditionally secure multi-party protocols according to three different cases:

– With or without broadcast channels, perfectly secure (without any probabil-
ity of error) multi-party computation is achievable if and only if Q(3,2)(P,Z)
is satisfied.

– Given a broadcast channel, unconditionally secure (with negligible probabil-
ity of error) multi-party computation is achievable if and only if Q(2,2)(P,Z)
is satisfied.

General Adversaries in Unconditional Multi-party Computation 235

– Without a broadcast channel, unconditionally secure multi-party computa-
tion is achievable if and only if both predicates Q(2,2)(P,Z) and Q(3,0)(P,Z)
are satisfied.

Moreover, for all models we propose constructions that yield protocols with
computation and communication complexity polynomial in the size of the ad-
versary structure and linear in the size of the circuit computing the function, as
opposed to the protocols of [HM97] that have super-polynomial complexity in
those cases with error probability. Furthermore we show that this construction is
optimal in the sense that there are adversary structures which require protocols
with complexity at least polynomial in the size of the adversary structure (and
hence potentially super-polynomial in the number of players).

1.4 Related Work

Active and passive corruptions within the same model was first considered by
Galil, Haber, and Yung [GHY87] for threshold multi-party computation. Chaum
[Cha89] proposed protocols that provide security with respect to an adver-
sary that either passively or actively corrupts players up to given thresholds.
Dolev, Dwork, Waarts, and Yung [DDWY93] proposed protocols and proved
tight bounds for message transmission unconditionally secure in simultaneous
presence of active and passive corruptions.

Fitzi, Hirt, and Maurer [FHM98] proposed multi-party protocols secure
against mixed threshold adversaries. Based on the constructions of classical
multi-party protocols [BGW88,RB89], they constructed new protocols for an
adversary that simultaneously actively, passively, and fail-corrupts players up to
given thresholds. However, as pointed out by Damg̊ard [Dam99], their protocols
for the perfect model (without error probability) do not achieve security for all
thresholds within the claimed bounds.1 In contrast to their work that modified
existing protocols in order to achieve the required properties, in this paper
we use the technique of player simulation [HM97] with classical protocols
[BGW88,RB89] as a basis.

Cramer, Damg̊ard, and Maurer [CDM99] proved that for every adversary
structure for which multi-party computation is feasible and for which there is
an efficient linear secret-sharing scheme, efficient multi-party protocols exist.
Smith and Stiglic [SS98] consider also uniquely active adversaries and propose
protocols for the active model with broadcast. The efficiency of their protocols is
polynomial in the size of a span program that computes the adversary structure,
however in Section 4 we prove that for some adversary structures, every protocol
requires complexity exponential in the number of players. This proof also applies
to models with only passive or only active corruptions.

1 Indeed, the tightness proofs for the perfect models in this paper contradict the results
of [FHM98]. See [Dam99] for more details.

236 Matthias Fitzi et al.

1.5 Outline

In Sect. 2 we formally define the models. The main results of the paper, the
characterization of the exact conditions for secure multi-party protocols as well as
the protocol constructions, are given in Sect. 3. In Sect. 4 we prove the existence
of adversary structures for which no protocols with complexity polynomial in
the number of players exist. Finally, some conclusions and open problems are
mentioned in Sect. 5.

2 Definitions and Model

This section gives a formal definition of the model used in this paper.

2.1 Protocols

A processor can perform operations in a fixed finite field (F , +, ∗), can select
elements from this field at random, and can communicate with other proces-
sors over perfectly authenticated and confidential synchronous channels (secure
channels model).2

A protocol π among a set P of processors is a sequence of statements. There
are input and output statements, transmit statements, and computation state-
ments. The latter include addition, multiplication, and random selection of field
elements.

A multi-party computation specification (or simply called specification) for-
mally describes the cooperation to be performed. Intuitively, a specification spec-
ifies the cooperation in an ideal environment involving a trusted party. Formally,
a specification is a pair (π0, τ) consisting of a protocol π0 among a set P0 of pro-
cessors, and the name of a trusted processor τ ∈ P0.

A general approach to multi-party computation is to construct protocols for
arbitrary specifications, or, more generally, to find a function (called multi-party
protocol generator) that takes a specification as an input and outputs a protocol
that securely computes the specification.

