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Abstract. The problem of proving a number is of a given arithmetic for-
mat with some prime elements, is raised in RSA undeniable signature,
group signature and many other cryptographic protocols. So far, there
have been several studies in literature on this topic. However, except the
scheme of Camenisch and Michels, other works are only limited to some
special forms of arithmetic format with prime elements. In Camenisch
and Michels’s scheme, the main building block is a protocol to prove a
committed number to be prime based on algebraic primality testing al-
gorithms. In this paper, we propose a new protocol to prove a committed
number to be prime. Our protocol is O(t) times more efficient than Ca-
menisch and Michels’s protocol, where t is the security parameter. This
results in O(t) time improvement for the overall scheme.

1 Introduction

In many applications, it is essential to prove that a number is of an arithmetic
format of which some elements are prime. This problem is raised in many recently
proposed cryptographic protocols [4,11,13,14]. The protocols proposed in [13,14]
are sound only if there exists a proof that a given number n is a product of
two safe prime numbers. In [11], the divisible electronic cash scheme requires
a zero-knowledge proof that a committed number is a product of two primes.
Furthermore, though not necessary, it is recommended in [15] to show that a
number n is a product of two prime numbers p, q such that (p+1)/2 and (q+1)/2
are also primes.

Previously, there have been several studies in the literature related to this
subject. de Graaf and Peralta [12] provided an efficient proof that a given number
n is of the form n = prqs, where r and s are odd, p and q are primes. Another
protocol is that of Boyar et al.[1] which proves a given number n is square-
free, i.e., all the factors of n are singular. Gennaro at el.[16] extended these two
results to show that a number n is a product of quasi-safe primes p, q, i.e., each
of (p − 1)/2 and (q − 1)/2 has only one prime factor.
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More recently, Camenisch and Michels [3] proposed a general solution for this
problem. They used the general paradigm of proving that a number is of a specific
arithmetic format [6,8,10,17]. In this paradigm, the prover builds an arithmetic
circuit corresponding to the arithmetic relation. She then commits all inputs of
the circuit in some commitments. The proof is then a set of protocols showing
that the prover knows the secret elements concealed in the commitments and
the final output of the circuit is the desired number and the relations between
committed elements correspond to the arithmetic circuit. As all elements are
concealed in the commitments, in order to demonstrate that some elements are
prime, the prover must be able to show that committed numbers are prime.
In [3], a proof that a committed number is prime is at least O(t2) fold more
expensive than a proof of an arithmetic relation.

Our main contribution of this paper is an efficient protocol to prove in (statis-
tical) zero-knowledge that a committed number is prime. Our technique results
in an efficient proof that a number is is of an arithmetic format where some
involved elements are prime. The protocol is O(t) times more efficient than the
protocol in [3], where 1/2t is the error probability of the proof. This consequently
leads to O(t) fold improvement of the general protocol.

2 Preliminary

In this section, we review a commitment scheme and statistical zero-knowledge
proofs that demonstrate basic arithmetic relations amongst some commitments.
The commitment scheme is unconditional hiding and conditionally binding and
other protocols are statistical zero-knowledge. They are all well-known in lit-
erature. The reader is referred to [2,3,6,10,11] for detailed discussions of these
protocols and other variations.

In the following, we assume that G = 〈g〉 is a group of large known order Q
over the finite field ZP for some known prime P and h is a second generator of
the group such that logg h is not known to the prover.

A commitment scheme: To commit an element x, the prover chooses r ∈R ZQ

and sends y = gxhr to the verifier. Given y, it is infeasible for the verifier to
obtain any information about x and it is infeasible for the prover to find two
different pairs (x, r) and (x′, r′) such that y = gxhr = gx′

hr′
unless she can

compute logg(h).

