
A Differential Fault Attack Technique against
SPN Structures, with Application to the AES

and KHAZAD

Gilles Piret and Jean-Jacques Quisquater

UCL Crypto Group,
Laboratoire de Microélectronique, Université Catholique de Louvain,

Place du Levant, 3, B-1348 Louvain-la-Neuve, Belgium
{piret, jjq}@dice.ucl.ac.be

Abstract. In this paper we describe a differential fault attack technique
working against Substitution-Permutation Networks, and requiring very
few faulty ciphertexts. The fault model used is realistic, as we consider
random faults affecting bytes (faults affecting one only bit are much
harder to induce). We implemented our attack on a PC for both the
AES and KHAZAD. We are able to break the AES-128 with only 2 faulty
ciphertexts, assuming the fault occurs between the antepenultimate
and the penultimate MixColumn; this is better than the previous fault
attacks against AES[6,10,11]. Under similar hypothesis, KHAZAD is
breakable with 3 faulty ciphertexts.

Keywords: AES, Block Ciphers, Fault Attacks, Side-channel Attacks

1 Introduction

The idea of using hardware faults happening during the execution of a cryp-
tographic algorithm for breaking it (typically, for retrieving the key) was first
suggested in 1997 by D. Boneh, R.A. DeMillo, and R.J. Lipton [7,8]. They suc-
ceeded in breaking an RSA CRT with both a correct and a faulty signature of
the same message. Shortly after, an adaptation of this idea on block ciphers was
proposed by E. Biham and A. Shamir[5].

Application of this principle to tamper resistant devices such as smart cards
is a real threat (see e.g. [1,2]): by changing the power supply voltage or the
frequency of the external clock, or by applying radiations, a fault can be induced
with some probability during the computation. The faults induced by most of
these techniques affect one byte1, as it is the size of a register for current smart
cards; however it is often the case that the attacker cannot locate a priori at
which stage of the algorithm the fault occurred.

Several authors mounted differential fault attacks against the AES[6,10,11].
In this paper we present a fault attack working against any block cipher with
1 Although progresses were recently made in inducing faults affecting only one bit[13].

C.D. Walter et al. (Eds.): CHES 2003, LNCS 2779, pp. 77–88, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



78 G. Piret and J.-J. Quisquater

a Substitution-Permutation structure2. More precisely, its round function must
have the form σ[Kr] ◦ θr ◦ γr (r is the round number), where:

– The γr layer consists in the parallel application of n 8 × 8 S-boxes (not
necessarily identical).

– σ[k] denotes the key addition layer:

σ[k](a) = b ⇔ bj = aj ⊕ kj , 1 ≤ j ≤ n

where ⊕ denotes a group operation. As it is often exclusive or, in the following
we will only deal with this case. But our attack could also work against other
group operations.

– The diffusion layer θr is a mapping that is linear with respect to ⊕.
– Kr denotes the rth round key.

We denote the block size by Nb = 8n. Note that the fact that the S-boxes are 8×8
is absolutely not mandatory for our attack; we restricted to this parameter as it
is common to choose such a size, well fitted with implementation considerations.
4 × 4 and 2 × 2 S-boxes can be viewed as 8 × 8 S-boxes as well, by considering
groups of 2 (resp. 4) of them.

The last round of the cipher has the special form σ[KR] ◦ γR, as a θ layer at
this stage would have no cryptographic significance. Moreover, the first round is
preceded by a key addition layer. Thus the whole cipher can be described as:

σ[KR] ◦ γR ◦ (
R−1
©
r=1

σ[Kr] ◦ θr ◦ γr) ◦ σ[K0]

Remark that the γr and θr layers need not be identical for all rounds. Only the
last two rounds are important for our attack. They are depicted in Fig. 1.

