
Short Proofs of Knowledge for Factoring

Guillaume Poupard and Jacques Stern

École Normale Supérieure, Département d’Informatique,
45 rue d’Ulm, F-75230 Paris Cedex 05, France
{Guillaume.Poupard,Jacques.Stern}@ens.fr

Abstract. The aim of this paper is to design a proof of knowledge for
the factorization of an integer n. We propose a statistical zero-knowledge
protocol similar to proofs of knowledge of discrete logarithm a la Schnorr.
The efficiency improvement in comparison with the previously known
schemes can be compared with the difference between the Fiat-Shamir
scheme and the Schnorr one. Furthermore, the proof can be made non-
interactive. From a practical point of view, the improvement is dramatic:
the size of such a non-interactive proof is comparable to the size of the
integer n and the computational resources needed can be kept low; three
modular exponentiations both for the prover and the verifier are enough
to reach a high level of security.

1 Introduction

Zero-knowledge (ZK) proofs have first been proposed in 1985 by Goldwasser,
Micali and Rackoff [14]. Those proofs are interactive protocols between a prover
who wants to convince a verifier that an object belongs to a language (proof of
membership) or that he knows a secret information (proof of knowledge), with-
out revealing anything about his secret knowledge. Such proofs have practical
applications since they allow to solve many cryptographic problems such as ZK
identification [9], digital signature [25] or robust distributed cryptography [26].
Many ZK proof systems have been published so far that are related to the pre-
sumably intractable problems on which public key cryptography is based, such
as the computation of discrete logarithms [25], of square roots [9] and of eth

roots [15] modulo a composite integer.
In this paper, we consider the most popular such problem: the factorization

of integers, i.e. how to prove to a verifier that one’s knows some prime num-
bers whose product is a public number without giving any information about
this decomposition. Proofs of knowledge for the factorization of an integer have
been known for a long time. But, even if they are claimed efficient according to
complexity theoretical arguments, none of them can be considered practical for
many applications because of their significant communication complexity: the
proof is much longer than the object it deals with.

Previously known proofs of knowledge for the factorization of an integer n
are closely related to the property that n has less than a prescribed number of

H. Im ai , Y. Zh e n g (E d s.): P KC 2000, LNCS 1751, p p . 147– 166, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

148 Guillaume Poupard and Jacques Stern

prime factors. Van de Graaf and Peralta [29] and Galil et al. [11] first provided
efficient proofs that a given integer is of the form prqs. Then Boyar et al. [4]
proposed a protocol to prove that an integer is square-free. The combination of
those two protocols typically allows to prove that an integer is an RSA modulus.
Those results have recently been enhanced with protocols which prove that the
factors are quasi-safe primes [12], have about the same size [16] or are exactly
safe primes [5].

All the above protocols are based on the basic observation that, modulo a
given integer n, a random number has a square root with probability 2−η, where
η is the number of different prime factors of n, and that such a square root can
be efficiently computed only when the factorization of n is known. A verifier can
ask for square roots of randomly chosen numbers and count the proportion of
correct answers of the prover. This allows to prove that a number has less than
η different prime factors but the basic round has to be repeated many times in
order to reach a sufficient level of security and confidence.

A derived protocol to prove the knowledge of the factorization of n has been
proposed by Tompa and Woll [28]. It is based on ZK proofs for quadratic residu-
osity that come from [14] and which can be interpreted as proofs of membership
of an integer x to the set of the quadratic residues modulo an integer n or
as proofs of knowledge of a square root of x modulo n. According to Tompa
and Woll, the verifier first randomly chooses an element r in Zn and sends
x = r2 mod n to the prover. Then he proves that x is a quadratic residue mod-
ulo n. Once the prover is convinced that the verifier knows a square root of x,
himself computes a square root s of x and proves that he also knows a square
root of x.

The completeness of such a protocol is based on the existence of a polynomial
time algorithm for computing square roots modulo n when the factorization of
n is known. Furthermore, this scheme is zero-knowledge since the view of any
prover can be easily simulated using the simulator of the proof for quadratic
residuosity proposed in [14]. This explains why the verifier needs to prove that
he knows a square root of x; otherwise, he would learn whether x is a quadratic
residue or not and the protocol would not be zero-knowledge. Finally, the scheme
has error probability smaller than 7/8 but greater than 3/4. Consequently, it has
to be repeated many times in order to reach a high level of security. For realistic
parameters, this implies Giga-bytes of communication. From a theoretical point
of view, let k be a security parameter such that the cheating probability is
smaller than 1/2k. We can prove that the complexity for both computation
and communication is θ(k × |n|2) where |n| denotes the number of digits in the
binary expansion of n. Even if some optimizations can be added, it does not
seem possible to go under θ(k × |n|).

Notice that Boudot and Traoré [3] have recently proposed a scheme that does
not need to prove that n has less than a prescribed number of prime factors.
The idea, somehow comparable with what we do in this paper, is to prove the
knowledge of a common discrete logarithm d of g1 and g2, two randomly chosen
integers, in basis ge

1 and ge
2, where d is such that e× d = 1 mod λ(n).

Short Proofs of Knowledge for Factoring 149

1.1 Our Results

We propose an interactive proof of knowledge for the factorization of any pub-
lic integer n whose prime factors cannot be found by simple trial division. It
is statistical zero-knowledge. The protocol is a proof of knowledge of a small
discrete logarithm of zn mod n for a few randomly chosen elements z modulo
n. Consequently, it is related to variants of the Schnorr proof of knowledge for
discrete logarithms.

Our scheme is very efficient. When suitably optimized, its communication
complexity is only O(k+ |n|) bits. In this setting, the size of our proof is similar
to the size of the integer n. The improvement in comparison with the previ-
ously known schemes can therefore be compared with the difference of efficiency
between the Fiat-Shamir scheme and the Schnorr one. Furthermore, the com-
putational complexity is proved to be O((|n| + k) × k) multiplications modulo
n both for the prover and the verifier but we provide strong heuristic evidence
to show that O((|n| + k) × k/ log k) is enough. This might appear a small im-
provement but it has drastic consequences in practical terms: only three modular
exponentiations both for the prover and the verifier are needed to obtain a very
high level of security.

In section 2 we state results of independent interest on the probability to gen-
erate the multiplicative group Zpe

∗ with few elements (complete proofs appear in
the appendix A). Those results are used in the security analysis of the interactive
proof of knowledge we describe in section 3. We also propose a communication
efficient variant (section 3.3) and a non-interactive version (section 3.4). In sec-
tion 4 we give heuristic arguments to improve the computational efficiency of
the scheme and, in section 5, we show the practical efficiency of those proofs in
actual applications. Finally, in section 6, we propose a variant suggested by Adi
Shamir in order to make the proof work even when n has a small prime factors.

1.2 Notations and Definitions

For any integer n,
– we use Zn to denote the set of the integers modulo n,
– we use Zn

∗ to denote the multiplicative group of invertible elements of Zn,
– we use ϕ(n) to denote the Euler totient function, i.e. the cardinality of Zn

∗,
– we use λ(n) to denote Carmichael’s lambda function defined as the largest
order of the elements of Zn

∗.

It is well known that if the prime factorization of an odd integer n is
η∏

i=1

qi
fi

then ϕ(n) =
η∏

i=1

qi
fi−1(qi − 1) and λ(n) = lcmi=1..η

(
qi

fi−1(qi − 1)
)
.