Proving the knowledge of a representation: of the element y to the bases g1, .., gk,
involves proving the knowledge of x1, . . . , xk such that y =

∏k
i=1 gxi

i . The pro-
tocol works as follows. The prover chooses r1, . . . , rk ∈R ZQ, computes w :=∏k

i=1 gri

i , and sends w to the verifier. The verifier picks a random challenge
c ∈R {0, 1}t and sends it to the prover. The prover computes si := ri−cxi mod Q

for i = 1, . . . , t. The verifier accepts , iff w = yc
∏k

i=1 gsi

i . Following the notations
of [3,4], we denote this protocol as PK{(α1, . . . , αk) : y =

∏k
i=1 gαi

i }.
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Proving the equality of discrete logarithm: to the bases g1 and h1 in the represen-
tation of elements y1, y2 to the bases (g1, . . . , gk) and (h1, . . . , hk) respectively,
involves proving the knowledge of x1, . . . , xk, z1, z2, . . . , zk such that x1 = z1,
y1 =

∏k
i=1 gxi

i and y2 =
∏k

i=1 hzi

i . The protocol works as follows. The prover
chooses r1, . . . , rk ∈R ZQ and u2, . . . , uk ∈R ZQ, computes w1 :=

∏k
i=1 gri

i and
w2 := hr1

1

∏k
i=2 hui

i , and sends w1, w2 to the verifier. The verifier picks a ran-
dom challenge c ∈R {0, 1}t and sends it to the prover. The prover computes
si := ri − cxi mod Q for i = 1, . . . , k and vi := ui − czi mod Q for i = 2, . . . , k.
The verifier accepts iff w1 = yc

1g
s1
1

∏k
i=2 gsi

i and w2 = yc
2h

s1
1

∏k
i=2 hui

i . We denote
this protocol as PK{(α1, . . . , αk, β1, . . . , βk) : α1 = β1 ∧ y1 =

∏k
i=1 gαi

i ∧ y2 =∏k
i=1 hβi

i }.

Proving that a discrete logarithm is in a given range: This protocol proves that
the discrete logarithm x of y = gxhr satisfies x ∈ [a, b] for given parameters
a, b < Q/2. Several such schemes exist in literature. We review the scheme
of [11] here. The protocol works as follows (e = �(b − a)/3� − 1):

– The prover chooses x1, r1, r2 ∈R [0, e], sets x2 = x1 − e and w1 := gx1hr1

and w2 := gx2hr2 . She then sends the un-order pair (w1, w2) to the verifier.
– The verifier chooses c ∈R [0, 1] and sends c to the prover.
– If c = 0, the prover sends x1, x2, r1, r2 to the verifier. Otherwise, the prover

sends (x + xj , r + rj) (j = 1 or 2) such that x + xj ∈ [a + e, b − e].
– The prover accepts iff w1 = gx1hr1 , w2 = gx2hr2 when c = 0 and ywj =

gx+xjhr+rj when c = 1.

This is repeated t times to achieve the error probability of 1/2t. We denote this
protocol as PK{(α1, . . . , αk) : y =

∏k
i=1 gαi

i ∧ α1 ∈ [a, b]}. The scheme is not
very efficient. Constructions of [5,10] are much more efficient but use a composite
modulo m and require a proof that m is a product of two primes.

Building on these protocols, we next present zero-knowledge protocols to
prove secret modular quadratic residue and secret modular exponentiation. Both
protocols use a protocol that demonstrates secret modular multiplicative rela-
tion. The protocols to prove secret modular multiplicative and exponentiation
relations, were introduced in [3]. We present them here for the sake of complete-
ness.