2 The Attack

The Fault Model. We are dealing with random faults, in the sense that the
faulty value is random and is assumed to be uniformly distributed. They are as-
sumed to occur on one byte. Moreover we assume that the fault occurred some-
where between the before-last layer θR−2 and the last layer θR−1 (i.e. somewhere
inside the frame of Fig. 1). Under this condition, the exact stage of the compu-
tation at which the fault occurred has no importance, and cannot be guessed by
observing the ciphertexts either.
In the remaining of this paper, by (C; C∗) we always denote a right ciphertext C
and its corresponding faulty ciphertext C∗. Also, unless otherwise stated, indices
will refer to byte positions (for example, C1 denotes the left-most byte of C).
2 Strictly speaking, the designation substitution-permutation network implies that the

diffusion layer is a bit permutation. However, it becomes more and more used to
refer also to ciphers with a more complex diffusion layer. So do we.



A Differential Fault Attack Technique against SPN Structures 79

Fig. 1. Last 2,5 rounds of a Substitution-Permutation Network.

Basic Attack. Consider thus 1-byte differences at the input of the linear layer
θR−1. We count 255n possible such differences (n different possible locations,
and 255 different possible values). Because of the linearity, the number of cor-
responding possible differences at its output is also 255n; but while the input
difference affected one byte only, the output difference affects several ones, be-
cause of the diffusion (if the diffusion layer is optimal, all bytes are affected; with
some slower diffusions only a few of them may be affected). Note that the key
addition σ[KR−1] does not change the set of possible differences.

These considerations lead to a first sketch of attack. For simplicity we assume
the θR−1 layer achieves optimal diffusion.

1. Compute the 255n possible differences at the output of θR−1, i.e. the 255n
values θR−1(x), where x has a byte hamming weight of 1. Store them in a
list D.

2. Consider a plaintext P , C its corresponding ciphertext, and C∗ the faulty
ciphertext.

3. Take a guess on round key KR.
4. Compute the difference γ−1

R ◦ σ[KR](C) ⊕ γ−1
R ◦ σ[KR](C∗). Check whether

it is in D. If yes, add the round key to the list L of possible candidates.
5. Consider a new plaintext P (with corresponding C and C∗) and go back to

step 2 (this time round key guesses only go through the list L of possible
candidates; if the difference computed at step 4 is not in D, remove the
candidate from L). Repeat until there remains only one candidate in L.

If the diffusion layer is slow, only a limited number of bytes of the cipher
are affected by a given fault. Thus each pair (C; C∗) gives information only on a
subset of the round key bytes; the guess is made only on theses bytes. The AES
is a good example of this fact.

After the last round key has been found, and if it is not sufficient to retrieve
the whole key, the last round is peeled off, and the attack is repeated on the
reduced cipher.



80 G. Piret and J.-J. Quisquater

Complexity Analysis. We compute the fraction of the round keys KR that
are suggested by a single pair (C; C∗) with difference ∆ = C ⊕ C∗. Suppose
the number of possible differences ∆′ before γR is 255n. Among these, 255n are
elements of D. Thus the fraction of the keys surviving the test is 255n/255n =
n · 2551−n.

However this computation does not take into account the fact that the num-
ber of differences ∆′ before γR that can cause difference ∆ after it is far less
than 255n; this is due to the fact that the XOR distribution table3 of each S-box
contains a lot of 0’s. Thus we made the hypothesis that for the observed ∆,
the fraction of elements of D among the corresponding possible ∆′ is also about
255n/255n.

We conclude that the number of remaining wrong candidates for KR after
N (C; C∗) pairs have been treated is about 256n(n · 2551−n)N . The conclusion
(for all practical values of n) is that one pair (C; C∗) is not enough to retrieve
KR, but two are (still under the hypothesis that the diffusion layer is optimal;
see the AES case in section 3 for an example where it is not).

A Practical Attack. As it is presented, this attack is not really practical, as
it implies a guess on the last round key, that is to say a complexity ∼ 2Nb . We
show that slightly modifying the attack considerably reduces this complexity.
Once again, for simplicity we assume the diffusion layer considered is optimal.
A similar technique, applied only to the bytes affected by the fault, can be used
when it is not.