2.2 Adversaries and Adversary Structures

An adversary A is a program that actively corrupts a certain subset of the
processors and, at the same time, passively corrupts another subset of the pro-
cessors. To passively corrupt a processor means to be able to permanently read
all variables of that processor. To actively corrupt a processor means to be able
to take full control over the processor, in particular to read and write all its
2 In contrast to the players mentioned in the introduction, a processor is considered
to only perform the computation, where inputs and outputs are given from/to some
other entity (e.g. a person). This distinction avoids misunderstandings when proces-
sors are simulated by multi-party protocols.

General Adversaries in Unconditional Multi-party Computation 237

variables. The complexity of an adversary is not assumed to be polynomial and
may be unlimited.

An adversary is characterized by an adversary class C = (D, E), a pair of
disjoint subsets of the processor set, i.e. D, E ⊆ P and D∩E = ∅. An adversary
of class (D, E) may actively corrupt the processors in D (disruption) and may
passively corrupt the processors in E (eavesdropping). The set D is called the
active set and the set E is called the passive set of the class. A processor is
contained in an adversary class if it is a member in either set, i.e. p ∈ (D, E) ⇔
p ∈ (D ∪ E). An adversary class C′ is contained in an adversary class C if
the active set of C′ is a subset of the active set of C, and if every processor
contained in C′ is also contained in C, i.e. (D′, E′) ⊆ (D, E) ⇔ (D′ ⊆ D)∧(E′ ⊆
(D ∪E)).3 An adversary class C′ is strictly contained in an adversary class C if
it is contained but not equal, i.e. C′ ⊂ C ⇔ (C′ ⊆ C ∧ C′ �= C). An adversary
structure Z for the set P of processors is a monotone set of adversary classes,
i.e. for every class C ∈ Z, all classes contained in C are also in Z. For a structure
Z, Z denotes the basis of the structure, i.e. the set of the maximal classes in Z:
Z = {C ∈ Z :� ∃C′ ∈ Z : C ⊂ C′}.

To restrict a class C = (D, E) to the set P ′ of processors, denoted (D, E)
P ′ ,

means to intersect both sets of the class with P ′, i.e. (D, E)
P ′ = (D∩P ′, E∩P ′).

To restrict a structure Z to the set P ′ of processors means to restrict all classes
in the structure.

2.3 Security

For an adversary A, a protocol A-securely computes a specification if, whatever
A does in the protocol, the same effect could be achieved by A (with a modified
strategy, but with similar costs) in the specification [Can98,Bea91,MR98]. For
an adversary structure Z and a specification (π0, τ), a protocol π Z-securely
computes the specification (π0, τ) if for every adversary A of class C ∈ Z, the
protocol π A-securely computes the specification (π0, τ). Whenever the specifica-
tion is clear from the context, we also say that a protocol tolerates an adversary
A (a structure Z) instead of saying that the protocol A-securely (Z-securely)
computes the specification.

3 Complete Characterization of Tolerable Adversaries

The basic technique for constructing a protocol that tolerates a given adver-
sary structure is to begin with a threshold protocol (e.g. one of the protocols
of [BGW88,CCD88,RB89]) among a small number of processors and to simu-
late some of these processors by subprotocols among appropriate sets of other
processors [HM97]. The idea behind this is that everything a processor has to
perform during the protocol execution (such as communication with other pro-
cessors and local computations) can be simulated by a multi-party computation
3 This definition implies that every adversary of a given class C′ can also be considered
as an adversary of every class C with C′ ⊆ C.

238 Matthias Fitzi et al.

protocol among a set of processors. If the adversary is tolerated by this simula-
tion protocol then the simulated processor can be considered to be uncorrupted.
This procedure of processor simulation can be applied recursively, i.e., the pro-
cessors that participate in the simulation of a processor can again be simulated
by an appropriate set of other processors, and so on.

The proofs given in this section are only sketched. Formal proofs based on
simulator techniques can be given according to [Can98,Bea91,MR98]. Also, the
proofs in this section are given with respect to a static adversary (i.e. an adver-
sary that at the beginning of the protocol selects the processors to be corrupted),
but they can be easily modified to apply to a model with an adaptive adversary
(i.e. an adversary that consecutively corrupts processors during the computation,
depending on the information gained so far, where the processors corrupted at
any time must form an admissible class in the adversary structure).

3.1 Perfectly Secure Multi-Party Computation

The main result of this section, the tight bounds as well as the protocol con-
struction, are stated in Theorem 1. This general result is based on a solution for
all adversary structures Z with |Z| ≤ 3, which is given in the following lemma.

