
Identification of Bad Signatures in Batches

Jaros�law Pastuszak1, Dariusz Micha�lek1, Josef Pieprzyk2, and Jennifer
Seberry2

1 Systems Research Institute
Polish Academy of Sciences

Warsaw, POLAND
jarek.pastuszak@bsb.com.pl

2 Centre for Computer Security Research
School of IT and Computer Science

University of Wollongong
Wollongong, NSW 2522, AUSTRALIA

Josef Pieprzyk@uow.edu.au

Jennifer Seberry@uow.edu.au

Abstract. The paper addresses the problem of bad signature identifi-
cation in batch verification of digital signatures. The number of generic
tests necessary to identify all bad signatures in a batch instance, is
used to measure the efficiency of verifiers. The divide-and-conquer veri-
fier DCVα(x,n) is defined. The verifier identifies all bad signatures in a
batch instance x of the length n by repeatedly splitting the input into α
sub-instances. Its properties are investigated. In particular, probability
distributions for the number of generic tests necessary to identify one,
two and three bad signatures, are derived. The average numbers of GT
tests necessary to identify bad signatures ranging from 1 to 16 are ob-
tained from computer simulation. Further, a Hamming verifier (HV) is
defined which allows to identify a single bad signature in a batch of the
length n = 2k − 1 using k + 2 tests. HV is generalised into the two-layer
Hamming verifier (2HV). Given a batch instance of the length 2k − 2,
the 2HV verifier identifies a single bad signature using k + 2 tests and
two bad signatures in expense of 3k + 3 tests. The work is concluded by
comments about a general model for verification codes identifying t bad
signatures and the design of verifiers using combinatorial structures.

1 Introduction

Digital signatures are main cryptographic tools for message authentication. Un-
like hand-written signatures, digital ones differ from one document to another
as they produce a fingerprint which reflects both the identity of signer (or more
precisely their secret signing key) and the contents of the document (typically
embedded in its digest). Any digital signature includes signing and verification
algorithms. The signing algorithm can be run by the holder of the secret sign-
ing key. The verification algorithm can be run by everybody as the matching
(verification) key is public.

H. Im ai , Y. Zh e n g (E d s.): P KC 2000, LNCS 1751, p p . 28– 45, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

Identification of Bad Signatures in Batches 29

Often a signature is generated once but its verification is done many times.
A growing usage of digital signatures for electronic payment systems stresses the
need for streamlining of the signature verification. Batch verification offers an
efficient verification of a collection of related signatures at a cost of making a
mistake. The probability of mistake can be traded off with the efficiency. Batch
verification is an option if the signature used exhibits the homomorphic property.

The idea of batch verification was spelt out in many papers [2,4,6,8].

2 Motivation

Undoubtedly, fast signature verification seems to be of utmost importance when
there is a need for continual processing of many signatures. As shown by Bel-
lare, Garay and Rabin in [1] there are three generic test which can be used for
fast batch verification of signatures. Efficiency of these tests varies and depends
on the size of a signature batch being verified. The main problem with batch
verification is that they trade efficiency with security. In the case of individual
signature verification, an attacker is forced to break the underlying signature
scheme if they want to generate a valid signature for a message. In the case
when the batch verification is applied, the attacker may also explore weaknesses
existing in the verification tests. Verification tests are probabilistic algorithms for
which it is possible to set the bound on the probability of acceptance of invalid
signatures in the batch tested. As there is a direct relation between the probabil-
ity and efficiency, one can expect that the probability may be lowered during the
time when the heavy processing is expected (typically, the end of the week). In-
stead of breaking the underlying signature, attackers are encouraged to generate
messages with invalid signatures on a massive scale. This serves two purposes.
The first purpose is to increase the verification load, and one can expect that
the manager responsible for verification of signatures, will lower the threshold
probability even further. The second purpose is to increase the probability of
attacker success. On the top of this, the attacker may have specific knowledge
about which test will be used and what parameters are employed. This knowl-
edge may give some hints as to how invalid signatures could be produced to
maximise the chance of slipping through the tests.

When a collection of signatures passes the tests, the verifier accepts all the
signatures as valid. Otherwise, the collection is rejected. Now the verifier must
separate the valid signatures from invalid ones. In this paper, we consider dif-
ferent methods of invalid signature identification and evaluate efficiency of tests
with invalid signature identification.

3 Background

There are two homomorphic operations widely used for signing: modular expo-
nentiation (the base is fixed) and RSA exponentiation (the exponent is fixed).
Consider modular exponentiation defined for a cyclic group of order q, where g
is the cyclic group generator. The DSA or DSS signatures and their versions are

30 Jaros<law Pastuszak et al.

signatures of this kind. Being more precise, the exponents are computed indi-
vidually for each signature. This computation is cheap – it takes one modular
inversion and multiplication. The final verification can be done in batches in
which exponents are added (see [5]).