1. Compute the 255n possible differences at the output of θR−1. Store them in
a list D.

2. Consider 2 right ciphertext/faulty ciphertext pairs (C; C∗) and (D; D∗).
3. Consider the two left-most bytes of KR:

– For each of the 216 candidates, compute4:

γ−1
R ◦ σ[〈KR

1 , KR
2 〉](〈C1, C2〉) ⊕ γ−1

R ◦ σ[〈KR
1 , KR

2 〉](〈C∗
1 , C∗

2 〉)

and

γ−1
R ◦ σ[〈KR

1 , KR
2 〉](〈D1, D2〉) ⊕ γ−1

R ◦ σ[〈KR
1 , KR

2 〉](〈D∗
1 , D∗

2〉)

– Compare the results with the two left-most bytes of the 255n differences
in list D. Make a list L of the 〈KR

1 , KR
2 〉 for which a match is found for

both ciphertext pairs.
4. For each K• ∈ L, try to extend it by one byte:

– Remove K• from L.
3 See [4] for definition of this concept.
4 We commit a small abuse in notations by applying σ and γR to data of improper

length. The right way to understand this is to think that e.g. 〈C∗
1 , C∗

2 〉 has been right-
appended with 0’s, and that only the 2 left-most bytes of the output are considered.



A Differential Fault Attack Technique against SPN Structures 81

– For all 28 KR
3 , compute:

γ−1
R ◦ σ[〈K•

2 , KR
3 〉](〈C2, C3〉) ⊕ γ−1

R ◦ σ[〈K•
2 , KR

3 〉](〈C∗
2 , C∗

3 〉)

and

γ−1
R ◦ σ[〈K•

2 , KR
3 〉](〈D2, D3〉) ⊕ γ−1

R ◦ σ[〈K•
2 , KR

3 〉](〈D∗
2 , D∗

3〉)

– Compare the differences obtained with bytes 2 and 3 of the 255n differ-
ences in D. If a match is found (again for both ciphertext pairs), add the
newly extended key 〈K•, KR

3 〉 to L.
5. Repeat step 4 until elements of L have a length of n bytes.
6. Apply now the first algorithm we gave using the same pairs (C; C∗) and

(D; D∗), but consider only the candidates KR in L (their number is much
smaller than 2Nb).

The idea of this algorithm is that its first 5 steps compute a set of candidates
of which the candidates selected by the first algorithm are a subset; otherwise
stated, every candidate obtained by applying the first algorithm to pairs (C; C∗)
and (D; D∗) will be returned by steps 1→5 of the second algorithm too, but the
converse is not true. Thus, the first 5 steps of the second algorithm (that have a
low complexity) perform a “first sorting” of the candidates. After that, the size
of the set of candidates is quite small, and is affordable for the first algorithm.

Faults Occurring at a Wrong Location. As the attacker usually has no
control on the fault location, it is important to be able to distinguish pairs
(C; C∗) resulting from faults occurring between θR−2 and θR−1 (we call such
pairs right pairs) from other pairs (these are called bad pairs). It is trivial in
the case of diffusion layers for which a 1-byte difference in the input implies
an output difference affecting only some bytes of the output: in this case it is
enough to observe whether some bytes are identical in both C and C∗.

But in the case of optimal diffusion layers, it is not possible to decide whether
one only pair (C; C∗) is a right or a bad one. However applying our attack to 2
pairs (C; C∗) one of which is bad will very probably result in no solution for the
key KR. Thus we can indeed distinguish bad pairs (C; C∗) from right ones, but
only by considering pairs of ciphertext pairs (C; C∗). Nevertheless the attack
should be practical: if we consider that 1 ciphertext pair out of 100 is right,
which is more than reasonable, we have 10000 pairs to examine before finding
two right pairs, which is still accessible.

3 Application to the AES

3.1 Overview of the AES Structure

The AES[9] is an example of a substitution-permutation structure, as it is defined
in the introduction. Both its key and block size can be 128, 192, or 256 bits. In



82 G. Piret and J.-J. Quisquater

Table 1. The State during AES encryption

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3

this paper we will only deal with the 128-bit block, 128-bit key variant, as it is
the most widely used. Our attack can be extended trivially to other variants.