Lemma 1. A set P of processors can compute every function/specification per-
fectly Z-securely if Q(3,2)(P,Z) and |Z| ≤ 3. The computation and communica-
tion complexities are linear in the size of the specification.

Proof. Consider an arbitrary adversary structure Z with |Z| ≤ 3 that satisfies
Q(3,2)(P,Z), and a specification (π0, τ). We show that for every such structure
Z there exists a subset of the processors that can compute the specification in a
secure way.4 If |Z| < 3, then the condition Q(3,2)(P,Z) immediately implies that
there is a processor p ∈ P that is not contained in any class of Z (i.e. Z {p} =
{(∅, ∅)}). Hence this processor cannot be corrupted by any admissible adversary,
and one can simply replace the occurrence of the trusted party τ in the protocol
π0 of the specification by the name of this processor. Thus assume that |Z| =
3 and Z = {(D1, E1), (D2, E2), (D3, E3)}. Condition Q(3,2)(P,Z) implies that
there exists a processor p3 ∈ P with p3 /∈ D1∪E1∪D2∪E2∪D3 (but potentially
p3 ∈ E3). Hence this processor remains uncorrupted by an adversary of the first
or the second class, and is (at most) passively corrupted by an adversary of the
third class. By symmetry reasons, there exist processors p1 and p2 which can be
corrupted at most passively and only by an adversary of the first or the second
class, respectively. This means that every admissible adversary may corrupt none
of the processors p1, p2, or p3 actively and only at most one of them passively.
Hence, these three processors can simulate the trusted party of the specification
by using the protocol of [BGW88] (passive model) for three processors. The other
processors (if any) are not involved in the simulation of the trusted party. ��
4 Although only a subset of the processors is involved in the multi-party computation,
all the processors that have input must provide (i.e. secret-share) this input among
the involved processors.

General Adversaries in Unconditional Multi-party Computation 239

Theorem 1. A set P of processors can compute every function/specifica-
tion perfectly Z-securely if Q(3,2)(P,Z) is satisfied. This bound is tight: if
Q(3,2)(P,Z) is not satisfied, then there exist functions that cannot be computed
perfectly Z-securely, even if a broadcast channel is available.5 The communica-
tion and computation complexities are polynomial in the size |Z| of the basis of
the adversary structure and linear in the length of the specification.

Proof. Consider a set P of processors and a structure Z for this set P such that
Q(3,2)(P,Z) is satisfied, and an arbitrary specification (π0, τ). We recursively
construct a Z-secure protocol π:

The case
∣
∣Z∣

∣ ≤ 3 was treated in Lemma 1 (induction basis). Thus assume
that |Z| ≥ 4, and that for all adversary structures with basis size strictly less
than k there exists a secure protocol (induction hypothesis). We select some
four-partition of Z where the size of each set of the partition is at least �|Z|/4�.
Let Z1, Z2, Z3, and Z4 be the four unions of three distinct sets of the partition,
each of them completed such that it is monotone. Since |Z| ≥ 4, the size |Zi| of
the basis of each such structure is strictly smaller than the size |Z| of the current
structure basis, i.e. |Zi| < |Z| (1 ≤ i ≤ 4), and one can recursively construct
protocols π1, π2, π3, and π4, each among the set P of processors, tolerating Z1,
Z2, Z3, and Z4, respectively (hypothesis). The protocol π that tolerates Z can
be constructed as follows:

First, one constructs a protocol among four “virtual” processors that com-
putes the specification (π0, τ), tolerating an adversary that actively corrupts a
single processor [BGW88] (active model). Then one simulates the four virtual
processors by the recursively constructed protocols π1, . . . , π4, respectively.
Since every adversary class is tolerated by at least three of the protocols π1, π2,
π3, and π4 (thus only one of the virtual processors in the main protocol is mis-
behaving), the resulting protocol tolerates all adversary classes in the adversary
structure and, as claimed, the constructed protocol π is Z-secure.

In order to analyze the efficiency of the protocols, we need the help of the
following observation: The protocols of [BGW88] for the passive model with three
processors and those for the active model with four processors have a constant
“blow-up factor” bp and ba, respectively, i.e. for any specification of length l, the
length of the protocol computing this specification is bounded by bp · l in the
passive model and by ba · l in the active model.