If (gi)i∈[1,K] is a K-tuple of (Zn
∗)K , we use

〈
(gi)i∈[1,K]

〉
to denote the sub-

group of Zn
∗ that is generated by the gis, i.e.

150 Guillaume Poupard and Jacques Stern

〈
(gi)i∈[1,K]

〉
=

{
x ∈ Zn

∗ ∃(λ1, ...λK) x =
K∏
i=1

gλi

i mod n

}

In the following, pi is the ith prime number (p1 = 2, p2 = 3,...). For any finite
set S, Card(S) denotes the number of elements of S. We finally denote by ζ(K)
the Riemann Zeta function defined by ζ(K) =

∑+∞
d=1

1
dK for any integer K ≥ 2.

2 On the Generation of Zpe
�

We state known facts about the generation of the cyclic multiplicative group
Zpe

∗ where p is an odd prime number and e ≥ 1. Using generators it is possible
to precisely estimate the probability to generate the full group Zpe

∗ by a single
randomly chosen element.

Theorem 1 For any prime number p ≥ 7, for any e ≥ 1,

Pr
g∈Zpe∗ {〈g〉 = Zpe

∗} = ϕ(ϕ(pe))
ϕ(pe)

>
1

7 ln ln p

Next, we generalize this result when K elements are randomly chosen instead
of one. We obtain the following lower bound, independent of p and e:

Theorem 2 For any odd prime number p, for any e ≥ 1, for any K ≥ 2,

Pr
{gi}i∈[1,K]∈(Zpe∗)K

{〈
(gi)i∈[1,K]

〉
= Zpe

∗
}

>
1

ζ(K)
> 1− K + 1

K − 1
× 1

2K

Finally, we obtain a lower bound for the probability thatK elements generate
a large subgroup of Zpe

∗, i.e. a subgroup of size greater than Card (Zpe
∗) /C for

a fixed parameter C:

Theorem 3 For any odd prime number p, for any e ≥ 1, C ≥ 1 and K ≥ 2,

with P = Pr
{gi}i∈[1,K]∈(Zpe∗)K

{
Card

〈
(gi)i∈[1,K]

〉
≥ Card (Zpe

∗)
C

}

P >
1

ζ(K)
×

C∑
d=1

1
dK

> 1− 1
(K − 1)CK−1ζ(K)

All the proofs appear in appendix A.

Short Proofs of Knowledge for Factoring 151

3 Proofs of Knowledge for Factoring

3.1 Description

Let k be a security parameter. Let n be an integer whose number of digits in its
binary expansion is denoted |n|. Let A, B, � and K be integers which depend
a priori on k and |n|. Let z1,...zK be K elements randomly chosen in Zn

∗. We
describe an interactive proof of knowledge for the factorization of n.

A round of proof (see figure 1) consists for the prover in randomly choosing an
integer r in [0, A[and computing, for i = 1..K, the commitments xi = zr

i mod n.
Then he sends the xis to the verifier who answers a challenge e randomly chosen
in [0, B[. The prover computes y = r + (n − ϕ(n)) × e (in Z) and sends it to
the verifier who checks 0 ≤ y < A and, for i = 1..K, zy−n×e

i = xi mod n. A
complete proof consists in repeating � times the elementary round.

Prover Verifier

r ∈R [0, A[

xi = zr
i mod n, for i = 1..K

(xi)i∈[1,K]−−−−−−−−−−→
e←−−−−−−−−−− e ∈R [0, B[

y = r + (n− ϕ(n))× e
y−−−−−−−−−−→ check 0 ≤ y < A and

zy−ne
i

?
= xi mod n, for i = 1..K

Fig. 1. Interactive proof of knowledge for factoring (elementary round)

This scheme is a variant of the Schnorr proof of knowledge of discrete loga-
rithms. It consists in proving the knowledge of small discrete log, namely n−ϕ(n),
of zn

i mod n, for K randomly chosen integers zi in Zn
∗. In the following section,

we prove that it is a statistical ZK proof of knowledge of the factorization of n.

3.2 Security Proofs

In order to prove the security of the protocol, we follow the approach of Feige,
Fiat and Shamir [8], first proving completeness, then soundness and, finally, the
zero-knowledge property. In order to simplify the notations, we do not write
the dependencies on k but when we say that an expression f is negligible, this
means that f depends on k and that, for any constant c and for large enough k,
f(k) < 1/kc. Our computing model is the probabilistic polynomial time Turing
machine (Pptm), whose running time is a polynomial in k and |n|.
Theorem 4 (Completeness) The execution of the protocol between a prover
who knows the factorization of n and a verifier is successful with overwhelming
probability if (n− ϕ(n))�B/A is negligible.

152 Guillaume Poupard and Jacques Stern

Proof: At the end of each round, the verifier obtains xi = zr
i mod n and y =

r + (n − ϕ(n)) × e which can be easily computed by the prover if he knows
the factorization of n. From Euler’s theorem, we know that z

ϕ(n)
i = 1 mod n so

zy
i = z

r+(n−ϕ(n))e
i = xi × zne

i mod n. Consequently, zy−n×e
i = xi mod n.

If the prover follows the protocol, the proof fails only if y ≥ A at some round
of the proof. The probability of failure of such an event taken over all possible
choices of r is smaller than (n − ϕ(n))B/A. Consequently the execution of the

protocol is successful with probability ≥
(
1− (n−ϕ(n))B

A

)�

≥ 1 − (n−ϕ(n))�B
A .

Thus, if (n−ϕ(n))�B/A is negligible, the probability of success is overwhelming.
��

The proof of soundness consists in proving that, if the verifier accepts the
proof, then, with overwhelming probability, the prover must know the factoriza-
tion of n. Intuitively, after the commitment of the xis, if the prover is accepted
with probability > 1/B, he must be able to answer two different questions e

and e′ with y and y′ smaller than A such that zy−ne
i = xi = zy′−ne′

i mod n for
i = 1..K. Let λ0 = |(y − y′)− n(e− e′)|; this integer is such that, for i = 1..K,
zλ0
i = 1 mod n. The following lemma formally states those ideas, where ε is
implicitly assumed to depend on k and |n|:
Lemma 1 Assume that some Pptm adversary P̃ is accepted with probability
ε′ = 1/B� + ε, ε > 0 and that A < n. Then there exists an algorithm which,
with probability > ε2/(6ε′2), outputs λ0 ∈]0, A + nB] such that, for i = 1..K,
zλ0
i = 1 mod n. The expected running time is < 2/ε× τ , where τ is the average

running time of an execution of the proof.

Proof: Assume that some Pptm adversary P̃ (ω), running on random tape
ω, is accepted with probability ε′ = 1/B� + ε. We write Succ(ω, (e1, ...e�)) ∈
{true, false} the result (successful of not) of the identification of P̃ (ω) when the
challenges e1, ...e� are used.