The key addition is performed using exclusive or. The γ layer (identical for
all rounds) is made up of the application of 16 identical 8 × 8 S-boxes. The
intermediate computation result, called state is usually represented by a 4 × 4
square, each cell of which is a byte (see Table 1); the θ layer (identical for all
rounds) is the composition of two transformations of the state:

1. First, the ShiftRow transformation consists in shifting cyclically the rows of
the state. Row 0 is not shifted, row 1 is shifted by 1 byte, row 2 is shifted
by 2 bytes, and row 3 by 3 bytes. It is pictured in Table 2.

2. Then, the MixColumn transformation applies a linear transformation with
optimal byte branch number(i.e. 5) to each column of the state. More pre-
cisely, application of MixColumn to the first column of the state (for example)
is computed by: 


b0,0
b1,0
b2,0
b3,0


 =




02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02


 ·




a0,0
a1,0
a2,0
a3,0




where multiplication is performed in GF(28) (via definition of an irreducible
polynomial of degree 8 over GF(2), see [9] for details).

Table 2. The ShiftRow transformation

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3

ShiftRow−−−−−→
a0,0 a0,1 a0,2 a0,3

a1,1 a1,2 a1,3 a1,0

a2,2 a2,3 a2,0 a2,1

a3,3 a3,0 a3,1 a3,2

We observe that a 1-byte difference in the state before the θ layer results in
a 4-byte difference after it. This property is important for our attack.
Note also that the last round has no MixColumn, but well a ShiftRow. The
reason behind it is purely implementation related. This last ShiftRow has no
cryptographic significance, and is not relevant to our attack either.



A Differential Fault Attack Technique against SPN Structures 83

3.2 Previous Works about Fault Analysis on the AES

Several papers have been written on the subject. We summarize here their con-
tributions, by chronological order:

The first paper we know of is the one of Blömer and Seifert[6]. Mainly, two
attacks are presented:

– The first one uses a very restrictive fault model: namely, it assumes that one
can force to 0 the value of a chosen bit. It is worth noting that applying this
technique to the memory cells storing the key makes it trivial to retrieve,
even without being able to choose precisely the location of the bit set to 0.
This has been demonstrated by Biham and Shamir[5], and is true for any
algorithm. [6] shows however that the fault model can be slightly relaxed.
128 faulty encryptions of plaintext 0 are required to retrieve the key using
this technique.

– The second attack is implementation-dependent, and has several variants
depending on the implementation. Its principle is to turn the timing attack
on AES suggested by Koeune and Quisquater[12] into a fault based crypt-
analysis. The fault model used also depends on the implementation. The
authors claim that about 16 faulty ciphertexts (with the fault occurring at
a carefully chosen location) are needed to retrieve one key byte.

In [11], Giraud presents two fault attacks on the AES. Both require the
ability to obtain several faulty ciphertexts originating from the same plaintext
(contrary to our attack):

– The first one assume it is possible to induce a fault on only one bit of an in-
termediate result. More precisely, it exploits faults induced on one bit before
the last γ layer (while we exploit faults occurring before the last diffusion
layer). Under these conditions, about 50 faulty ciphertexts are necessary to
retrieve the full key (provided the location of the fault can be chosen).

– The second attack, more realistic, exploits faults on bytes. It requires the
ability of inducing faults at several chosen places, including the key schedule.
The author claims that 250 faulty ciphertexts are needed (it is assumed that
the attacker can choose the stage of the computation where the fault takes
place, but not the exact byte), and that the time needed for computation is
about 5 days.

Finally, P. Dusart, G. Letourneux, and O. Vivolo[10] take advantage of byte
faults occurring after the ShiftRow layer of the 9th round. Thus the fault model
and the hypothesis on the fault location are exactly the same as in our attack.
However the way they exploit faults is different from ours: they use the particular
form of the Mixcolumn transformation and of the AES S-box to write and solve
a system of equations (one by S-box) of which the unknown value is the one of
the fault (i.e. of the byte difference engendered by the fault). Suggestions for 4
key bytes follow. The authors show that 5 well-located faults are necessary to
retrieve 4 key bytes.