In the construction given above, on each recursion level all involved proces-
sors are simulated by using protocols of [BGW88] (active case), except for the
lowest level, where [BGW88] (passive case) is used. The simulations on each
level can be performed independently, and every statement in the current pro-
tocol is affected by at most two such simulations (as at most two processors
occur in one statement). Hence, the total blow-up of all simulations on a given
level is bounded by b2

a (b2
p on the lowest level), and as the recursion depth of the

construction is logarithmic in the number |Z| of maximal sets in the adversary
structure, the total blow-up is polynomial in |Z|.
5 Indeed, almost every non-trivial function cannot be computed perfectly Z-securely.

240 Matthias Fitzi et al.

In order to prove the tightness of the theorem, assume an adversary
structure Z for which every function can be computed perfectly Z-securely
and suppose Q(3,2)(P,Z) is not satisfied. Then there exist three classes
(D1, E1), (D2, E2), (D3, E3) ∈ Z with D1 ∪ E1 ∪ D2 ∪ E2 ∪ D3 = P , and (due
to the monotonicity of Z) with the sets D1, E1, D2, E2 and D3 being pairwise
disjoint.

One can construct a protocol for three processors p̂1, p̂2, and p̂3, where p̂1

plays for all the processors in D1 ∪ E1, p̂2 plays for those in D2 ∪ E2, and p̂3

plays for those in D3. This new protocol is secure with respect to an adversary
that passively corrupts either p̂1 or p̂2, or actively corrupts p̂3.

Assume that the specification requires to compute the logical AND of two
bits x1 and x2 held by p̂1 and p̂2, respectively, and assume for the sake of
contradiction that a protocol for this specification is given. Let T denote the
transcript of the broadcast channel of a run of that protocol (if no broadcast
channel is available, let T = ∅), and let Tij (1 ≤ i < j ≤ 3) denote the transcript
of the channels between p̂i and p̂j. Due to the requirement of perfect privacy,
p̂1 will not send any information about his bit x1 over T12 or over T before he
knows x2 (if P1 knows that x2 = 1 he can reveal x1). Similarly, p̂2 will not send
any information about x2 over T12 or over T before he knows x1. Hence the only
escape from this deadlock would be to use p̂3. However, as T12 and T jointly
give no information about x2, a random misbehavior of an actively corrupted p̂3

(ignore all received messages and send random bits whenever a message must
be sent) would with some (possibly negligible) probability make p̂1 receive the
wrong output, contradicting the perfect security of the protocol. ��

3.2 Unconditionally Secure Multi-Party Computation

We prove the necessity of Q(2,2) for unconditionally secure multi-party compu-
tation in Lemma 2, and prove its sufficiency for the case that broadcast chan-
nels are available in Theorem 2. We then consider a model without broadcast
and suggest a simple but surprising protocol among three processors for this
model (Theorem 3). Finally, in Theorem 4, the tight bounds on the existence of
unconditionally secure multi-party protocols in a model without broadcast are
given. Note that all proposed protocols are efficient (polynomial in the number
of maximal sets in the adversary structure), as opposed to the protocols for the
unconditional model in [HM97].

Lemma 2. For every adversary structure Z for a processor set P not satis-
fying Q(2,2)(P,Z), there exist functions/specifications that cannot be computed
unconditionally Z-securely. Even a broadcast channel does not help.

Proof. For the sake of contradiction, assume that for an adversary structure Z
for which Q(2,2)(P,Z) is not satisfied, there exists an unconditional Z-secure
protocol for every function. There exist two classes (D1, E1), (D2, E2) ∈ Z with
D1∪E1∪D2∪E2 = P . Without loss of generality, assume that the four sets D1,
E1, D2, and E2 are pairwise disjoint. Then we can transform such a Z-secure

General Adversaries in Unconditional Multi-party Computation 241

protocol into a protocol among two processors p̂1 and p̂2, where each processor
plays for the processors in D1 ∪ E1, and D2 ∪ E2, respectively. The broadcast
channel is not needed anymore (there are only two processors). This protocol
is secure against passive corruption of one of the two processors, contradicting
Theorem 2 of [BGW88]. ��
Theorem 2. If a broadcast channel is available, a set P of processors can com-
pute every function/specification unconditionally Z-securely if Q(2,2)(P,Z) is
satisfied. This bound is tight: if Q(2,2)(P,Z) is not satisfied, then there exist
functions that cannot be computed unconditionally Z-securely. The communica-
tion and computation complexities of the protocol are polynomial in the size |Z|
of the basis of the adversary structure and linear in the length of the specification.