Secret modular multiplicative relation: Assume that a prover has committed to
x, y, z, n in the commitments cx, cy, cz and cn such that 0 < x, y, z, n < 2l where
l = |Q|/2− 1. The prover can convince the verifier that xy ≡ z mod n using the
following proofs:

(1) PK{(x, rx) : cx = gxhrx ∧ x ∈ [1, 2l]}.
(2) PK{(y, ry) : cy = gyhry ∧ y ∈ [1, 2l]}.
(3) PK{(z, rz) : cz = gzhrz ∧ z ∈ [1, 2l]}.
(4) PK{(n, rn) : cn = gnhrn ∧ n ∈ [1, 2l]}.
(5) PK{(u, ru) : cu = guhru ∧ u ∈ [1, 2l]}.
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(6) PK{(y, u, ry, ru, ρ) : cz = cy
xcu

nhρ ∧ cy = gyhry ∧ cu = guhru}

Here clause (6) is a combination of two proofs of equality of discrete loga-
rithms [4]. It is straightforward to prove that clause (6) is a zero-knowledge proof
of knowledge. We denote this protocol as PK{(x, y, z, n) : xy ≡ z mod n}.

Lemma 1. Let x, y, z, n be the values committed in cx, cy, cz and cn respectively.
PK{(x, y, z, n) : xy ≡ z mod n} is a statistical zero-knowledge proof of xy ≡
z mod n.

Proof. The statistical zero-knowledge claim follows from the statistical zero-
knowledge property of the protocol components. We now show why the multi-
plicative relation holds.

We let the knowledge extractor to run the protocol with the prover. From
(1)(2)(3) (4) and (5), the knowledge extractor can obtain x̃, ỹ, z̃, ñ, ũr̃x, r̃y, r̃z, r̃n

and r̃u such that cx = gx̃hr̃x , cy = gỹhr̃y , cz = gz̃hr̃z , cn = gñhr̃n and cu =
gũhr̃u . Moreover 0 < x̃, ỹ, z̃, ñ, ũ < 2l.

Furthermore from (6), the extractor can extract ρ̃, ỹ, ũ, r̃y and r̃u such that
cz = cỹ

xcũ
nhρ̃, cy = gỹhr̃y and cu = gũhr̃u . Assuming that logg(h) is not known,

this shows z̃ = x̃ỹ + ũñ mod Q. But 0 < x̃, ỹ, z̃, ñ, ũ < 2l and l < |Q|/2. Hence
z̃ = x̃ỹ + ũñ mod Q holds only if z̃ = x̃ỹ + ũñ holds, i.e., z̃ = x̃ỹ mod ñ holds
for the committed values x̃, ỹ and ñ.

Secret modular quadratic residue: Using the proof of secret modular multiplica-
tive relation, the prover can prove that x is a quadratic modulo n for x and n
committed in cx and cn respectively using PK{(y, y, x, n) : y2 ≡ x mod n}. This
is because if there exists y such that y2 ≡ x mod n, then x is a quadratic residue
modulo n. Let us denote this protocol as PK{(x, n) : x ∈ QRn}.

Secret modular exponentiation relation: Given the commitments cx, cy, cz and
cn, to prove that xy ≡ z mod n, the prover proceeds as follows:

– Let y =
∑l−1

i=0 yi2i, (yi ∈ [0, 1]) and x0 = x, xi = x2
i−1 mod n (i = 1, . . . , l −

1). Also let ui = xyi

i and wi = wi−1ui mod n (i = 0, . . . , l − 1 and w0 = 1).
– The prover commits to all xi, yi, ui, wi (i = 1, . . . , l−1) in the commitments:

cyi = gyihr̂i

cxi = gxihr̃i (cx0 = cx)
cui = guihři

cwi = gwihr̄i (cwl−1 = cz).

She then sends all her commitments to the verifier.
– The prover and the verifier now engage in the following protocols (i =

0, . . . , l − 2).
(1) PK{(xi, xi, xi+1, n) : x2

i ≡ xi+1 mod n}
(2) PK{(wi, ui+1, wi+1, n) : wiui+1 ≡ wi+1 mod n}
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(3) PK{(ω) : (
∏l−1

i=0 c2i

yi
)/cy ≡ hω mod Q}

(4) PK{(xi, yi, ui) : y1 ∈ [0, 1] ∧ ui ≡ xyi

i } using the sub-protocol described
below.