We consider the following algorithm (largely inspired from [25]):
Step 1. Pick a random tape ω and a tuple e of � integers e1, ...e� in {0, ..B− 1}
until Succ(ω, e). Let u be the number of probes.
Step 2. Probe up to u random �-tuples e′ different from e until Succ(ω, e′). If
after the u probes a successful e′ is not found, the algorithm fails.
Step 3. Let j be one of the indices such that ej �= ej

′; we note yj and yj
′ the

related correct answers of P̃ . The algorithm outputs λ0 = |(yi−yi
′)−n(ei−ei

′)|.
If this algorithm does not fails, the prover is able to correctly answer two

challenges ej and ej
′ for the same commitment xj with the answers yj and yj

′.
This means that z

yj−n×ej

i = xj = z
yj

′−n×ej
′

i mod n for all i = 1..K so the
integer λ0 is such that zλ0

i = 1 mod n. Furthermore, λ0 is smaller than A+ nB
because λ0 = |(yi − yi

′)− n(ei − ei
′)| for integers yi and yi

′ smaller than A and
integers ei and ei

′ smaller than B. Finally, since A < n, λ0 = 0 would imply
ei = ei

′ so λ0 > 0.
We now analyze the complexity of the algorithm. By assumption, the proba-

bility of success of P̃ is ε′ so the first step finds ω and e with the same probability.

Short Proofs of Knowledge for Factoring 153

The expected number E of repetitions is 1/ε′ and the number u of probes is equal
to N with probability ε′ × (1− ε′)N−1.

Let Ω be the set of random tapes ω such that Pr
e

{Succ(ω, e)} ≥ ε′ − ε/2 =

1/B� + ε/2. The probability for the random tape ω found in step 1 to be in Ω
conditioned by the knowledge that Succ(ω, e) = true can be lower bounded:

Pr
ω,e

{ω ∈ Ω|Succ(ω, e)} = 1− Pr
ω,e

{ω �∈ Ω|Succ(ω, e)}

= 1− Pr
ω,e

{Succ(ω, e)|ω �∈ Ω} ×
Pr
ω,e

{ω �∈ Ω}
Pr
ω,e

{Succ(ω, e)}

≥ 1−
(

1
B�

+
ε

2

)
× 1/ε′ =

ε

2× ε′

With probability > ε/(2ε′), the random tape ω is in Ω and in this case, by
definition of the set Ω, the probability for a tuple of challenges e′ �= e to lead
to success is ≥ ε/2. The probability to obtain such a tuple e′ after less than N
probes is ≥ 1− (1− ε/2)N .

Consequently, the probability to obtain a random tape ω in Ω and to find e′

is greater than

ε

2ε′
×

+∞∑
N=1

(1 − ε′)N−1 × ε′ ×
[
1− (1− ε

2
)
N
]
=

ε2

4ε′(ε′ + ε/2− ε× ε′/2)
>

ε2

6ε′2

In conclusion, the algorithm finds λ0 with probability > ε2/(6ε′2) and the
total expected number of executions of the proof between P̃ and a verifier is
smaller than 2/ε′. ��

Theorem 5 (Soundness) Assume that some Pptm adversary P̃ is accepted
with non-negligible probability. If � × logB = θ(k), K = θ(k + log(|n|)), log(A)
is a polynomial in k and |n| and A < n, there exists a Pptm which factors n
with overwhelming probability.

Proof: Let π(k) is the probability of success of P̃ . If π(k) is non-negligible, there
exists an integer d such that π(k) ≥ 1/kd for infinitely many values k.

Let n =
∏η

j=1 q
ej

j be the prime factorization of n. Notice that η is the number
of different prime factors of n. Let us consider the K randomly chosen elements
zi; from theorem 2, we know that, modulo q

ej

j , they generate Z
q

ej
j

∗ with proba-

bility greater than 1− (K + 1)/(K − 1)× 1/2K . Consequently, the zis generate
multiplicative groups modulo q

ej

j for j = 1..η with probability greater than
1− η × (K + 1)/(K − 1)× 1/2K.

The probability for P̃ to be accepted while the zis generate all groups Z
q

ej
j

∗

is larger than π(k)−η×(K+1)/(K−1)×1/2K. The number η of different prime
factors of n is less than log2(n) = |n| so, if K = θ(k + log(|n|)), for infinitely
many values k, η × (K + 1)/(K − 1)× 1/2K ≤ 1/3kd.

154 Guillaume Poupard and Jacques Stern

Furthermore, for k large enough, 1/B� < 1/3kd if �× logB = θ(k). So, taking
ε = π(k)/3 in lemma 1 we conclude that it is possible to obtain λ0 ∈]0, A+ nB]
in polynomial time O(1/ε) = O(kd).

Then, for i = 1..K, zλ0
i = 1 mod n so, for any j = 1..η, zλ0

i = 1 mod q
ej

j .
Let z be any element of Zn

∗; since the zis generate Z
q

ej
j

∗ for a fixed j, z can be

written as a product
∏K

i=1 z
αi,j

i modulo q
ej

j and consequently zλ0 = 1 mod q
ej

j .
Using the Chinese remainder theorem, we obtain that zλ0 = 1 mod n for any
z in Zn

∗. This means that λ0 is a non-zero multiple of the Carmichael lambda
function of n. It is well known that knowledge of a multiple of λ(n) allows to
factor n in time O(η×logλ0) modular multiplications using the Miller’s factoring
algorithm [18] which we recall in appendix B.

Finally, we obtain the factorization of n in time O(|n|×log(A+nB)) modular
multiplications modulo n. ��

Theorem 6 (Zero-Knowledge) The protocol is statistically zero-knowledge if
(n− ϕ(n))�B/A is negligible and �×B is a polynomial in k.

Proof: We first remind that the zero-knowledge property is verified if the view
of any verifier considered as a random variable is perfectly approximable by the
output of a Pptm which does not know the factorization of n. A protocol is only
statistically zero-knowledge if the view and the output of the Pptm are only
statistically indistinguishable. We refer the reader to [14] for more details.

We describe the polynomial time simulation of the communication between
a prover P and a dishonest verifier Ṽ . We assume that, in order to try to ob-
tain information about the factorization of n, Ṽ does not randomly choose the
challenges. If we focus on the jth round of identification, Ṽ has already obtained
data, noted Dataj , from previous interactions with P . Then the prover sends
the commitments Xj = (x1, ..xK) and Ṽ chooses, possibly using Dataj and Xj ,
the challenge ej(Dataj , Xj).

Here is a simulation of the jth round of identification: choose random values
ej

′ ∈ [0, B[and yj
′ ∈ [0, A[, compute, for i = 1..K, xi

′ = z
yj

′−nej
′

i mod n.
If ej(Dataj , (x1

′, ..xK
′)) �= ej

′ then try again with another pair (ej ′, yj
′), else

return ((x1
′, ..xK

′), ej ′, yj
′).

We observe that a good triplet ((x1
′, ..xK

′), ei′, yi
′) is obtained with proba-

bility 1/B. Consequently, the expected time complexity of the all simulation is
O(�B).

Furthermore, it can be formally proved that such a simulation is statistically
indistinguishable from the transcript of a real proof if (n−ϕ(n))�B/A is negligi-
ble. Therefore, a verifier with infinite computation power cannot learn significant
information after a polynomial number of authentications. ��
Note. This theorem shows that if we choose � = 1 and B exponential in the
security parameter k, we cannot prove the zero-knowledge property. Notice that
there is exactly the same problem with the Schnorr scheme.