Proof. Consider a set P of processors and a structure Z for this set P such
that Q(2,2)(P,Z) is satisfied, and an arbitrary specification (π0, τ). We have to
construct a Z-secure protocol π for the set P of processors.

The case
∣
∣Z∣

∣ ≤ 3 is simple. Since we have Q(2,2)(P,Z), we have three pro-
cessors p1, p2, and p3, where pi occurs in the i-th class of Z, but does not
occur in the other classes. The protocol of [RB89] for three processors requires
a broadcast channel and provides unconditional security (with some negligible
error probability) with respect to an adversary that actively corrupts a single
processor (trivially, this processor may also be corrupted only passively). This
protocol among the three processors p1, p2, and p3 is Z-secure.

The case of a basis with at least four classes is treated along the lines of the
construction in the proof of Theorem 1: First we select some four-partition of Z
and, by recursion, a protocol is constructed for each of the four unions of three
subsets of the partition. Then, these four protocols are composed to a four-party
protocol of [BGW88, active model].

The efficiency of this protocol can be analysed along the lines of the analysis
given in the proof of Theorem 1. However, as the protocols of [RB89] that are
used in the lowest level of the substitution tree provide some negligible error
probability, special care is required in the analysis (cf. [HM97]). It follows im-
mediately from the analysis in the proof of Theorem 1 that the protocol which
results after applying all substitutions except for those on the lowest level, has
polynomial complexity. But every statement of this protocol is expanded at most
twice by all the remaining substitutions (once per involved processor), and each
blow-up is polynomial, and hence the final protocol is also polynomial in the
number |Z| of maximal sets in the adversary structure. This is in contrast to the
protocols of [HM97] (for the unconditional model with error probability), where
protocols of [RB89] are used in each level of the simulation tree and hence their
protocols have superpolynomial complexity.

The tightness of the theorem is given in Lemma 2. ��
Proposition 1. Let Z be an adversary structure for the set P of processors,
where one processor p ∈ P does not occur in the active set of any class C ∈ Z
(i.e. ∀(D, E) ∈ Z : p /∈ D). If there exists a Z-secure protocol π in a model with

242 Matthias Fitzi et al.

broadcast, then one can construct a Z-secure protocol π′ for a model without
broadcast. The complexity of π′ is the same as the complexity of π.

Proof. Since there exists a processor p ∈ P that cannot be actively corrupted by
any admissible adversary, it is guaranteed that it follows the protocol. Hence, p
can be used to simulate a broadcast channel. Instead of broadcasting a message,
the message is sent to p which then sends this message to all processors in P . ��
Theorem 3. A set P = {p1, p2, p3} of three processors can compute every
function/specification unconditionally securely with respect to an adversary that
either passively corrupts p1 or actively corrupts either p2 or p3, i.e. Z-securely
for Z =

{
(∅, {p1}), ({p2}, ∅), ({p3}, ∅)

}
.

Proof. In order to compute an arbitrary specification, the protocol of [RB89]
is applied. This protocol for three processors provides unconditional security
(with negligible error probability) with respect to an adversary that may actively
corrupt one arbitrary processor, but it assumes the existence of a broadcast
channel. However, the processor p1 does not occur in the active set of any class
in Z, so, by Proposition 1, we can transform the protocol with a broadcast
channel to a protocol that does not assume a broadcast channel. ��
Theorem 4. A set P of processors can compute every function/specification
unconditionally Z-securely if Q(2,2)(P,Z) and Q(3,0)(P,Z) are satisfied. This
bound is tight: if Q(2,2)(P,Z) or Q(3,0)(P,Z) is not satisfied, then there exist
functions that cannot be computed unconditionally Z-securely. The communica-
tion and computation complexities of the protocol are polynomial in the size |Z|
of the basis of the adversary structure and linear in the length of the specification.

Proof. Consider a set P of processors and a structure Z for this set P such
that Q(2,2)(P,Z) and Q(3,0)(P,Z) are satisfied. The condition Q(3,0) implies
the existence of an efficient secure protocol for broadcast [FM98], and hence the
construction of the proof of Theorem 2 yields a Z-secure protocol.