(5) PK{(w0) : w0 ≡ 1}
Let us denote this protocol as PK{(x, y, z, n) : xy ≡ z mod n}. The intuition is
that clause (1) shows that xi+1 = x2

i mod n, ∀i = 0, . . . , l − 2. Because of cx0 =
cx, we have x0 = x and thus xi = x2i

. Next clause (4) shows ui ≡ xyi

i . Hence
clauses (1) and (4) show ui = xyi2

i

mod n. Furthermore, clauses (2) and (5) show
that wi+1 = wiui+1 mod n (i = 0, . . . , l − 2) and w0 = 1, this implies that wi =∏i

j=0 ui =
∏i

j=0(x
yj2

j

) mod n. This further implies that wl−1 =
∏l−1

j=0 xyj2
j

=

x
∑ l−1

j=0 yj2
j

mod n. However clause (3) shows that the discrete logarithms of cy

and (
∏l−1

i=0 c2i

yi
) to base g are equivalent, i.e., y =

∑l−1
j=0 yj2j . Thus it is clear

that wl−1 = x
∑ l−1

j=0 yj2
j

mod n = xy = mod n. Finally, as cwl−1 = cz and
commitments are conditionally binding, we have z = wl−1 = xy mod n.

Now it remains to show the existence of the sub-protocol.

Sub-protocol Given three commitments cxi , cyi and cui , the sub-protocol proves
that yi ∈ [0, 1], ui = xyi

i . Because yi = 0 or 1, we only have to consider two
cases:

1. Case 1: yi = 0. We have cyi = hr̂i for some r̂i. Also ui = xyi

i iff cui = ghři .
This is equivalent to showing that cui/g = hri for some ri.

2. Case 2: yi = 1. This means cyi = ghr̂i or cyi/g = hr̂i . Also now we have
cui = gxihři or cui/cxi = hri for some ri.

Thus to show that ui = xyi

i , one has to show the knowledge of:

(cyi = hr̂i ∧ cui/g = hri) ∨ (cyi/g = hr̂i ∧ cui/cxi = hri).

For clarity, we present the proof for:

(α = hrα ∧ β = hrβ ) ∨ (η = hr
η ∧ κ = hrκ).

Without loss of generality, we assume that the prover knows the logh α and
logh β. The protocol works as follows:

– The prover chooses ρ1, σ2, µ2, λ2, computes ψ1 := hρ1 , ψ2 := hσ2ηµ2κλ2 and
sends ψ1, ψ2 to the verifier.

– The verifier chooses random λ, µ ∈ ZQ. He sends (λ, µ) to the prover.
– The prover computes µ1 := µ⊕µ2, λ1 := λ⊕λ2 and σ1 := ρ1−µ1rα −λ1rβ .

She then sends (σ1, µ1, λ1, σ2, µ2, λ2) to the verifier.
– The verifier accepts iff µ = µ1 ⊕ µ2, λ = λ1 ⊕ λ2, ψ1 = hσ1αµ1βλ1 and

ψ2 = hσ2ηµ2κλ2 .

This is an example of zero-knowledge proof of arbitrary monotonic statements
built with ∧’s and ∨’s. In this protocol, ⊕ denotes the XOR operation. Such
proofs are discussed in [2,7]. For this reason, its security proof is omitted here.
The reader is referred to [2,7] for further discussions.
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3 Main Result

Our main result is an efficient zero-knowledge proof of a committed number n
to be prime. The proof consists of two steps. First we show that n has only one
prime factor. Next we show that n is square free. Clearly then n must be prime.
We assume that that 2τ ≥ |n| ≥ 2t for some known τ and t, which is also the
security parameter. This can be proven using the protocol that proves a discrete
logarithm is in a given range described earlier.