Given a batch x = ((m1, s1), . . . , (mn, sn)) of messages with their signatures,
signatures can be verified one by one by checking

gmi
?= si for i = 1, . . . , n

The cost of verification is n exponentiations. To reduce the number of expen-
sive exponentiations and speed up the verification process, one can verify the
following

Vg(x) ≡
(
g
∑

n

i=1
mi ?=

n∏
i=1

si

)
(1)

This costs one exponentiation, n−1 modular multiplications, and n−1 modular
additions. Typically, the calculation of

∑n
i=1 mi is done modulo q while

∏n
i=1 si

is performed modulo p where q divides p− 1.
Consider the RSA exponentiation where the modulus N is the product of

two primes p and q. The signer secret key is d and the public verification key
is e. All signed messages are smaller than the modulus N . A typical batch of
signatures looks like ((m1, s1), . . . , (mn, sn)). Sequential verification of the batch

se
i

?= mi for i = 1, . . . , n,

takes n exponentiations. Again, the verification process can be sped up by using

Ve(x) ≡
(

n∏
i=1

mi
?=

(
n∏

i=1

si

)e)
(2)

This takes one exponentiation and 2(n− 1) modular multiplications.
In general, a batch verifier is a probabilistic algorithm B which takes a batch

instance x = ((m1, s1), . . . , (mn, sn)) and a security parameter �. The algorithm

– outputs “0” always whenever all the signatures in the batch are correct,
– outputs “1” with probability 1− 2−� whenever the batch contains incorrect

signatures.

A batch verifier never makes mistakes when the batch is “clean”. If the batch is
“dirty” or contains incorrect signatures, then the batch verifier makes mistakes
with probability 2−�.

There is a universal test which is applicable for any signature scheme which
has a homomorphic property. The test (in [1] called random subset test) is defined
as follows.

Definition 1. Given a batch instance x = ((m1, s1), . . . , (mn, sn)) and a secu-
rity parameter �. The universal test (UT) takes � rounds. For each round

Identification of Bad Signatures in Batches 31

1. pick a random set T = {t1, . . . , tn}, i.e. each ti is selected independently and
with the same probability from {0, 1},

2. create a subset xT = {(mi, si)|ti = 1},
3. run the test V (xT) (either Vg(xT) or Ve(xT)). If the test accepts go to the

next round. Otherwise, reject the batch.

A useful test for signatures based on a fixed base applies a random string of
small integers used in the test as exponents (in [8] called small exponents test).

Definition 2. Given a batch instance x = ((m1, s1), . . . , (mn, sn)) and a secu-
rity parameter �. The small exponent (SE) test:

1. select at random a collection of small integers e = (e1, . . . , en) where ei < 2�,
2. convert the instance x into xe = ((m1e1, s

e1
1), . . . , (mnen, s

en
n)),

3. run the test Vg(x′). If the batch instance x′ passes the test accept x otherwise
reject.

Clearly, we are interested in a generic test which always succeed when all
signatures are valid and fails with an overwhelming probability when there is
one or more bad signatures.

Definition 3. Given a batch instance x = ((m1, s1), . . . , (mn, sn)). The generic
test (GT) takes a batch instance x and

1. outputs “0” whenever all signatures are valid. The test never makes mistakes
for this case,

2. returns “1” whenever there is at least one bad signature. In this case the test
makes mistakes with probability 2−�.

If a batch of signatures passes tests, then the verifier accepts the whole batch.
The probability of mistake can be make small enough say smaller than 2−100.
However when a batch fails a test, the verifier is not able to reject all signatures
in the batch. The verifier faces the problem of identification of bad signatures.
Let us consider some possible solutions for bad signature identification.

The simplest solution for it could be based on testing all signatures one by
one using the GT test.

Definition 4. Naive Verifier. Given a batch instance x=((m1,s1),...,(mn,sn)).

1. Run GT(x, n). If GT(x, n)=0, accept the instance x and exit. Otherwise,
when GT(x, n)=1, for i = 1 to i = n do:
– apply GT(xi, 1),
– if GT(xi, 1) = 1 then store xi otherwise go for the next i.

2. Output all stored signatures in the list NV(x).

where xi = (mi, si).

The well-known twelve-coin problem is very much related to the identification
of bad signatures. It can be formulated as follows.

32 Jaros<law Pastuszak et al.

Given 12 coins all of equal weight, except one defective coin. It is not
known whether the defective coin is lighter or heavier than each of the
others. Assume that there is a set of two-dish scales which can be used
to carry out tests. Coins can be placed on both sides and if the weights
are equal then the scales balance, otherwise they tilt downwards on the
side carrying the heavier weight.
Find a sequence of tests which can be performed using the scales to
identify the defective coin within the three weightings only.

Note that identification of a bad signature resembles the twelve-coin problem.
The main difference is that tests performed on batches do not allow us to see
how the scales tilt. In other words, the tests carried out on batches allow us to
see whether the batch is clean (the scales balance) or dirty (the scales do not
balance).

4 Divide-and-Conquer Verifiers

Identification of bad signatures can be implemented by the so called divide-and-
conquer (DC) verifier. The idea seems to be straightforward and can be traced
in the literature under the name “cut and choose” [4].

The verifier is an algorithm which takes a batch instance x and outputs either
“0” when the batch instance is clean otherwise returns a list of all bad signatures.
It is defined as a recursive function.

Definition 5. DC Verifier. Given a batch instance x = ((m1, s1), . . . , (mn, sn))
with n = 2k signatures.

1. Stopping case: If the instance consists of n = 1 signature, then run the
generic test on the input, i.e. GT(x, 1).If GT(x, 1) = 0, return 0 and exit.
Otherwise output the bad signature and exit.