The necessity of Q(2,2)(P,Z) was proven in Lemma 2. Thus assume that
Q(2,2)(P,Z) is satisfied but not Q(3,0)(P,Z), i.e. there exist three classes
(D1, E1), (D2, E2), (D3, E3) ∈ Z with D1 ∪ D2 ∪ D3 = P (and D1, D2, and D3

pairwise disjoint). For the sake of contradiction, assume that for every function
a Z-secure multi-party protocol exists, hence in particular for the broadcast
function. One can hence construct a broadcast protocol for the three processors
p̂1, p̂2, and p̂3 (where each processor p̂1, p̂2, and p̂3 “plays” for the processors
in one of the sets D1, D2, and D3, respectively), where the adversary is allowed
to actively corrupt one of them, contradicting the result that broadcast for
three processors is not possible if the adversary may actively corrupt one of the
processors, even if a negligible error probability is tolerated [LSP82,KY]. ��
Corollary 1. Using the help of a trusted party τ , a set P of n processors can
compute every function/specification unconditionally securely with respect to an
adversary that may actively corrupt any subset S ⊆ P of size |S| ≤ t (for a given

General Adversaries in Unconditional Multi-party Computation 243

t > n/2). The trusted party τ obtains no information about the private inputs
and outputs as long as less than n − t processors are actively corrupted.

Proof. We need to show that there are Z-secure protocols for the set P ∪ {τ} of
processors, where Z = {(D, E) : |D ∪ E| ≤ t}∪{(D, E ∪ {τ}) : |D ∪ E| < n − t}.
According to Theorem 4 it suffices to show that Q(2,2)(P∪{τ},Z) and Q(3,0)(P∪
{τ},Z) are satisfied. Obviously, Q(3,0)(P ∪ {τ},Z) holds since τ may not be
actively corrupted.

In order to prove that Q(2,2)(P ∪ {τ},Z) is satisfied, consider two arbitrary
classes (D1, E1), (D2, E2) ∈ Z. At least one of the classes must contain τ (else
the classes cannot cover P ∪ {τ}), and this class has cardinality at most n − t.
The other class has cardinality at most n − t (if it contains τ) or t (if it does
not contain τ), and the condition t > n/2 implies that in either case the sum
cardinality of both classes is at most n. There are n + 1 processors in P ∪ {τ},
hence at least one processor does not occur in either class and Q(2,2)(P ∪{τ},Z)
is satisfied. ��

4 Adversary Structures without Efficient Protocols

The goal of this section is, informally, to prove that there exists a family of
adversary structures for which the length of every resilient protocol grows expo-
nentially in the number of processors.

For a specification (π0, τ), a set P of processors, and an adversary structure
Z, let ϕ

(
(π0, τ), P,Z)

denote the length of the shortest protocol π for P that
Z-securely computes (π0, τ). Furthermore, let (π∗, τ) denote the specification
for the processors p1 and p2 that reads one input of both processors, computes
the product and hands it to p1. Finally, let Pn denote the set {p1, . . . , pn} of
processors.

The following theorem shows that there exists a family Z2,Z3, . . . of ad-
versary structures for the sets P2, P3, . . . of processors, respectively, such that
ϕ
(
(π∗, τ), Pn,Zn

)
grows exponentially in n.

Theorem 5. For all considered models there is a family Z2,Z3, . . . of admissi-
ble adversary structures for the sets P2, P3, . . . of processors such that the length
ϕ
(
(π∗, τ), Pn,Zn

)
of the shortest Zn-secure protocol for (π∗, τ) grows exponen-

tially in n.

In order to prove the theorem we need an additional definition: An admissible
adversary structure Z for the set P of processors is maximal if Q(3,2)(P,Z) is
satisfied, but any adversary structure Z ′ with Z � Z ′ violates Q(3,2)(P,Z ′).

Proof. The proof proceeds in three steps: First we prove that the number of max-
imal admissible adversary structures grows doubly-exponentially in the number
n of processors. In the second step, we show that for the given specification

244 Matthias Fitzi et al.

(π∗, τ), for every maximal admissible adversary structure a different protocol is
required. Finally, we conclude that for some adversary structures the length of
every secure protocol is exponential in the number of processors.