84 G. Piret and J.-J. Quisquater

3.3 Our Results

As observed above, a 1-byte difference at the input of the θ layer of AES results
in a 4-byte difference at its output. Concretely, it means that a fault on one byte
before the θR−1 layer will give information on only 4 bytes of the last round key
(the other bytes of both ciphertexts C and C∗ being identical). More precisely,
with the different bytes of the state numbered as in Table 1:

– A fault on byte a0,0, a1,1, a2,2, or a3,3 will release information about round
key bytes KR

0,0, KR
1,3, KR

2,2, KR
3,1.

– A fault on byte a0,1, a1,2, a2,3, or a3,0 will release information about round
key bytes KR

0,1, KR
1,0, KR

2,3, KR
3,2.

– A fault on byte a0,2, a1,3, a2,0, or a3,1 will release information about round
key bytes KR

0,2, KR
1,1, KR

2,0, KR
3,3.

– A fault on byte a0,3, a1,0, a2,1, or a3,2 will release information about round
key bytes KR

0,3, KR
1,2, KR

2,1, KR
3,0.

Consider a fault occurring on one of the bytes a0,0, a1,1, a2,2, or a3,3. We com-
pute that with one pair (C; C∗) about 1036 candidates for (KR

0,0, K
R
1,3, K

R
2,2, K

R
3,1)

remain (see complexity analysis in section 2). If two pairs are exploited, we are
in principle left with the right candidate only. Thus with 8 faults at carefully
chosen locations, we are able to recover the whole key.

However it is possible to do better. Suppose a fault occurs on one byte
somewhere between θR−3 and θR−2 (rather than between θR−2 and θR−1). The
corresponding difference after the θR−2 layer has 4 non-zero bytes. Each of
them can be exploited as described previously, and releases information about
a different part of the last round key. For example, a fault on a0,0 before θR−2
will result in a non-zero difference on a0,0, a1,0, a2,0, and a3,0 after it. Thus
using faults occurring somewhere between θR−3 and θR−2 allows us to kill 4
birds with one stone. As a consequence, only 2 such faults are needed to retrieve
the whole AES-128 key.

We implemented our attack on a PC. The results obtained well matched our
estimates.
When one fault between θR−2 and θR−1 was considered, the average number
of candidates for 4 bytes of KR obtained was 1046 (instead of the expected
1036). A more surprising point (a priori) was that 2 pairs (C; C∗), both giving
information on the same 4 bytes of KR, allowed to retrieve a unique value for
these bytes in only 98% of the cases; otherwise two possible values for these 4
bytes remained (or even four, but it was very rare). These deviations from the
expected results are due to the fact that we were making very few hypothesis on
the θ layer and the S-boxes in our complexity analysis. Thus our estimations did
not take into account particular features of these components. We give a more
detailed explanation for the 98% figure in appendix A.
Using 2 faults between θR−3 and θR−2, the number of candidates left for the
whole key never exceeded 16, and we obtained one only candidate in 77% of



A Differential Fault Attack Technique against SPN Structures 85

the cases. The time needed to complete the attack is a few seconds. Also, when
applying the attack to 2 ciphertext pairs one of which is bad (i.e. corresponds to
a fault occurring before θR−3), the set of candidates returned by our algorithm
was always empty.

4 Application to KHAZAD

4.1 Brief Description of KHAZAD

KHAZAD is a 64-bit block 128-bit key block cipher submitted to the NESSIE
European project by P.S.L.M. Barreto and V. Rijmen[3]. It has 8 rounds, whose
structure is the one described in section 1, with exclusive or used for key addition.
Its γ layer (identical for all rounds) is made up of the application of 8 identical
involutive 8 × 8 S-boxes. Its θ layer (also identical for all rounds) has optimal
byte branch number (i.e. 9) and is also involutive.

4.2 Our Attack Applied to KHAZAD

Two faults occurring between θR−1 and θR−2 are enough to retrieve KR (as
each fault gives information on all bytes of KR; remember that θ is optimal).
However knowledge of KR is not enough to retrieve the whole key. Thus once
KR is known the last round is peeled off. Then a fault occurring between θR−2
and θR−3 is exploited to select about 2568 · (8 · 255−7) � 2105 candidates
for KR−1. We conclude the attack by searching exhaustively among these
candidates; knowledge of KR and KR−1 allows to compute the main key.