Short Proofs of Knowledge for Factoring 155

Choice of the parameters and Complexity of the scheme. The choice of
the parameters � and B must be such that � × logB = θ(k) in order to make
the protocol sound. The choice of A is a bit more difficult; A must be much
larger than (n−ϕ(n))�B to guarantee the completeness and the zero-knowledge
property but A must also be smaller than n to guarantee the soundness. Con-
sequently, n must verify (n− ϕ(n)) × 2k � n. The proof we propose cannot be
used with any integer n but we can notice that the previous equation is verified
by all the integers which does not have small prime factors. More precisely, if
n =

∏η
i=1 qei

i , we can prove that 1
q1

< n−ϕ(n)
n = 1 −∏η

i=1

(
1− 1

qi

)
<
∑η

i=1
1
qi
.

Consequently, if (n− ϕ(n))× 2k � n, all the prime factors of n must be � 2k.
If all the prime factors of n are greater than a bound F (k), we know that

(n − ϕ(n))/n < η/F (k) so we require F (k) � η × 2k. Anyway, in practical
applications, such a proof is used to prove the knowledge of integers like RSA
modulus with large prime factors; if n has small prime factors, the proof is not
zero-knowledge but n can not be considered as a good modulus! Informally, this
means that the proof is correct and zero-knowledge if the factorization of n is
intractable. Notice that a prover cannot try to cheat choosing an integer n with
small factors since the soundness is guaranteed by A < n.

The execution of the protocol requires the transmission of exactly �× (K ×
|n| + |B| + |A|) bits. If we assume that � × logB = θ(k), K = θ(k + log |n|)
and |A| = θ(|n|) (with A < n), we obtain a communication complexity equal to
θ(�× (k+ log |n|)× |n|). From the computational point of view, both the prover
and the verifier need to compute K exponentiations modulo n with |A|-bits
exponents.

3.3 Optimized Version

In the interactive proof of knowledge we have described is section 3.1, we can
observe that the largest part of the communication concerns the commitments
xi. Using an idea of Fiat and Shamir whose security has been formalized by
Girault and Stern in [13], we can replace those commitments by the hash value
H(x1, .., xK) where H is an appropriate collision-free hash function. We obtain
a new scheme (see figure 2), much more efficient in term of communication than
the initial one. An important consequence is that the communication complexity
of the modified protocol is independent of the parameter K and is the same than
for the Schnorr scheme, i.e. O(k + |n|).

We can finally observe that the commitments can be precomputed in or-
der to reduce the on-line computation to a very simple non-modular arithmetic
operation (like in [23]).

In practical applications, an important point is the choice of the zis. They
need to be randomly chosen in order to make the proof sound. A first solution
consists in using a mutually trusted source of random bits by the prover and the
verifier. Such a strategy is used in non-interactive zero-knowledge proofs [2]. In
practice, zi can be pseudo-randomly generated from a seed of the form h(n, i)
where h is a hash function such as SHA-1 [19].

156 Guillaume Poupard and Jacques Stern

Prover Verifier

r ∈R [0, A[

X = H
�
(zr

i mod n)i=1..K

� X−−−−−−−−−−→
e←−−−−−−−−−− e ∈R [0, B[

y = r + (n− ϕ(n))× e
y−−−−−−−−−−→ check 0 ≤ y < A and

H
��

zy−ne
i mod n

�
i=1..K

� ?
= X

Fig. 2. Optimized interactive proof of knowledge for factoring

3.4 Non-interactive Proof of Knowledge for Factoring

The interactive proof can be made non-interactive using the Fiat-Shamir heuris-
tic [8,9]. The verifier’s challenge e is replaced with the hash value of the com-
mitment X = H(x1, .., xk) and of the public data using a collision-resistant hash
function H ′. The size of such a proof, < k + |n| bits, is very small:

A non-interactive proof of knowledge of the factorization of n is
a pair (e, y) with 0 ≤ e < B, 0 ≤ y < A and

e = H ′(n, z1, .., zK , H(zy−ne
1 mod n, .., zy−ne

K mod n)

It is widely believed that such a transformation guarantees an accurate level
of security as soon as H is random enough. Furthermore, the security of this
approach can be formalized using the random oracle model [1,20,21] even if such
analysis cannot be considered as an absolute proof of security [6].

The important difference between the interactive and the non-interactive
setting is that in the second case we do not have to care about dishonest verifiers
since the hash function H ′ is assumed to produce random challenges. It is easy
to modify the proof of theorem 6 in order to demonstrate that if � = 1 and
B = 2k, the protocol is honest-verifier statistically zero-knowledge :

Theorem 7 The protocol is honest-verifier statistically zero-knowledge if (n −
ϕ(n))�B/A is negligible.

Then the so-called forking lemma technique described by Pointcheval and
Stern [20,21] can be applied in order to prove the security of the non-interactive
version of the scheme, in the random oracle model, even when � = 1.

4 Heuristic Efficiency Improvements

We have seen in the previous section that the proof of knowledge we propose
has a communication complexity independent of the number K of integers zi.
Furthermore, for security reasons (theorem 5), K must be approximately equal
to the security parameter k. In order to reduce the computational complexity

Short Proofs of Knowledge for Factoring 157

of the protocol, we now show how to reduce K to a very small value such as 3
in practice. The underlying idea is to increase the work load of the extractor of
theorem 5 by a factor

√
C in order to reduce K by a factor logC. Unfortunately,

the algorithm we propose is based on well known techniques such as the Pollard’s
rho method whose complexity can only be analyzed using heuristic arguments.

Theorem 8 Assume that some adversary is accepted with non-negligible proba-

bility ε. If �× logB = θ(k) and K = θ

(
k + log(|n|)

logC

)
, there exists an algorithm

which, heuristically, factors n in time O(1/ε +
√
C × |n| × log(A + nB)) with

non-negligible probability.

If C is a polynomial in the security parameter k, this proves that we can
choose K = θ((k + log |n|)/ log k).

Let us first remind two algorithms.

Floyd’s cycle-finding algorithm
Let f be a random function from a set S to S. Let x0 be a random element
of S and consider the elements xi recursively defined by xi+1 = f(xi). Such a
sequence consists of a tail of expected length

√
πCard(S)/8 followed by a cycle

of the same expected length (see for example [10]). This immediately leads to
an algorithm able to find a collision xi = xj in time O(

√Card(S)) and with
memory O(

√Card(S)) (see [17] for more details).
The previous algorithm can be improved in order to use just a constant

amount of memory. Floyd’s cycle-finding algorithm consists in starting with the
pair (x1, x2) and iteratively computing (xi, x2i) from (xi−1, x2i−2) until xm =
x2m. It can be proved that the expected running time of this algorithm is also
O(

√Card(S)) while the memory needed is constant since no values have to be
stored in memory.

This algorithm can still be improved in order to find indexes i and j such
that xi = xj but xi−1 �= xj−1. The idea consists in finding in a first step an
index m such that xm = x2m with Floyd’s algorithm. Then, we iteratively test if
xi = xi+m for increasing values of i. The time complexity is alwaysO(

√Card(S))
and the memory needed is still constant.