3.1 Proving That n Has Only One Prime Factor

Given an odd prime number n committed in a commitment commit(n), this
subsection presents a statistical zero-knowledge protocol which convinces the
prover that n has only one prime factor. First we need to show that n is odd.
This is done as follows:

– PK{k, 2, n − 1, 22τ+1 : 2k ≡ n − 1 mod 22τ+1}, where commit(n − 1) is
computed as commit(n)/g.

– 22t−1 ≤ k ≤ 22τ with the proof of a discrete logarithm in a given range.

As n−1 < 22τ+1 and commit(n−1)/commit(n) = g, the proof demonstrates that
2k ≡ n−1. Next we show that n has only one prime factor. There are two different
methods of proving that. One works for the case n ≡ 3 mod 4. The other works
for any odd n. The former is more efficient. So far n ≡ 3 mod 4 shows no apparent
security weakness. In fact it is recommended in many applications(e.g. in Blum
numbers) to choose prime numbers of this form. We present both methods here.

Specific case n ≡ 3 mod 4. The proof that n has only a prime factor, is the
following protocol:

– COMMON INPUT: a commitment commit(n) of a prime number n satisfying
n ≡ 3 mod 4.

– Repeat t times:
• RANDOM INPUT: 0 < x < 2τ

• Prover: outputs a quadratic residue z modulo n out of ±x, i.e, z = x or
−x, a commitment commit(y) of the square root y = z1/2 mod n) and
proves that z is quadratic residue modulo n using PK{(z, n) : z ∈ QRn}.

– Verifier: accepts iff he accepts all t proofs.

The zero-knowledge property of the protocol comes from the statistical zero-
knowledge of involved proofs. We do not further evaluate them. Here we prove
the soundness and completeness of the protocol. Before progressing further, let
us review some basic number theory facts [9]:

1. For any odd prime number n, (−1) is a quadratic non-residue modulo n if
and only if n ≡ 3 mod 4.
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2. Let n be an odd prime number. For any values u and v, uv is a quadratic
residue modulo n if and only if either both or none of u and v are quadratic
residue.

3. From (2), we can derive that for an odd prime n and a quadratic non-residue
u, only one of v or uv is quadratic residue modulo n for any given v.

4. If n has more than one prime factor, a random number x is quadratic residue
with no better than 1/4 probability.

Next to the proof of completeness and soundness.

– Completeness: Because n is an odd prime and n ≡ 3 mod 4, (−1) is a
quadratic non-residue modulo n. This means that out of ±x, there is one
and only one quadratic residue modulo n. The protocol completeness follows.

– Soundness: Observe that if an odd number n has more than one prime fac-
tor, then for a random non-zero number, the probability that it is quadratic
modulo n is at most 1/4. If (x) is a quadratic non-residue, from [16], we have
that (−x) is a quadratic residue is with the probability of 1/2. Thus the error
probability of each round is 1/2. After t rounds, the error probability is 1/2t.

General case. The proof that n has only one prime factor, is based on the
following protocol:

– COMMON INPUT: n an odd prime.
– Repeat 24t times:

• RANDOM INPUT: 0 < x < 2τ

• Prover: either says that x is quadratic non-residue or runs PK{(x, n) :
x ∈ QRn} to prove that x is quadratic.

– Verifier: accepts iff he accepts at least 9t proofs.

The zero-knowledge property is straightforward. The completeness and sound-
ness intuition is as follows. To convince the verifier that n is prime, clearly the
prover must try to show as many random input x’s as possible are in QRn. Ob-
serve that the probability of a random x ∈ QRn is 1/2 if n is prime and at most
1/4 if n has 2 or more prime factors. Thus ideally, out of 24t random x’s, there
should be 12t quadratic residues if n is prime and at most 6t quadratic residues
if n has more than one prime factor. Using elementary probability theory, we
have the following lemmas (see appendix for the proof of the lemmas):

Lemma 2. For a number t ≥ 40, the probability that there exists 9t quadratic
residues modulo n out of 24t random numbers is at least 1 − 1/2t if a random
number is quadratic residue with the probability of 1/2.