Our implementation of the attack showed that using 2 right pairs (C; C∗)
we obtain one unique candidate for KR in about 90% of the cases (otherwise 2
candidates remain, sometimes 4). One reason for this bad score happens to be
related to the choice of the S-boxes: it seems that the worse an S-box is with
respect to differential cryptanalysis, the better it resists our fault attack. As an
illustration, we applied our attack to a modified version of KHAZAD using the
AES S-boxes; then a unique candidate is obtained from 2 right pairs (C; C∗)
with probability 96%. Appendix A sketches an explanation for this.
Note that once again, the number of faulty ciphertexts needed to retrieve the key
is not affected by these figures; only the time complexity of the attack (which
remains small anyway) is. Also, when trying to recover KR with 2 ciphertext
pairs one of which is bad, the set of candidates returned by our algorithm was
always empty.

5 Conclusion

The basic idea of our attack is to use the diffusion property of the last θ layer,
in order to determine whether the difference before the last nonlinear layer γ



86 G. Piret and J.-J. Quisquater

possibly originates in a fault or not. This provides us with a distinguishing crite-
ria for the last round key. The fault model used is the most liberal and realistic
one: we simply need random faults occurring on bytes. The ability to choose the
location of the fault is not important either: of course only faults occurring at a
given location (between θR−2 and θR−1 in the general case, between θR−3 and
θR−1 in the case of AES) are exploitable, but those occurring elsewhere can be
discarded.
We give in Table 3 a summary of existing faults attacks against the AES.

Table 3. Comparison of existing fault attacks against the AES

Ref. Fault Model Fault Location # Faulty Encryptions
[6] Force 1 bit to 0 Chosen 128
[6] Fct of impl. Chosen 256
[11] Switch 1 bit Any bit of chosen bytes ∼ 50
[11] Disturb 1 byte Anywhere among 4 bytes ∼ 250
[10] Disturb 1 byte Anywhere between θR−2 and θR−1 ∼ 40

This paper Disturb 1 byte Anywhere between θR−3 and θR−2 2

Amongst these attacks, the most similar to ours is the one of P. Dusart & al.[10].
The difference mainly lies in the way faults are exploited. [10] exploits the par-
ticular structure of the AES S-box and MixColumn, while we do not. The con-
sequence is that their attack is not adaptable to other algorithms; ours can be
used to attack KHAZAD(as we showed in section 4), but also ciphers like Ser-
pent or Anubis5. On the other hand, note that an algorithm such as Safer++
is not directly vulnerable to our attack, due to the use of two different group
operations for key mixing.

In our attack against AES, note that while 2 well-located faults are needed
for easy retrieving of the key, one only well-located fault reduces the size of the
key space to be explored to 10464 � 240.

As a final remark, it is amusing to note that it is the very simple and elegant
structure of SPN structures that makes our attack so efficient... It is not clear
whether ciphers with a more intricate structure could be broken with so few
ciphertext pairs.

References

1. R. Anderson and M. Kuhn. Tamper resistance – a cautionary note. In Proc.
of the second USENIX workshop on electronic commerce, pages 1–11, Oakland,
California, Nov. 18-21 1996.

2. R. Anderson and M. Kuhn. Low cost attacks on tamper resistant devices. In Proc.
of 1997 Security Protocols Workshop, volume 1361 of Lecture Notes in Computer
Science, pages 125–136. Springer, 1997.

5 But this last must be rewritten in order to comply with our description of an SPN
structure.



A Differential Fault Attack Technique against SPN Structures 87

3. P.S.L.M. Barreto and V. Rijmen. The Khazad Legacy-Level Block Cipher. Avail-
able at http://www.cryptonessie.org.

4. E. Biham and A. Shamir. Differential cryptanalysis of DES-like cryptosystems.
Journal of Cryptology, 4(1):3–72, 1991.

5. E. Biham and A. Shamir. Differential Fault Analysis of Secret Key Cryptosystems.
In B. Kaliski, editor, Advances in Cryptology - CRYPTO ’97, volume 1294 of
Lecture Notes in Computer Science, pages 513–525. Springer, 1997.