Pollard’s rho factoring algorithm
Floyd’s algorithm can be used to factor integers. The Pollard’s rho algorithm [22]
consists in choosing S = Zn and f(x) = x2+1 mod n. We do not search collisions
xi = xj mod n but only indexes i and j such that gcd(xi − xj , n) > 1, i.e. a
collision modulo a prime factor of n. Since this gcd is equal to n with negligible
probability, we obtain a non trivial factor of n. A recursive use of the algorithm
allows to completely factor n.

If we assume that f(x) = x2 + 1 mod p behaves like a random function, the
computational complexity required to find a factor p of n is O(

√
p) modular

multiplication. As a consequence, this algorithm allows to find small factors
much more efficiently than with trial division.

158 Guillaume Poupard and Jacques Stern

Proof of theorem 8
We now describe the algorithm announced in theorem 8. The procedure we
explain allows to break the integer n in two factors. A complete factorization of
n is obtained by using it recursively.

We have proved in section 2 that the zis generate large subgroups modulo
each prime power factor of n with overwhelming probability, even for small values
of K, but we do not have any similar result modulo n. We note G the multiplica-
tive group of the integers zλ0 mod n for z ∈ Zn

∗. We know that Card{z s.t. zλ0 =
1 mod n} × Card G = ϕ(n). Consequently, Pr

z∈Zn
∗

{
zλ0 = 1 mod n

}
= 1/Card G.

Two cases may occur:

– if Card G is a small set, a multiple of λ(n) can be computed from λ0. This
can be done using a Floyd’s algorithm to compute the order of xλ0 mod
n for a randomly chosen elements x of Zn

∗. Such an algorithm succeeds
in expected time O(

√
λ(n)/ gcd(λ0, λ(n))). Then we can use the Miller’s

factoring algorithm to factor n with a multiple of λ(n).
– otherwise, λ0 does not have enough common factors with λ(n) to make the
Carmichael’s lambda function of n easy to compute so we use the following
algorithm to overcome the problem.

First, it is easy to test if the modulus n has more than η prime factors using
the elliptic curve factoring algorithm or just the Pollard’s rho factoring algorithm
as soon as the size of the factors are small enough. For example, for 1024 bits
modulus, η = 16 is reasonable.

Let n =
∏η

j=1 q
ej

j be the prime factorization of the modulus n. From the-
orem 3, we know that, modulo q

ej

j , the K elements z1, ...zK generate a sub-
group of Z

q
ej
j

∗ which size is greater than ϕ(qej

j)/C with probability greater

than 1 − ((K − 1)CK−1ζ(K))−1. Consequently, with probability greater than
1 − η × ((K − 1)CK−1ζ(K))−1, the zis generate large subgroups modulo each
q
ej

j . For example, with η = 16, K = 3 and C = 242, this probability is larger
than 1− 1/280.

We now use a variant of Pollard’s rho algorithm to factor n. Let z be a
randomly chosen element of Zn

∗. We define a sequence of elements modulo n by
w0 = zλ0 mod n and wi+1 =

(
w2

i + 1
)λ0 mod n. Then we look for indexes i and

j such that gcd(wi ± wj , n) �= 1 and gcd(wi−1 ± wj−1, n) = 1 using the Floyd’s
cycle-finding algorithm.

Heuristically, since the cycles modulo each factor q
ej

j are not too small, wi �=
wj mod n. In this case, gcd(wi − wj , n) is a non-trivial factor of n.

If we consider this algorithm modulo q
ej

j , we see that it is a Floyd’s cycle-
finding algorithm in a space of size smaller than C. Consequently, cycles are
searched in parallel for all the factors q

ej

j of n and the solution is found in
average time O(

√
C) exponentiations to the power λ0 modulo n using a fixed

(small) amount of memory. It is important to notice that we just need that the
zi generate large subgroups modulo each factor of n and not necessarily a large
subgroup of Zn

∗.

Short Proofs of Knowledge for Factoring 159

Other method. A. Joux suggested a different analysis based on Pollard’s p− 1
factoring method and that leads to the same conclusions about the choice of K.

5 Performances

Let us consider the following typical application: a prover wishes to generate
a non-interactive proof of knowledge of the factorization of a 1024-bit integer
n (|n| = 1024). In order to reach a high level of security, we choose k = 80,
� = 1 and B = 2k = 280 in order to obtain a probability of success for a
dishonest prover smaller than 1/280 (lemma 1). The choice of A is directed by
the results of theorems 4, 5 and 7 on the completeness, soundness and zero-
knowledge property. We have to take A much larger than (n − ϕ(n))�B and
smaller than n, e.g. A = 21024. Finally, the choice of C = 242 allows to take
K = 3 according to theorem 8.

We can only consider integers n with less than 16 prime factors. The proto-
col is secure for the prover if all the factors are much more than 84-bits long,
e.g. 128-bits long. For numbers with smaller factors, a dishonest prover could
not cheat but a (possibly dishonest) verifier could learn non negligible informa-
tion about the factorization of n. Notice that for any cryptographic application
which requires composite integers to perform secure computations, we cannot
reasonably assume the intractability of the factorization of an integer with prime
factors shorter than 2128.

With this choice of parameters, a proof requires 3 exponentiations modulo
n for the prover and for the verifier. The proof is very short (80 + 1024 = 1104
bits long) and of about the same size than the integer n.

6 A Variant to Prove the Knowledge of the Factorization
of any Integer

As we previously said, our protocol can only be used with integers n such that
(n − ϕ(n)) × 2k � n, i.e. integers without small prime factors. Adi Shamir
suggested an interesting variant to deal with such numbers:

Let a, b, � and K be integers. Let z1,...zK be K elements randomly chosen in
Zn

∗. A round of proof consists for the prover in randomly choosing an integer r
in [0, 2a[and computing, for i = 1..K, the commitments xi = zr

i mod n. Then he
sends the xis to the verifier who answers a challenge e randomly chosen in [0, 2b[.
The prover computes an answer y ∈ [0, 2a[such that y = r+c×ϕ(n)−e×2a for
a suitable value of c. He sends it to the verifier who checks 0 ≤ y < 2a and, for
i = 1..K, zy+e×2a

i = xi mod n. A complete proof consists in repeating � times
the elementary round.

This scheme is based on the ability to compute an integer y equal to r modulo
ϕ(n), with its b leading bits fixed to e, when ϕ(n) is known. The correctness is
satisfied as soon as 2a � ϕ(n) so we impose 2a � n. The proof of soundness
is similar to the proof of theorem 5. Finally, the protocol is also statistically
zero-knowledge when 2a � n.

160 Guillaume Poupard and Jacques Stern

Acknowledgments

We would like to thank Adi Shamir and Antoine Joux for their helpful comments
and suggestions.