Lemma 3. For a number t ≥ 40, the probability that there exists 9t quadratic
residues modulo n out of 24t random numbers is at most 1/2t if a random number
is quadratic residue with the probability of 1/4.

Subsequently, we choose the threshold 9t so that the error probability of the
protocol (i.e. the probability of failure for the honest prover, and the probability
of success for the dishonest prover) is at most (1/2t) where the value of t is
assumed to be at least 40.
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3.2 Proving That n Is Square-Free

In this step, we can safely assume that n has only an odd prime factor, i.e.,
n = pα for a prime p and α ≥ 1. In order to prove that n is square-free, the
prover and the verifier runs the following protocol:

– RANDOM INPUT: 0 < x < 2τ

– Prover: runs the proof PK{(x, n, x, n) : xn ≡ x mod n} to show xn ≡
x mod n.

– Verifier: accepts that n is square-free if he accepts the proof PK{(x, n, x, n) :
xn ≡ x mod n}

Again, the zero-knowledge property of the protocol comes from the statistical
zero-knowledge of the associated proofs. We do not evaluate them further. The
completeness is straightforward. It remains to show the soundness of the proto-
col.

Theorem 4. Assume that n has only a prime factor, then the protocol proves
that n is square-free and so prime, with overwhelming probability.

Proof. Let n = pα, where p is the prime factor of n. To prove the theorem, we
show that if α > 1, xn ≡ x mod n happens with negligible probability for a
randomly chosen x.

First, consider the case gcd(x, n) 
= 1. As n = pα, p divides gcd(x, n). This
implies that pα divides xα. But since xα divides xn, we have n divides xn. Thus
xn ≡ x mod n is equivalent to x ≡ 0 mod n which happens with negligible
probability for 0 < x < 2τ .

Now we can conclude that xn ≡ x mod n occurs with non-negligible proba-
bility only if gcd(x, n) = 1. This means that x ∈ Z∗

n, where Z∗
n denotes the set of

all numbers in Zn relatively prime to n. The order of Z∗
n is φ(n) = (p− 1)pα−1.

So for x ∈ Z∗
n, xn−1 ≡ 1 mod n holds only if ggcd(n−1,φ(n)) = gp−1 = 1. As the

order of Z∗
n is (p−1)pα−1, there are only (p−1) such x’s in Z∗

n. Hence for a ran-
dom x ∈ Z∗

n. the probability that xn ≡ x mod n is (p−1)/(p−1)pα−1 = 1/pα−1

which is negligible if α > 1

3.3 Efficiency Comparison with Previous Works

We consider a basic proof of knowledge of secret modular multiplicative rela-
tion as the basic proof. Each secret modular exponentiation relation proof is
estimated to cost about 3t basic proofs.

The only other general protocol is that of Camenisch and Michels [3] requires
t modular exponentiation relation proof. This is equivalent to about 3t2 basic
proofs.

In our more efficient but less general version, the first step which proves n
to have one prime factor uses t secret modular quadratic residue proofs. The
second step is in fact a proof of secret modular exponentiation relation, which
uses 3t basic proofs. Thus our total computation and communication costs is 4t
basic proofs. This means an improvement of the order of 0.75(t).
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In the more general but less efficient version, the first step requires 24t inde-
pendent procedures. In each procedure, the prover either says a random number
is a quadratic non-residue or proves that the number is a quadratic residue. The
cost of saying that a number is a quadratic non-residue, is negligible. The cost of
proving a quadratic residue is equivalent to a basic proof. Of course the verifier
can always accept the proof once 9t proofs of quadratic residuosity are achieved.
Thus in practice, the first step costs 9t basic proofs. The second step which is
the same for both of our protocols, requires 3t basic proofs. Hence on average,
the protocol costs 12t proofs. This means that the gained efficiency over the
protocol of [3] is of the order of 0.33(t).

In practice, if t = 40, our two protocols are about an order of 30 and 12
times respectively more efficient than the protocol of [3]. For the case t = 80,
the figures are about 60 and 25 times, respectively.