2. If the instance consists of n �= 1 signature, apply the generic test on the input
sample, i.e. GT(x, n). If GT(x, n) = 0, return 0 and exit. Otherwise go to
the recursive step.

3. Recursive step: Divide the instance x into α batch instances (x1, . . . , xα)
containing n

α signatures each. The division is done at random. Call the DC
verifier for α sub-instances, i.e. DCVα(x1,

n
α) · · · DCVα(xα,

n
α).

The computational overhead of our verifiers is measured by the number of
times the GT test is called during verification process. The worst case occurs
when a batch instance contains all bad signatures. So the maximum number of
tests performed by DCVα is

#max (DCVα, n) =
k∑

i=0

αi =
α(k+1) − 1

α− 1
=

nα− 1
α− 1

(3)

where α indicates that the DCV verifier slices input instances into α sub-
instances of the same length and n is the length of the input batch instance.

Identification of Bad Signatures in Batches 33

From Equation (3), it is easy to observe that for very badly contaminated
instances, the selection of a large α is preferred. Note that if α = n = 2k, then
the DCV verifier becomes the NV verifier which always consumes n + 1 tests.

4.1 Degree of Contamination Versus Parameter α

It is an interesting to ask about the degree of contamination of batch instances for
which the naive verifier becomes more efficient than DCV2. This is an important
issue for efficient signature verification. To answer this question, assume that a
batch instance consists of n = 2k signatures contaminated with t = 2r bad
signatures (r < k). Denote the maximum numbers of GT tests necessary to
identify all t bad signatures out of total n ones using the NV and DCV2 verifiers
by #max (NV, n, t) and #max (DCV2, n, t), respectively.

Note that the worst case occurs when the DC verifier after the r-th recursive
step all sub-instances contain precisely one bad signature. To get to this point,
DCV2 consumes precisely 2r − 1 tests. So

#max (DCV2, 2k, t) = 2r − 1 + 2r × #max (DCV2, 2k−r, 1).

A single bad signature in a batch instance of size 2k−r is always identifiable using
2(k − r) + 1 tests. Therefore, we obtain

#max (DCV2, 2k, t) = 2r+1(k − r + 1) − 1.

Now we can ask how small the contamination of a batch instance should be to
render the DCV verifier more efficient or

#max (DCV2, 2k, t) < #max (NV, 2k, t).

If we substitute values obtained, then the inequality becomes

2(r+1)(k − r + 1) − 1 < 2k + 1

or equivalently
k − r + 1 < 2k−r−1 + 2−r.

It is easy to check that this inequality holds for any k−r ≥ 3. So we have proved
the corollary.

Corollary 1. DCV2 is more efficient (consumes less GT tests) from the NV
verifier if batch instances of 2k signatures contain less than 2k−3 bad ones.

Note that we have compared DCV2 (binary split of batch instances) with
DCVn (equivalent to NV). Similar considerations can be made for any two veri-
fiers DCVα, DCVβ for α �= β. This makes sense if the contamination varies and
the parameter α can be adjusted accordingly.

Results of computer simulation conducted to determine the relation between
the degree of contamination and the parameter α are summarised in Table 1.

34 Jaros<law Pastuszak et al.

Table 1. Tradeoff between parameter α and the degree of batch contamination

Number Number of bad signatures Optimal Parameter
n t α

128 1 2, 4
2, 4 4, 8
8 32
16 32, 64
32 128

256 1 2, 4
2, 4, 8 4
16 8
32, 64 64

512 1 2, 4
2, 4, 8, 16 4
32, 64 128

1024 1, 2 2, 4
4, 8 4
16, 32 4, 8
64 256
128 512

2048 1 2, 4
2, 4, 8, 16, 32, 64 4

128, 256 512

4096 1 2,4
2, 4, 8, 16, 32, 64, 128 4

256, 512 1024

4.2 Number of Tests Needed to Identify t Bad Signatures

Denote #(DCVα, n, t) to be the number of GT tests necessary to identify bad
signatures from a batch instance with n signatures provided t ones are bad. As
the DCVα verifier is probabilistic in its nature, the number #(DCVα, n, t) is in
fact a random variable. To simplify our notation, let

Nα(t, n) = #(DCVα, n, t).

Our aim is to derive the probability distribution for the variable N2(t, n).
Consider the verifier DCV2 and the corresponding random variable N2(t, n).

Let t = 1. Obviously, the verifier needs to perform 2k + 1 tests, i.e.

N2(1, 2k) = 2k + 1.

This number of tests is constant and occurs with probability 1. By the way, the
number of tests can be cut almost by half if t = 1 is known before hand as
N2(1, 2k) = k + 1. This observation of course may be used for optimisation of

Identification of Bad Signatures in Batches 35

the DCV verifier. This is especially effective for α = 2. If a sub-instance passes
the GT test, the second sub-instance is not tested (as it must fail it anyway).
Instead, it is divided into halves and one of the resulting sub-instances is tested.