References

1. M. Bellare and P. Rogaway. Random Oracles are Practical: a paradigm for design-
ing efficient protocols. In Proc. of the 1st CCCS, pages 62–73. ACM press, 1993.
156

2. M. Blum, A. De Santis, S. Micali, and G. Persiano. Non-Interactive Zero-
Knowledge. SIAM journal of computing, 20(4):1084–1118, 1991. 155

3. F. Boudot and J. Traoré. Efficient Publicly Verifiable Secret Sharing Schemes with
Fast or Delayed Recovery. In Proc of ICICS’99. Springer-Verlag, 1999. 148

4. J. Boyar, K. Friedl, and C. Lund. Practical Zero-Knowledge Proofs: Giving Hints
and Using Deficiencies. Journal of Cryptology, 4(3):185–206, 1991. 148

5. J. Camenisch and M. Michels. Proving in Zero-Knowledge That a Number Is
the Product of Two Safe Primes. In Eurocrypt ’99, LNCS 1592, pages 107–122.
Springer-Verlag, 1999. 148

6. R. Canetti, O. Goldreich, and S. Halevi. The Random Oracle Methodology Revis-
ited. In Proc. of the 30th STOC, pages 209–218. ACM Press, 1998. 156

7. H. Cohen. A Course in Computational Algebraic Number Theory. Graduate Texts
in Mathematics 138. Springer-Verlag, 1993. 166

8. U. Feige, A. Fiat, and A. Shamir. Zero-Knowledge Proofs of Identity. Journal of
Cryptology, 1:77–95, 1988. 151, 156

9. A. Fiat and A. Shamir. How to Prove Yourself: practical solutions of identification
and signature problems. In Crypto ’86, LNCS 263, pages 186–194. Springer-Verlag,
1987. 147, 156

10. P. Flajolet and A. Odlyzko. Random Mapping Statistics. In Eurocrypt ’89, LNCS
434, pages 329–354. Springer-Verlag, 1990. 157

11. Z. Galil, S. Haber, and M. Yung. A Private Interactive Test of a Boolean Predicate
and Minimum-Knowledge Public-Key Cryptosystems. In Proc. of the 26th FOCS,
pages 360–371. IEEE, 1985. 148

12. R. Gennaro, D. Micciancio, and T. Rabin. An Efficient Non-Interactive Statistical
Zero-Knowledge Proof System for Quasi-Safe Prime Products. In Proc. of the 5th
CCCS, pages 67–72. ACM press, 1998. 148

13. M. Girault and J. Stern. On the Length of Cryptographic Hash-Values used in
Identification Schemes. In Crypto ’94, LNCS 839, pages 202–215. Springer-Verlag,
1994. 155

14. S. Goldwasser, S. Micali, and C. Rackoff. The Knowledge Complexity of Interactive
Proof Systems. In Proc. of the 17th STOC, pages 291–304. ACM Press, 1985. 147,
148, 154

15. L. C. Guillou and J.-J. Quisquater. A “Paradoxal” Identity-Based Signature
Scheme Resulting from Zero-Knowledge. In Crypto ’88, LNCS 403, pages 216–
231. Springer-Verlag, 1989. 147

16. M. Liskov and D. Silverman. A Statistical Limited-Knowledge Proof for Secure
RSA Keys. Technical report, RSA Laboratories, 1998. 148

17. A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography.
CRC Press, 1997. 157

Short Proofs of Knowledge for Factoring 161

18. G. Miller. Riemann’s hypothesis and tests for primality. Journal of Computer and
System Sciences, 13:300–317, 1976. 154, 165

19. NIST. Secure Hash Standard (SHS). Federal Information Processing Standards
PUBlication 180–1, april 1995. 155

20. D. Pointcheval and J. Stern. Security Proofs for Signature Schemes. In Eurocrypt
’96, LNCS 1070, pages 387–398. Springer-Verlag, 1996. 156

21. D. Pointcheval and J. Stern. Security Arguments for Digital Signatures and Blind
Signatures. Journal of Cryptology, 1999. to appear, available at
http://www.dmi.ens.fr/ pointche. 156

22. J. M. Pollard. A Monte Carlo Methods for Factorization. BIT, 15:331–334, 1975.
157

23. G. Poupard and J. Stern. Security Analysis of a Practical ”on the fly” Authen-
tication and Signature Generation. In Eurocrypt ’98, LNCS 1403, pages 422–436.
Springer-Verlag, 1998. 155

24. J.N. Rosser and L. Schoenfeld. Approximate Formulas for some Functions of Prime
Numbers. Illinois Journal of Mathematics, 6(1):64–94, march 1962. 162

25. C. P. Schnorr. Efficient Signature Generation by Smart Cards. Journal of Cryp-
tology, 4(3):161–174, 1991. 147, 152

26. M. Stadler. Publicly verifiable secret sharing. In Eurocrypt ’96, LNCS 1070, pages
190–199. Springer-Verlag, 1996. 147

27. D. R. Stinson. Cryptography, Theory and Practice. CRC Press, 1995. 166
28. M. Tompa and H. Woll. Random Self-Reducibility and Zero Knowledge Interactive

Proofs of Possession of Information. In Proc. of the 28rd FOCS, pages 472–483.
IEEE, 1987. 148

29. J. van de Graaf and R. Peralta. A Simple and Secure Way to Show the Validity of
Your Public Key. In Crypto ’87, LNCS 293, pages 128–134. Springer-Verlag, 1988.
148

A On the Generation of Zpe
� (Proofs)

A.1 Generation of Zpe
∗ with one Randomly Chosen Element

We first recall known properties of the Euler function:

Fact 1 – If p is prime and e ∈ N
∗, then ϕ(pe) = pe − pe−1 = pe−1(p− 1)

– If gcd(m,n) = 1 then ϕ(m×n) = ϕ(m)×ϕ(n) (ϕ is said to be multiplicative)
– If n = qe1

1 × qe2
2 × ...× qek

k is the prime factorization of n, then

ϕ(n) = n×
(
1− 1

q1

)(
1− 1

q2

)
...

(
1− 1

qk

)
A first question about the generation of Zpe

∗ is the following: for a randomly
chosen element g of Zpe

∗, what is the probability for g to be a generator of Zpe
∗,

i.e. < g >= Zpe
∗? The classical answer below allows to count the number of

generators of Zpe
∗.

Fact 2 Suppose that g is a generator of Zpe
∗. Then h = gi mod pe is also a

generator of Zpe
∗ if and only if gcd(i, ϕ(pe)) = 1. It follows that the number of

generators of Zpe
∗ is Card

(
Zϕ(pe)

∗) = ϕ(ϕ(pe)).

Pr
g∈Zpe∗ {< g >= Zpe

∗} = ϕ(pe−1(p− 1))
pe−1(p− 1)

=
{

ϕ(p− 1)/(p− 1) if e = 1
ϕ(p− 1)/p if e > 1

162 Guillaume Poupard and Jacques Stern

It can be noted that this probability can be small. For example, if p is such
that p − 1 is the product of the first α prime numbers (p − 1 =

∏α
i=1 pi),

the probability to generate Zp
∗ with a single element is ϕ(p − 1)/(p − 1) =∏α

i=1(1 − 1/pi) ∼= e−γ

ln(α lnα) where γ is Euler’s constant (see for example [24]).
For α = 55, p is 340 bits long and this probability is about 1/10. This means
that we need to try more than 500 elements in order to find a generator with
probability very close to 1 such as 1− 1/280.

More precisely, the following fact proved in [24] allows to lower bound the
probability of fact 2:

Fact 3 For all integers x ≥ 5,
ϕ(x)
x

>
1

6 ln lnx
but there does not exist any

constant C such that ϕ(x) > C × x for any integer x.