3.4 Generating a Random Number x

In both steps, the protocol makes use of some random numbers x’s. In case such
random numbers do not exist, a random number x can be generated as follows:

– The prover chooses a random x1, commits it in the commitment cx1 and
sends it to the verifier.

– The verifier chooses a random x2, commits it in the commitment cx2 and
sends it to the prover.

– The prover opens the commitment cx1 and sends x1 to the verifier.
– The verifier opens the commitment cx2 and sends x2 to the prover.
– If x1 is consistent with cx1 and x2 is consistent with cx2 , then the random

number x is computed as x = x1 + x2 mod 2|N |.

This technique is known to be secure. The reader is referred to [3,16] for
further details.
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A Proof of Lemma 2

Given a random number that is quadratic residue with the probability of 1/2, the
probability that there are exact i quadratic residues in 24t random numbers is

1
224t

(
24t
i

)
. Thus the probability that there are at least 9t quadratic residues in 24t

random numbers is P =
∑24t

i=9t
1

224t

(
24t
i

)
. We then have P =

∑24t
i=9t

1
224t

(
24t
i

)
>∑21t

i=12t
1

224t

(
24t
i

)
=

∑9t
i=0

1
224t

(
24t

i+3t

)
.

Furthermore, since 1 =
∑24t

i=0
1

224t

(
24t
i

)
, we have 1 − P =

∑9t−1
i=0

1
224t

(
24t
i

)
.

Furthermore for 0 ≤ i < 9t, we have
(

24t
i+3t

)
(
24t
i

) =
24t!

(3t+i)!(24t−3t−t)!

24t!
i!(24t−i)!

=
(24t − i) . . . (24t − 3t − i)

(3t + i) . . . i
.
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As 0 ≤ i < 9t,
(

24t
i+3t

)
(
24t
i

) ≥ (24t − 9t) . . . (24t − 3t − 9t)
(3t + 9t) . . . (9t)

=
(15t) . . . (12t)
(12t) . . . (9t)

>

(
15
12

12
9

)3t/2

> 2t.

So we now have

P >
9t∑

i=0

1
224t

(
24t

i + 3t

)
> 2t

9t∑
i=0

1
224t

(
24t

i

)
= 2t(1 − P)

This means P > 1 − 1/2t which completes the proof of lemma 2.

B Proof of Lemma 3

Given a random number that is quadratic residue with the probability of 1/4,
the probability that there are exact i quadratic residues in 24t random num-
bers is 324t−i

424t

(
24t
i

)
. Thus the probability that there are at least 9t quadratic

residues in 24t random numbers is P =
∑24t

i=9t
324t−i

424t

(
24t
i

)
. We then have P =∑24t

i=9t
324t−i

424t

(
24t
i

)
< 5

∑12t
i=9t

324t−i

424t

(
24t
i

)
= 5

∑9t
i=6t

321t−i

424t

(
24t

i+3t

)
.

Further, since 1 =
∑24t

i=0
324t−i

424t

(
24t
i

)
, we have

1 − P =
9t−1∑
i=0

324t−i

424t

(
24t

i

)
>

9t∑
i=6t

324t−i

424t

(
24t

i

)
.

As 6t ≤ i < 9t and t ≥ 40,

324t−i

424t

(
24t
i

)
321t−i

424t

(
24t

i+3t

) = 33t

(
24t
i

)
(

24t
i+3t

) = 33t (3t + i) . . . (i)
(24t − i) . . . (21t − i)

≥ 33t (9t) . . . (6t)
(18t) . . . (15t)

> 5(2t).

So we now have

(1 − P) >

9t∑
i=6t

324t−i

424t

(
24t

i

)
> 5(2t)

9t∑
i=6t

321t−i

424t

(
24t

i + 3t

)
> (2t)P .

This shows P < 1/2t which completes the proof of lemma 3.
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