Let t = 2. Note that random variable N2(2, 2k) can be expressed by random
variables N2(2, 2k−1) and N2(1, 2k−1) according to the following equation:

N2(2, 2k) =
{

1 + 2N2(1, 2k−1) with probability p1,0

2 + N2(2, 2k−1) with probability p2,0
(4)

Similarly, we can write

N2(2, 2k−1) =
{

1 + 2N2(1, 2k−2) with probability p1,1

2 + N2(2, 2k−2) with probability p2,1
(5)

For i = 2, . . . , k − 1, we can generalise as

N2(2, 2k−i) =
{

1 + 2N2(1, 2k−i−1) with probability p1,i

2 + N2(2, 2k−i−1) with probability p2,i
(6)

Assume that at step j, two bad signatures clustered together in a single in-
stance have been put into two different sub-instances. This means that the bad
signatures were placed in the same instance j times in a row. Therefore

N2(2, 2k)(j) = 2j + 1 + 2N2(1, 2k−j−1) = 4k − 2j − 1 (7)

where j = 0, 1, . . . , k − 1.
Now we are ready to calculate probabilities pi,j . The parameter n = 2k. The

probability p1,0 expresses the probability that the initial batch instance splits
into two sub-instances containing one bad signature each so

p1,0 =

(
2
1

)(
n− 2
n
2 − 1

)
(
n
n
2

) =
n

2(n− 1)
.

Similarly, the probability that after the split, one of the sub-instances contains
two bad signatures is:

p2,0 = 2 ×

(
2
0

)(
n− 2

n
2

)
(
n
n
2

) =
n− 2

2(n− 1)
.

The multiplier 2 indicates the fact that two bad signatures can be in the first or
the second sub-instance. Continuing our calculations, we obtain

p1,i =
n

2(n− 2i)
(8)

p2,i =
n− 2i+1

2(n− 2i)
(9)

36 Jaros<law Pastuszak et al.

The probability p(j) that for some step j, two bad signatures have been placed
into two different sub-instances is:

p(0) = p1,0

p(1) = p2,0 × p1,1

...
p(j) = p2,0 × p2,1 × . . .× p2,j−1 × p1,j

After substituting values, the above equation takes on the following form:

p(j) =
n

n− 1
1

2j+1

for j = 0, . . . , k − 1 and n = 2k. So we have proved the following corollary.

Corollary 2. Given the DCV verifier with α = 2. If a batch instance of length
n = 2k is contaminated by two bad signatures, then the number N2(2, n) of nec-
essary GT tests is a random variable whose probability distribution is as follows:

P (N2(2, n) = 4k − 2j − 1) =
n

n− 1
1

2j+1
(10)

for j = 0, 1, . . . , k − 1.

Now we derive the probability distribution for the required number of GT
tests when the input batch instance is contaminated by three bad signatures
(t = 3).

The number of GT tests is denoted by N2(3, 2k). The number of tests satisfies
the equation

N2(3, 2k) =
{

1 + N2(1, 2k−1) + N2(2, 2k−1) with probability p1

2 + N2(3, 2k−1) with probability p2

It means that after the first step, the verifier may split the input instance into
two sub-instances where (1) one sub-instance contains one bad signature and the
other sub-instance is contaminated by two bad signatures, (2) one sub-instance
is clean and the other includes 3 bad signatures. The probability p1 is equal to

p1 =

(
3
1

)(
n− 3
n
2 − 1

)
(
n
n
2

) =
3n

4(n− 1)
.

and the probability p2 is

p2 = 2 ×

(
3
0

)(
n− 3

n
2

)
(
n
n
2

) =
n− 4

4(n− 1)
.

Identification of Bad Signatures in Batches 37

Assuming that the bad signatures have been tossed into two sub-instances at the
first step by the verifier, then the probability distribution can be derived from
previous considerations (see Equation 8) and

P (N2(3, n) = 6k − 2j − 5|(1, 2)) = p1 × p1,1 =
3n

4(n− 1)
n

(n− 2)
1

2j+1

for j = 0, 1, . . . , k − 2.
Consider the case when bad signatures have been tossed into the same sub-

instance (the other sub-instance is clean) – the case (0,3). Assume that for certain
step i, the three bad signatures have been split into either (1,2) or (2,1). It means
also that three bad signatures were tossed together i times so

N2(3, n) = 2i + 1 + N2(1, 2k−i−1) + N2(2, 2k−r−1)

for i = 0, . . . , k − 1. After substituting the expressions obtained for t = 2 and
t = 1, we obtain final probability distribution.

Corollary 3. Given the verifier DCVα with α = 2. If a batch instance of length
n = 2k is contaminated by three bad signatures, then the number N2(3, n) of
required GT tests is a random variable whose probability distribution is as follows:

P (N2(3, n) = 6k − 4i− 2j − 5) =
3n2

(n− 1)(n− 2)
1

22i+j+3

n− 2i+1

n− 2k−i−1
(11)

for i = 0, 1, . . . , k − 1 and j = 0, 1, . . . , k − i− 2.

Knowing the probability distributions for the number of GT tests necessary
to identify bad signatures in the cases when t = 1, 2, 3, it is easy to find the
average number of test. For the number of bad signatures t > 3, the average can
be estimated using computer simulation. The results are compiled in Table 2.

4.3 Optimisation of DC Verifiers

As observed above, for DCV2, the number of GT tests can be reduced if the
verifier knows the precise number of bad signatures. If there is only a single
bad signature (t = 1), then at each step the DCV2 verifier needs to tests only
single sub-instance out of two generated from the contaminated instance. If the
sub-instance is clean, then the other sub-instance is dirty (and vice versa). So
the number N2(1, 2k) = 2k + 1 can be reduced to k + 1. Even if the number of
bad signatures is not known before hand, this observation can be exploited to
reduce the number of GT tests.