Theorem 1 For any prime number p ≥ 7, for any e ≥ 1,

Pr
g∈Zpe∗ {〈g〉 = Zpe

∗} = ϕ(ϕ(pe))
ϕ(pe)

>
1

7 ln ln p

Proof: The probability for a randomly chosen element g of Zpe
∗ to generate the

all group is greater than ϕ(p − 1)/p so, using the previous fact, if p ≥ 7 the
probability is larger than (1− 1/p)× 1/(6 ln ln(p− 1)) > 1/(7 ln ln p). ��

A.2 Generation of Zpe
∗ with K Randomly Chosen Elements

A natural question is how the probability of fact 2 is modified if we choose
K elements g1, ...gK of Zpe

∗ instead of one. To answer this problem, we first
generalize the Euler totient function and define ϕK for all integers K ≥ 1 by:

– If p is prime and e ≥ 1, then ϕK(pe) = pKe − pK(e−1)

– If gcd(m,n) = 1 then ϕK(m× n) = ϕK(m)× ϕK(n) (implies ϕK(1) = 1)

We note that for K = 1, ϕ1 = ϕ.

Lemma 2 If n = qe1
1 × qe2

2 × ...× qek

k is the prime factorization of n, then

ϕK(n) = nK ×
(
1− 1

qK1

)(
1− 1

qK2

)
...

(
1− 1

qKk

)
The functions ϕK allow to generalize fact 2 to the case of K generators:

Lemma 3 The number of K-tuples of (Zpe
∗)K that generate Zpe

∗ is ϕK(ϕ(pe)).

Proof: Let (g1, ...gK) be a K-tuple of (Zpe
∗)K . Let g be a generator of Zpe

∗; for
i = 1, ...K, we define αi ∈ Zϕ(pe) by the relation gαi = gi mod pe.

We first notice that (g1, ...gK) generates Zpe
∗ if and only if the ideal generated

by α1, α2, ... αK in the ring Zϕ(pe) is the entire ring. Bezout equality shows that
this occurs iff gcd(α1, ...αK , ϕ(pe)) = 1.

Short Proofs of Knowledge for Factoring 163

Let us count the number of K-tuples (α1, ...αK) ∈ (
Zϕ(pe)

)K such that
gcd(α1, ...αK ,

ϕ(pe)) = 1. Let
∏t

i=1 qfi

i be the prime factorization of ϕ(pe). We know that

gcd(x,
t∏

i=1

qfi

i) = 1 ⇔ ∀i ≤ t gcd(x, qfi

i) = 1 ⇔ ∀i ≤ t gcd(x mod qfi

i , qfi

i) = 1

Using the Chinese remainder theorem, the problem reduces to counting the

number of K-tuples (β1, ...βK) of
(

Z
q

fi
i

)K

such that gcd(β1 mod qf1
1 , ...βK mod

qfK

K , qfi

i) = 1 for i = 1, ...t. The K-tuples that do not verify this relation for a

fixed index i are of the form (qiγ1, ...qiγK) where (γ1, ...γK) ∈
(

Z
q

fi−1
i

)K

and

there are exactly q
K(fi−1)
i such K-tuples.

Finally there are
∏t

i=1 qKfi

i − q
K(fi−1)
i K-tuples of

(
Zϕ(pe)

)K such that
gcd(α1, ...αK ,∏t

i=1 qfi

i) = 1 and this is equal to
∏t

i=1 ϕK(qfi

i) = ϕK(ϕ(pe)) since ϕK is mul-
tiplicative. ��
Theorem 2 For any odd prime number p, for any e ≥ 1, for any K ≥ 2,

with P = Pr
{gi}i∈[1,K]∈(Zpe∗)K

{〈
(gi)i∈[1,K]

〉
= Zpe

∗
}

P =
ϕK(ϕ(pe))

ϕ(pe)K
>

1
ζ(K)

> 1− K + 1
K − 1

× 1
2K

Proof: Let us first introduce a notation: for any integer x, let Sx be the set of
the indices i such that pi is a factor of x.

From the previous lemma, we know that the probability for a K-tuple of
(Zpe

∗)K to generate Zpe
∗ is P = ϕK(ϕ(pe))

ϕ(pe)K . Lemma 2 shows that P is equal to

the product
∏

i∈Sϕ(pe)
1− 1

pK
i
. The inverse of each term 1−1/pK

i can be expanded

in power series: (1 − 1/pK
i)

−1 =
∑+∞

j=0 (1/p
K
i)

j . The probability P is a product

of series with positive terms, P =

 ∏
i∈Sϕ(pe)

+∞∑
αi=0

1
pαi×K
i

−1

so we can distribute

terms and obtain that P−1 is the sum of 1/dK where d ranges over integers
whose prime factors are among pis, i ∈ Sϕ(pe). This sum is smaller than the
unrestricted sum

∑+∞
d=1 1/d

K = ζ(K). Finally, we obtain P > 1/ζ(K).
The Riemann Zeta function is bounded by the following integral: ζ(K) =∑+∞

d=1 1/d
K < 1 + 1/2K +

∫ +∞
2

dx/xK = 1 + K+1
K−1 × 1

2K . Since for all x > −1,
1/(1 + x) ≥ 1− x, 1/ζ(K) > 1− K+1

K−1 × 1
2K . ��

This result provides a lower bound independent of p and e. This is quite
surprising since for K = 1, theorem 1 proves that such a non-zero bound does
not exist.

164 Guillaume Poupard and Jacques Stern

A.3 Generation of a Large Subgroup of Zpe
∗ with K Randomly

Chosen Elements

Another statement of theorem 2 is that we need to randomly choose K elements
in Zpe

∗ in order to to generate the group with probability greater than 1−1/2K.
For a probability very close to one such that 1−1/280,K becomes quite large even
if experiments show that a few randomly chosen elements always generate very
large subgroups of Zpe

∗. We now make this observation precise by establishing
a lower bound of the probability PC

K(p
e) that K elements generate a subgroup

of size greater than Card (Zpe
∗) /C. We first generalize lemma 3 for subgroups

of Zpe
∗.

Lemma 4 For any divisor d of ϕ(pe), the number of K-tuples of (Zpe
∗)K that

generate a subgroup of Zpe
∗ of order d is ϕK(d).

Proof: Let (g1, ...gK) be a K-tuple of (Zpe
∗)K and g be a generator of Zpe

∗; for
i = 1, ...K we define αi ∈ Zϕ(pe) by the relation gαi = gi mod pe. The K-tuple
(g1, ...gK) generates a subgroup of Zpe

∗ of order d if and only if the size of the
ideal generated by the αis in the ring Zϕ(pe) is d. Bezout equality shows that
this is equivalent to gcd(α1, ...αK , ϕ(pe)) = ϕ(pe)/d.