1. We exclusively consider adversary structures Z that only contain classes
with an empty active set, i.e. ∀(D, E) ∈ Z : D = ∅. Hence, the necessary
and sufficient conditions for the existence of multi-party protocols is that the
passive sets of no two classes in Z cover the full set P of processors. As a
shorthand we write E ∈ Z instead of (D, E) ∈ Z. Without loss of generality,
assume that n = |P | is odd, and let m = (n + 1)/2. Fix a processor p ∈ P ,
and consider the set B that contains all subsets of P \{p} with exactly m
processors, i.e. B = {E ⊆ (P \{p}) : |E| = m}. For each subset B′ ⊆ B, we
define ZB′ to be the adversary structure that contains all sets in B′, plus all
sets E ⊆ P with |E| < m and (P \E) /∈ B. One can easily verify that ZB′ is
admissible and maximal, and that for two different subsets B′, B′′ ⊆ B, the
structures ZB′ and ZB′′ are different. The size of B is |B| =

(
n−1
m

)
, hence

there are 2(n−1
m) different subsets B′ of B, and thus doubly-exponentially

many different maximal admissible adversary structures.
2. Let Z be a maximal admissible adversary structure, and let π be a protocol

that Z-securely computes (π∗, τ). For the sake of contradiction, assume that
for some other maximal admissible adversary structure Z ′ (where Z ′ �= Z),
the same protocol π Z ′-securely computes (π∗, τ). Then π would (Z ∪ Z ′)-
securely compute (π∗, τ). However, since both Z and Z ′ are maximal admis-
sible, (Z ∪ Z ′) is not admissible, and hence no such protocol exists. Hence,
for each maximal admissible adversary structure Z a different protocol π is
required for securely computing (π∗, τ).

3. There are doubly-exponentially many maximal admissible adversary struc-
tures, and for each of them, a different protocol is required, hence there are
doubly-exponentially many different protocols. This concludes that some of
these protocols have exponential length. ��

5 Conclusions and Open Problems

We have given a complete characterization of adversaries tolerable in uncon-
ditional multi-party computation in a generalized model where the adversary
may actively corrupt some players and simultaneously passively corrupt
some additional players. The characterization of the adversary is given by
a set of pairs of subsets of the player set (rather than thresholds as in
[Cha89,DDWY93,FHM98] or an adversary structure for either passive or active
corruption [HM97,CDM99,SS98]). Moreover we have proposed constructions
that, for any admissible adversary, yield secure protocols with communica-
tion and computation complexities polynomial in the size of the adversary
structure. This improves on those protocols in [HM97] that have complexities
super-polynomial in the size of the adversary structure.

For many scenarios, the protocols proposed in this paper tolerate strictly
more powerful adversaries than are tolerated by any previous protocol. As a

General Adversaries in Unconditional Multi-party Computation 245

surprising example, the protocol for three players that unconditionally toler-
ates an adversary that passively corrupts one single player could be improved
by tolerating that the adversary may corrupt one of two specific players even
actively.

Finally, this paper has given a proof that there is a family of adversary
structures which no protocol with complexities polynomial in the number of
players exists for.

Besides active and passive player corruption, fail-corruption can be con-
sidered as a third fundamental type of player corruption, as treated in
[GHY87,DDWY93,FHM98]. It is an open problem to characterize the tight
conditions for unconditionally secure multi-party computation to be achievable
with respect to a general adversary that may simultaneously perform active,
passive and fail-corruptions. In the generalized adversary model this problem
seems to be more involved than in the threshold model.

Acknowledgments

The authors would like to thank Ronald Cramer, Ivan Damg̊ard, Yuval Ishai,
and Stefan Wolf for many interesting discussions. Furthermore we would like to
thank the anonymous referees for their useful comments on the paper.

References

Bea91. D. Beaver. Secure multiparty protocols and zero-knowledge proof systems
tolerating a faulty minority. Journal of Cryptology, pp. 75–122, 1991. 233,
237, 238

BGW88. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation. In Proc. 20th
ACM Symposium on the Theory of Computing (STOC), pp. 1–10, 1988.
233, 235, 237, 238, 239, 241

BL88. J. C. Benaloh and J. Leichter. Generalized secret sharing and monotone
functions. In Advances in Cryptology — CRYPTO ’88, volume 403 of
Lecture Notes in Computer Science. Springer-Verlag, 1988. 233

Can98. R. Canetti. Security and composition of multi-party cryptographic pro-
tocols. Manuscript, June 1998. Former (more general) version: Modular
composition of multi-party cryptographic protocols, Nov. 1997. 237, 238