Definition 6. Fast DC Verifier. Given a batch instance x = ((m1, s1), . . . ,
(mn, sn)) with n = 2k signatures.

1. Stopping case: If the instance consists of n = 1 signature, then run the
generic test on the input, i.e. GT(x, 1).If GT(x, 1) = 0, exit. Otherwise
output the bad signature and exit.

38 Jaros<law Pastuszak et al.

Table 2. The average number of GT tests necessary to identify t bad signatures
in a sequence of length n

t n=16 n=32 n=64 n=128 n=256 n=512 n=1024

0 1,0 1,0 1,0 1,0 1,0 1,0 1,0
1 9,0 11,0 13,0 15,0 17,0 19,0 21,0
2 13,5 17,3 21,2 25,1 29,1 33,0 37,0
3 17,1 22,5 28,2 34,0 39,8 45,8 51,7
4 19,9 26,9 34,3 41,9 49,7 57,6 65,5
5 22,2 30,8 39,8 49,3 58,9 68,7 78,5
6 24,1 34,2 44,9 56,0 67,5 79,2 91,0
7 25,6 37,2 49,5 62,4 75,7 89,3 103,0
8 27,0 39,9 53,8 68,4 83,5 99,0 114,7
9 28,0 42,4 57,8 74,1 91,0 108,3 125,9
10 28,9 44,6 61,5 79,5 98,2 117,4 136,9
11 29,6 46,6 65,1 84,7 105,1 126,1 147,6
12 30,2 48,5 68,4 89,6 111,8 134,7 158,0
13 30,6 50,2 71,5 94,3 118,3 143,0 168,2
14 30,9 51,7 74,5 98,9 124,5 151,1 178,2
15 31,0 53,1 77,3 103,3 130,6 159,0 188,0
16 31,0 54,4 80,0 107,5 136,6 166,7 197,6

2. If the instance consists of n �= 1 signature, apply the generic test on the input
sample, i.e. GT(x, n). If GT(x, n) = 0, exit. Otherwise go to the recursive
step.

3. Recursive step: Split the instance x into α batch instances (x1, . . . , xα) con-
taining n

α signatures each. The split is done at random. Call the DC verifier
for α−1 sub-instances, i.e. DCV(x1,

n
α) · · · DCV(xα−1,

n
α). If there is at least

one dirty sub-instance, call DCV(xα,
n
α). Otherwise (i.e. if all sub-instances

are clean), call the verifier DCV(xα,
n
α) in which the GT test is skipped.

Note that the fast verifier DCV2 needs ≈ (1.5k + 1) tests (instead of 2k + 1)
if there is one bad signature (but the verifier does not know this before hand).
The advantage drops if α grows. In general, the fast verifier DCVα consumes
((α− 1 + 1

α)k+ 1) tests instead of (αk + 1) assuming a single bad signature and
the length of batch instance αk.

Further improvement can be achieved if the split of instances is not random.
It turns out that if the random split into sub-instances is replaced by deter-
ministic split into α sub-instances, then the number Nα(t, n) preserve the same
probability distribution assuming that the input batch instance is random. This
assumption seems to hold in most practical situations.

Additionally, the DCV verifier can be sped up by a careful design of the GT
test. To illustrate the point assume that the DCV verifier is used to identify bad
signatures by running the test Ve(x) defined by Equation (2). Given a batch in-
stance x = ((m1, s1), . . . , (mn, sn)). Note that the test Ve(x) is run for the whole

Identification of Bad Signatures in Batches 39

instance x and needs to produce the product of all messages (
∏n

i=1 mi) and
all signatures (

∏n
i=1 si). Before calling the verifier, we can create two multiplica-

tion tables for messages and signatures. For instance, the message multiplication
table is of the following form (the input instance is of length 16):

Batch Instance: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
1-st level of products: (1, 2)(3, 4)(5, 6)(7, 8)(9, 10)(11, 12)(13, 14)(15, 16)
2-nd level of products: (1, 2, 3, 4)(5, 6, 7, 8)(9, 10, 11, 12)(13, 14, 15, 16)
3-rd level of products: (1, 2, 3, 4, 5, 6, 7, 8)(9, 10, 11, 12, 13, 14, 15, 16)
4-th level of products: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16).

where (i, j) stands for the product of mi ×mj. All multiplications needed by the
DCV verifier are already stored in the tables. To run the test Ve(x), it needs to
perform a single exponentiation.

5 Verifiers Based on Hamming Codes

Assume that batch instances are contaminated by at most a single bad signature.
This assumption is true most of the time when the source of errors is unreliable
storage or communication so from time to time some signatures (or correspond-
ing messages) get corrupted. Given a batch instance x = ((m1, s1), . . . , (mn, sn))
of length n = 2k − 1 for some positive k. To identify a single bad signature, it is
enough to design a Hamming code with the block length n and k parity check
equations. Let H be a parity check matrix. H contains k rows and n columns.
If the matrix H has the form

H =



h1

h2

...
hk


 =

[
1 2 3 . . . 2k − 1

]

where hi = (hi,1, . . . , hi,n) is a binary string of length n with the weight 2k−1

and integers i in the matrix represent columns which are binary strings repre-
senting the integer. Note that the Hamming code with such H allows for a quick
identification of error position as the error syndrome is the binary index of the
position in which the error occurs (for details see [3]).