Let us factor ϕ(pe) and d: ϕ(pe) =
∏t

i=1 qfi

i and d =
∏t

i=1 qdi

i with fi ≥ di ≥
0. The number of K-tuples (β1, ...βK) of

(
Z

q
fi
i

)K

such that gcd(β1, ...βK , qfi

i) =

qfi−di

i is equal to the number of K-tuples of
(
Z

q
di
i

)K

whose gcd with qdi

i is 1,

i.e. ϕK(qdi

i). The total number of K-tuples of (Zpe
∗)K that generate a subgroup

of Zpe
∗ of order ϕ(pe)/d is consequently

∏t
i=1 ϕK(qdi

i) = ϕK(d). ��
Let K and C be two integers ≥ 1; we note

PC
K(n) = Pr

{gi}i∈[1,K]∈(Zn
∗)K

{
Card

〈
(gi)i∈[1,K]

〉
≥ Card (Zn

∗)
C

}
Theorem 3 For any C ≥ 1 and K ≥ 2,

PC
K(pe) >

1
ζ(K)

×
C∑

d=1

1
dK

> 1− 1
(K − 1)CK−1ζ(K)

Proof: The probability PC
K(pe) is

∑
δ≥ϕ(pe)/C

(
Pr

{gi}i∈[1,K]∈(Zn
∗)K

{
Card

〈
(gi)i∈[1,K]

〉
= δ

})

Lemma 4 shows that this sum is equal to
∑

δ|ϕ(pe),δ≥ϕ(pe)/C

ϕK(δ)

ϕ(pe)K
and this ex-

pression can also be written
∑

d0|ϕ(pe),d0≤C

1
dK
0

× ϕK(ϕ(pe)/d0)

ϕ(pe)/d0
K

if we replace δ by

ϕ(pe)/d0.

Short Proofs of Knowledge for Factoring 165

Let us calculate

PC
K(pe)× ζ(K) =

∑
d0|ϕ(pe),d0≤C

1
dK
0

×
∏

i∈Sϕ(pe)/d0

(
1− 1

pK
i

)
× ζ(K)

In the Riemann Zeta function ζ(K) =
∑+∞

β=1 1/β
K the index β can be written

as the product of two integers, d1 which is relatively prime with ϕ(pe)/d0 and
d2 whose factors are among the pis for i ∈ Sϕ(pe)/d0 . As in the proof of theorem

2, we note that the sum
∑

1/dK
2 is equal to the inverse of

∏
i∈Sϕ(pe)/d0

(
1− 1

pK
i

)
so we obtain that PC

K(pe)× ζ(K) =
∑

d0|ϕ(pe),d0≤C

(
1

dK
0
×∑

gcd(d1,ϕ(pe))=1
1

dK
1

)
.

Finally let us observe that all the integers smaller than C can be uniquely de-
composed in the product of a divisor d0 of ϕ(pe) smaller than C and of an integer
d1 relatively prime with ϕ(pe). As a consequence, PC

K(pe)× ζ(K) is greater than∑C
d=1 1/d

K .
The end of the proof is a consequence of calculus techniques for comparing

integrals and series:

PC
K(pe) >

∑C
d=1

1
dK

ζ(K)
=

ζ(K)−
+∞∑

d=C+1

1
dK

ζ(K)

> 1− 1
ζ(K)

×
∫ +∞

C

dx

xK
= 1− 1

(K − 1)CK−1ζ(K)

��

B Miller’s Factoring Algorithm

Let n be an integer whose factorization has to be found and L = 2s × r, with r
an odd integer, a multiple of λ(n). We can first assume that n is odd because if
L is a multiple of λ(2αn) = lcm(λ(2α), λ(n)) it is still a multiple of λ(n). The
following algorithm is due to Miller [18]:

Algorithm Fact(n,L)
1. choose w at random in [1, n− 1]
2. if 1 < gcd(w, n) < n then return gcd(w, n)
3. compute v = wr mod n
4. if v = 1 mod n then return Fail
5. while v �= 1 mod n do v0 = v and v = v2 mod n
6. if v0 = −1 mod n then return Fail else return gcd(v0 + 1, n)

This algorithm allows to find a non-trivial factor of n, i.e. a factor different
from 1 and n. It can be recursively used to completely factor n.

166 Guillaume Poupard and Jacques Stern

Lemma 5 Let n be a k-bit integer and L < X be a multiple of λ(n). Then
Fact(n,L) outputs the factorization of n in expected time O(η× logX) modular
multiplications, where η is the number of distinct prime factors of n.

Proof: Let
∏η

i=1 pei

i be the prime factorization of n. We first prove that the
algorithm Fact(n,L) returns a non-obvious factor of n with probability > 1 −
1/2η, after at most O(logX) arithmetical operations. The underlying idea is the
same as in the Rabin-Miller primality test; if w is an element of Zn

∗, wL =
1 mod n so if we find α such that w2αr �= ±1 and w2α+1r = 1, we obtain (w2αr+
1)(w2αr − 1) = 0 mod n and thus gcd(n,w2αr + 1) is a non-trivial factor of n.

The proof generalizes the one presented in [27, chapter 4] when n is an
RSA modulus. We first need the following notations in order to analyze the
algorithm: λ(pei

i) = ϕ(pei

i) = pei−1
i (pi − 1) = 2αip′i with p′i odd, P =

∏η
i=1 p′i,

β = min{αi, 1 ≤ i ≤ η}, gi is a generator of the cyclic group Zp
ei
i

∗, ui is such
that w = gui mod pei

i and 0 ≤ ui < λ(pei

i).
Let us count the number of w for which the algorithm fails. This happens

if wr = 1 mod n or w2tr = −1 mod n for an integer t in [0, s[. Because of the
Chinese remainder theorem, wr = 1 mod n is equivalent to ∀i, wr = 1 mod pei

i .
It can be seen that wr = 1 mod pei

i if and only if there exists µi in [0, p′i[such
that ui = µi2αi . So wr = 1 mod n has

∏η
i=1 p′i = P solutions.

Using same ideas, w2tr = −1 mod n is equivalent to w2tr = −1 mod pei

i for
all i = 1..η. The latter equation has no solution if t ≥ αi and it has λ(pi)/(2 ×
2αi−t−1) = 2tp′i solutions if t < αi. So w2tr = −1 mod pei

i as no solution if
t ≥ β and 2ηtP solutions if t < β. Finally, the number of values w for which
the algorithm fails is less than P +

∑β−1
t=0 2ηtP . We can easily prove that this

is less than n/2η−1. The algorithm succeeds with probability > 1− 1/2η−1 and
performs less than s + 1 ≤ log2 X ≤ log2 L modular multiplications. If we use
the algorithm until we find a non trivial factor of n, the expected number of
executions if smaller than 1/(1− 1/2η−1) ≤ 2.

Fact can be used to recursively factor n. With this aim, we also need a prime
power detection algorithm such as the one proposed in [7, page 41] and which
is also based on Rabin-Miller ideas. If we want to factor an integer n, we first
test if n is a prime power and if not we call Fact(n,L) as long as it fails. After
about two tries, we obtain n = n′ × n′′ and we recursively call the factorization
procedure. Notice that a multiple L of λ(n) is also a multiple of λ(n′) if n′ is a
factor of n. The proposed algorithm needs on average less than 2η calls to Fact
so finally we can factor n with O(η × logX) modular multiplications. ��

	Introduction
	Our Results
	Notations and Definitions

	On the Generation of Z_(p^e)*
	Proofs of Knowledge for Factoring
	Description
	Security Proofs
	Optimized Version
	Non-interactive Proof of Knowledge for Factoring

	Heuristic Efficiency Improvements
	Performances
	A Variant to Prove the Knowledge of the Factorization of any Integer
	On the Generation of Z_(p^e)* (Proofs)
	Generation of Z_(p^e)* with one Randomly Chosen Element
	Generation of Z_(p^e)* with K Randomly Chosen Elements
	Generation of a Large Subgroup of Z_(p^e)* with K Randomly Chosen Elements

	Miller's Factoring Algorithm