CCD88. D. Chaum, C. Crépeau, and I. Damg̊ard. Multiparty unconditionally se-
cure protocols (extended abstract). In Proc. 20th ACM Symposium on the
Theory of Computing (STOC), pp. 11–19, 1988. 233, 237

CDD+99. R. Cramer, I. Damg̊ard, S. Dziembowski, M. Hirt, and T. Rabin. Efficient
multiparty computations with dishonest minority. In Advances in Cryp-
tology — EUROCRYPT ’99, Lecture Notes in Computer Science, 1999.
233

CDM99. R. Cramer, I. Damg̊ard, and U. Maurer. General secure multi-party com-
putation from any linear secret sharing scheme. Manuscript, 1999. 235,
244

246 Matthias Fitzi et al.

Cha89. D. Chaum. The spymasters double-agent problem. In Advances in Cryp-
tology — CRYPTO ’89, volume 435 of Lecture Notes in Computer Science,
pp. 591–602. Springer-Verlag, 1989. 235, 244

Dam99. I. Damg̊ard. An error in the mixed adversary protocol by Fitzi, Hirt and
Maurer. Available at http://philby.ucsd.edu/cryptolib.html, paper 99-03,
1999. 235

DDWY93. D. Dolev, C. Dwork, O. Waarts, and M. Yung. Perfectly secure message
transmission. Journal of the ACM, 40(1):17–47, Jan. 1993. 235, 244, 245

FHM98. M. Fitzi, M. Hirt, and U. Maurer. Trading correctness for privacy in
unconditional multi-party computation. In Advances in Cryptology —
CRYPTO ’98, volume 1462 of Lecture Notes in Computer Science, 1998.
235, 244, 245

FM98. M. Fitzi and U. Maurer. Efficient Byzantine agreement secure against
general adversaries. In Distributed Computing — DISC ’98, volume 1499
of Lecture Notes in Computer Science, Sept. 1998. 242

GHY87. Z. Galil, S. Haber, and M. Yung. Cryptographic computation: Secure fault-
tolerant protocols and the public-key model. In Advances in Cryptology —
CRYPTO ’87, volume 293 of Lecture Notes in Computer Science, pp. 135–
155. Springer-Verlag, 1987. 235, 245

GMW87. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game
— a completeness theorem for protocols with honest majority. In Proc. 19th
ACM Symposium on the Theory of Computing (STOC), pp. 218–229, 1987.
233

HM97. M. Hirt and U. Maurer. Complete characterization of adversaries tolerable
in secure multi-party computation. In Proc. 16th ACM Symposium on
Principles of Distributed Computing (PODC), pp. 25–34, Aug. 1997. 233,
234, 235, 237, 240, 241, 244

ISN87. M. Ito, A. Saito, and T. Nishizeki. Secret sharing scheme realizing general
access structure. In Proceedings IEEE Globecom ’87, pp. 99–102. IEEE,
1987. 233

KY. A. Karlin and A. C. Yao. Manuscript. 242
LSP82. L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem.

ACM Transactions on Programming Languages and Systems, 4(3):382–401,
July 1982. 242

MR98. S. Micali and P. Rogaway. Secure computation: The information theoretic
case. Manuscript, 1998. Former version: Secure computation, In Advances
in Cryptology — CRYPTO ’91, volume 576 of Lecture Note in Computer
Science, pp. 392–404, Springer-Verlag, 1991. 237, 238

RB89. T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols
with honest majority. In Proc. 21st ACM Symposium on the Theory of
Computing (STOC), pp. 73–85, 1989. 233, 235, 237, 241, 242

SS98. A. Smith and A. Stiglic. Multiparty computation unconditionally secure
against Q2 adversary structures. Manuscript, July 1998. 235, 244

Yao82. A. C. Yao. Protocols for secure computations. In Proc. 23rd IEEE Sympo-
sium on the Foundations of Computer Science (FOCS), pp. 160–164. IEEE,
1982. 233

	Introduction
	Secure Multi-Party Computation
	General Adversaries
	Contributions
	Related Work
	Outline

	Definitions and Model
	Protocols
	Adversaries and Adversary Structures
	Security

	Complete Characterization of Tolerable Adversaries
	Perfectly Secure Multi-Party Computation
	Unconditionally Secure Multi-Party Computation

	Adversary Structures without Efficient Protocols
	Conclusions and Open Problems
	Acknowledgments
	References