Definition 7. Hamming Verifier. Given a batch instance x = ((m1, s1), . . . ,
(mn, sn)) of length n = 2k − 1 for some positive k.

1. Apply the generic test on the input instance. If GT(x, n)=0, exit. Otherwise,
go to the next step.

2. Create k sub-instances. i.e.

xi = {(mj, sj)|hi,j = 1}

for i = 1, . . . , k where xi is a sub-instance composed from elements of x cho-
sen whenever hi,j is equal to 1 (elements of x for which hi,j=0 are ignored).

40 Jaros<law Pastuszak et al.

3. Run GT(xi, 2k−1) = σi for i = 1, . . . , k where σi = 0 if the test accepts xi

or σi = 1 if it fails. The syndrome (σ1, . . . , σk) identifies the position of the
bad signature.

4. Apply the generic test on the input instance without the bad signature. If the
batch instance is accepted, return the index of the bad signature. Otherwise,
the verifier fails and exits 1.

The Hamming verifier (HV) succeeds whenever batch instances of the length
2k − 1 are contaminated by single bad signatures and HV consumes k + 2 GT
tests. This number is almost identical to the number which is needed by DCV2

when the verifier knows that there is a single bad signature in the batch.
Consider the case when HV fails – this obviously indicates that the number

of bad signatures is greater than 1. There are at least two possible courses of
action:

1. Filter out all clean signatures identified by HV. Consider the syndrome string
(σ1, . . . , σk) generated by HV. Clearly, we can remove all clean sub-instances
xi for which σi = 0 and identify the bad signatures using DCV for the
remainder of the batch.

2. Use the BCH code which corrects two errors to identify two bad signatures.
This is an attractive option as we can reuse all results of GT tests obtained
by HV. This gives rise to two level Hamming verifier defined below.

Unfortunately, BCH codes correcting two errors are not directly applicable.
The main reason is different interactions of bad signatures compared to trans-
mission errors in codes. Note that if two errors occur in a communication channel
then they cancel each other in a parity check equation or more precisely, they
obey the XOR addition. On the other hand, the behaviour of bad signatures is
governed (with overwhelming probability) by logical addition. A parity checking
equation failure does not depend on how many bad signatures it contains. This
fact make the problem more difficult but also more interesting.

Assume that we have a batch of n = 2k − 2 signatures which includes two
bad ones (t = 2). As previously, we start from a Hamming code correcting a
single error with the corresponding parity check matrix

H1 =



h1

h2

...
hk


 =

[
1 2 . . . 2k − 2

]
=




1 0 . . . 0
0 1 . . . 1

... . . .
0 0 . . . 1




Note that this matrix does not contain any column with all ones. We define
another matrix

H =
[
H1

H2

]
(12)

where H1 is as defined above and H2 is the negation of H1, i.e. H2(i, j) = H1(i, j)
for i, j = 1, . . . , k.

Identification of Bad Signatures in Batches 41

Definition 8. Two-Layer Hamming Verifier. Given a batch instance x =
((m1, s1), . . . , (mn, sn)) of length n = 2k − 2 for some positive k and a linear
code represented by its parity check matrix H with 2k rows and n columns of the
form given by Equation 12. Assume that the batch is contaminated by two bad
signatures with their indices

I1 = (i1,1, . . . , i1,k) and I2 = (i2,1, . . . , i2,k)
1. Apply the generic test on the input instance. If GT(x, n)=0, exit. Otherwise,

go to the next step.
2. Create 2k sub-instances (or control groups) corresponding to rows of the

matrix H or

x1,i = {(mj , sj)|H1(i, j) = 1 and j = 1, . . . , n}
x2,i = {(mj , sj)|H2(i, j) = 1 and j = 1, . . . , n}

for i = 1, . . . , k.
3. Run GT(x1,i, 2k−1 − 1) = σi and GT(x2,i, 2k−1 − 1) = σ′

i for i = 1, . . . , k.
Create two syndromes σ = (σ1, . . . , σk) and σ′ = (σ′

1, . . . , σ
′
k).

4. Identify an index � such that both σ� = 1 and σ′
� = 1. As the two correspond-

ing control groups complement each other and both are contaminated, this
implies that each group contains a single bad signature.

5. Run the HV verifier for x1,� and identify the bad signature. In result, the
index I1 is known.

6. Calculate the second index I2 = I1 ⊕ σ ⊕ σ′.
7. Run the GT test for the input batch without the two bad signatures identi-

fied by indices (I1, I2). If the test accepts the batch, return the two indices,
otherwise, the verifier fails and exits 1.
Take a closer look at the two-Layer Hamming Verifier (2HV). All steps are

straightforward except the part when the second index is computed. Note that
the indices and syndromes satisfy the following equations:

I1 + I2 = σ

I1 + I2 = σ′

where + is a bit-by-bit logical OR. Note that + operation can be replaced by
bit-by-bit XOR. Also the second equation can be converted using DeMorgan’s
Law. Thus

I1 ⊕ I2 ⊕ I1I2 = σ

I1I2 = σ′

This allows us to determine the other index knowing the first as

I2 = I1 ⊕ σ ⊕ σ′ (13)

Let us analyse the complexity of the 2HV verifier. Step (1) takes one GT test.
Step (3) consumes 2k GT tests. The HV verifier employed in Step (5) requires
(k− 1)+ 2 GT tests. Step (7) makes the final GT test. Overall, the 2HV verifier
runs in expense of 3k+3 GT tests. So we can formulate the following conclusion.

42 Jaros<law Pastuszak et al.

Proposition 1. Given a batch instance contaminated by two bad signatures.
Then the 2HV verifier always correctly identifies them and consumes 3k+ 3 GT
tests.

Consider the case when instead of two bad signatures, a batch instance is
contaminated by a single bad signature. The 2HV verifier will still work correctly
returning two I1 = I2 indices. This case can be easily identified as syndromes
σ = σ′. This will allow to skip Step (5) and save on GT tests. If there is a high
probability of a single bad signature occurring, then it would be better to run
the HV verifier first (perhaps with n = 2k − 2) and if it fails re-use the results
in the 2HV verifier.

Now consider a simple example. Let a batch instance contain n = 24−2 = 14
signatures (k = 4). Assume that bad signature occur on 6th (0110) and 10th
(1010) positions. The linear code used is defined by its matrix H of the form

H =
[
H1

H2

]
=




1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 1 1 0 0 1 1 0 0 1 1 0 0 1
0 0 0 1 1 1 1 0 0 0 0 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 1 1 0 0 0 0 1 1 1 1 0 0 0
1 1 1 1 1 1 1 0 0 0 0 0 0 0




We create sub-instances according to Step (2) and compute syndromes σ =
(0111) and σ′ = (1011). Note that σ3 = σ′

3 so the third control groups in H1

and H2 complement each other and contain single bad signatures. Now we apply
the HV verifier for the third control group in H1 and identify I1 = (0110). The
second index is I2 = I1 ⊕ σ ⊕ σ′ = (0110)⊕ (0111) ⊕ (0100) = (0101).

6 General Model for Verification Codes

Consider the 2HV verifier. One would hope that the indices I1 and I2 could be
identified using 2k tests which correspond to the control groups defined by the
matrix H . Ideally, one would expect that from the two equations

I1 ⊕ I2 ⊕ I1I2 = σ

f(I1) ⊕ f(I2) ⊕ f(I1)f(I2) = σ′, (14)

it is possible to determine both I1 and I2. The function f : Σk → Σk is a
Boolean function which for a given k-bit input, generates k-bit output. Now we
prove that the following result is true.

Theorem 1. Given four binary strings I1, I2, σ, σ
′ ∈ Σk used in the 2HV ver-

ifier and satisfying Equation (14), then there is no function f : Σk → Σk for
which the equations have unique solutions for I1 and I2.

Identification of Bad Signatures in Batches 43

Proof. First observe that Equation (14) is satisfied if and only if it is true for
each bit. The proof reduces to the binary case – instead of Equation (14) we
consider its binary version

i⊕ j ⊕ ij = u

f(i) ⊕ f(j) ⊕ f(i)f(j) = v, (15)

where i, j, u, v ∈ Σ. For the function f : Σ → Σ, there are four possibilities only:
f(x) ∈ {0, 1, x, x}. The constant functions f(x) = 0 and f(x) = 1 are not an
option. The only candidates are f(x) = x and f(x) = x The results are given in
Table 3. Consider the value u (3rd column) and the value v for f(x) = x (6th

Table 3. The truth table for two candidates of f(x)

i j u f(i) = i f(j) = j v f(i) = i f(j) = j v

0 0 0 0 0 0 1 1 1
0 1 1 0 1 1 1 0 1
1 0 1 1 0 1 0 1 1
1 1 1 1 1 1 0 0 0

column). If u = v = 0, there is the unique solution for i = j = 0. If u = 0; v = 1,
there is no solution. For u = v = 1, there are three indistinguishable solutions.
Consider the other function f(x) = x and the values u and v (9th column). If
u = 0 and v = 1, there is unique solution i = j = 0. If u = 1 and v = 1, there is
unique solution i = j = 1. For u = v = 1, there are two solutions (i = 0, j = 1)
and (i = 1, j = 0). The combination u = v = 0 cannot occur.

Although the above theorem gives us a “cold” comfort, it also points towards
a different approach. Given a batch instance of n = 2k signatures with t = 2
bad ones. We are looking for a matrix H with n columns and � rows (l > 2k)
such that any two indices I1, I2 (this time treated as the column vectors with �
bits) generate the unique result I1 + I2 (+ is bit-by-bit OR). In other words, we
search for such an arrangement of rows of H that no two pairs of indices collide.
The first question to be answered is the size of parameter � for which a such
arrangement may exist. If we assume that each column of the matrix H contains
half of “1” then the parameter � must satisfy the following inequality(

�
�
2

)
>

(
n
2

)
It is easy to verify that for k = 3, � ≥ 2k + 1. If k grows, then for k = 40,
� ≥ 2k + 3.

Definition 9. Generic Verifier (GV) Given a batch instance x of length n =
2k for some positive k and a linear code represented by its parity check matrix

44 Jaros<law Pastuszak et al.

H with � rows (� > 2k) and n columns. Assume that the batch is contaminated
by t bad signatures with their indices I1, . . . , It which are column vectors of H.
The syndrome σ = I1 + . . . + It which uniquely identifies the indices I1, . . . , It.

1. Apply the generic test on the input instance. If GT(x, n)=0, exit. Otherwise,
go to the next step.

2. Create � sub-instances (or control groups) corresponding to rows of the matrix
H.

3. Run � times the GT test and form the syndrome σ.
4. Identify indices I1, . . . , It from the syndrome σ.
5. Run the GT test for the input batch without t bad signatures identified. If the

test accepts the batch, return the t indices, otherwise, the verifier fails and
exits 1.

6.1 Verification Codes from Combinatorial Designs

Combinatorial designs provide an inexhaustible source of structures with unlim-
ited potential for new designs of verification codes. We start from a simple and
not efficient structure to show at least, in principle, that verification codes may
be constructed from well known combinatorial designs [7].

Theorem 2. Let D be the incidence matrix of a SBIBD(v, k, λ) where v > 2k,
k > 2λ. Then D is a verification code allowing identification of any two bad
signatures.

Proof. Note that columns in the D matrix represent the control groups or sub-
collection of signatures which are to be tested. By contradiction. Assume that a
2-SBIBD has two pairs of rows (B1, B2) and (B3, B4) such that

B1 ∪B2 = B3 ∪B4.

Without loss of generality, we can write the incidence matrix of D where the
first k elements of the first row B1 are ones and the remainder are zeros. We can
also write D with the first λ elements of the second row B2 to be “1”, the next
k−λ elements to be “0”, the next k−λ elements – “1” and the remaining k ones
in the first 2k−λ – “0”, The next two rows (B3 and B4) have k ones in the first
2k − λ columns and the last v − 2k + λ elements zero since B1 ∪B2 = B3 ∪B4.
Hence

D =




1 · · · 1 · · · 1︸ ︷︷ ︸
k

0 · · · 0︸ ︷︷ ︸
k−λ

0 · · · 0︸ ︷︷ ︸
v−2k+λ

1 · · · 1︸ ︷︷ ︸
λ

0 · · · 0︸ ︷︷ ︸
k−λ

1 · · · 1︸ ︷︷ ︸
k−λ

0 · · · 0

k ones︸ ︷︷ ︸
2k−λ

0 · · · 0

k ones︸ ︷︷ ︸
2k−λ

0 · · · 0




Identification of Bad Signatures in Batches 45

Consider the ones in the first three rows, ensuring the inner product is λ. Suppose
that t ones overlap with both the first and second row (0 ≤ t ≤ λ). Since the
last (v−2k+λ) columns contain only zeros, the number of ones in the third row
is t in the first λ columns, λ− t in the next k − λ columns, and further λ− t in
the next k− λ columns. Thus t+ 2λ− 2t = k and t = 2λ− k ≥ 0. Hence 2λ ≥ k
– this is requested contradiction which proves the theorem.

7 Conclusions

Clearly, the above defined generic verifier sets the environment for the future
research. In particular, the following list points out some open problems:
– lower bounds for the parameter � or even better a function which determines

the required parameter � for a given t,
– how to design the matrix H so the syndrome uniquely identifies the indices

(bad signature positions),
– how to design a verification code so identification of bad signatures is effi-

cient,
– determine t for which GV becomes no better than NV,
– constructions of verification codes from combinatorial designs.

Acknowledgement

The authors wish to thank anonymous referees for their critical comments.

References

1. M. Bellare, J. Garay, and T. Rabin. Fast batch verification for modular expo-
nentiation and digital signatures. In K. Nyberg, editor, Advances in Cryptology
- EUROCRYPT’98, pages 236–250. Springer, 1998. Lecture Notes in Computer
Science No. 1403. 29, 30

2. M. Beller and Y. Yacobi. Batch Diffie-Hellman key agreement systems and their
application to portable communications. In R. Rueppel, editor, Advances in Cryptol-
ogy - EUROCRYPT’92, pages 208–220. Springer, 1993. Lecture Notes in Computer
Science No. 658. 29

3. Elwyn Berlekamp. Algebraic Coding Theory. McGraw-Hill, New York, 1968. 39
4. J-S. Coron and D. Naccache. On the security of RSA screening. In H. Imai and
Y. Zheng, editors, Public Key Cryptography – Second International Workshop on
Practice and Theory in Public Key Cryptography, PKC’99, pages 197–203. Springer,
1999. Lecture Notes in Computer Science No. 1560. 29, 32

5. L. Harn. Batch verifying multiple DSA-type digital signatures. Electronics Letters,
34(9):870–871, 1998. 30

6. D. Naccache, D. M’Raihi, S. Vaudenay, and D. Raphaeli. Can DSA be improved ?
complexity trade-offs with the digital signature standard. In A. De Santis, editor,
Advances in Cryptology - EUROCRYPT’94, pages 77–85. Springer, 1995. Lecture
Notes in Computer Science No. 950. 29

7. A.P. Street and W.D. Wallis. Combinatorics: A First Course. CBRC, Winnipeg,
1982. 44

8. S. Yen and C. Laih. Improved digital signature suitable for batch certification. IEEE
Transactions on Computers, 44(7):957–959, 1995. 29, 31

	Introduction
	Motivation
	Background
	Divide-and-Conquer Verifiers
	Degree of Contamination Versus Parameter
	Number of Tests Needed to Identify t Bad Signatures
	Optimisation of DC Verifiers

	Verifiers Based on Hamming Codes
	General Model for Verification Codes
	Verification Codes from Combinatorial Designs

	Conclusions