6. J. Blömer and J.-P. Seifert. Fault based cryptanalysis of the Advanced Encryption
Standard. To appear in Financial Cryptography ’03, LNCS. Springer, 2003. Also
available at http://eprint.iacr.org/, 2002/075.

7. D. Boneh, R. A. DeMillo, and R. J. Lipton. On the Importance of Checking
Cryptographic Protocols for Faults (Extended Abstract). In W. Fumy, editor,
Advances in Cryptology - EUROCRYPT ’97, volume 1233 of Lecture Notes in
Computer Science, pages 37–51. Springer, 1997.

8. D. Boneh, R. A. DeMillo, and R. J. Lipton. On the Importance of Eliminating
Errors in Cryptographic Computations. In Journal of Cryptology 14(2), pages
101–120, 2001.

9. J. Daemen and V. Rijmen. AES proposal: Rijndael. In Proc. first AES
conference, August 1998. Available on-line from the official AES page:
http://csrc.nist.gov/CryptoToolkit/aes/rijndael/Rijndael.pdf.

10. P. Dusart, G. Letourneux, and O. Vivolo. Differential Fault Analysis on A.E.S.
Available at http://eprint.iacr.org/, 2003/010.

11. C. Giraud. DFA on AES. Available at http://eprint.iacr.org/, 2003/008.
12. F. Koeune and J.-J. Quisquater. A timing attack against Rijndael. Technical

report, available at http://www.dice.ucl.ac.be/crypto/techreports.html, 1999.
13. S. Skorobogatov and R. Anderson. Optical fault induction attacks. In Burton S.

Kaliski, Çetin K. Koç, and Christof Paar, editors, Cryptographic Hardware and
Embedded Systems - CHES 2002, volume 2523 of Lecture Notes in Computer Sci-
ence. Springer, 2002.

A Deeper Analysis of the AES Case

In this appendix we analyze why 2 right pairs (C; C∗) and (D; D∗), both
releasing information on the same 4 bytes of KR, do not allow to compute an
unique value for these 4 bytes in about 2% of the cases.

Let KR
• := 〈KR

0,0, K
R
1,3, K

R
2,2, K

R
3,1〉 denote 4 bytes of the last round key of

an AES. Let C• := 〈C0,0, C1,3, C2,2, C3,1〉 and C∗
• := 〈C∗

0,0, C
∗
1,3, C

∗
2,2, C

∗
3,1〉 be a

right ciphertext and its faulty counterpart, both limited to the same 4 bytes.
It is easy to see that applying our attack to pair (C; C∗) will return, together
with KR

• and other candidates, KR
• ⊕ C• ⊕ C∗

• and the 14 other candidates
obtained when only some bytes of C• ⊕ C∗

• are XORed to KR
• .

Consider a second pair (D; D∗) with D• := 〈D0,0, D1,3, D2,2, D3,1〉 and
D∗

• := 〈D∗
0,0, D

∗
1,3, D

∗
2,2, D

∗
3,1〉; D∗

• is the faulty counterpart of D•. As-
sume D• ⊕ D∗

• share some bytes with C• ⊕ C∗
• ; suppose for example

C0,0 ⊕ C∗
0,0 = D0,0 ⊕ D∗

0,0. Then, KR ⊕ 〈C0,0 ⊕ C∗
0,0, 0, 0, 0〉 will be returned by

our attack (applied to both (C; C∗) and (D; D∗)) as well as KR.



88 G. Piret and J.-J. Quisquater

As the probability of having the same value at a given position of C ⊕C∗ and
D ⊕ D∗ is 1/255, the probability that we observe the same value at at least one
position is 1− (254/255)4 � 0, 015. So we have found the main reason why more
than one key is returned in 2% of the cases. Note that this phenomenon is not
specific to AES; furthermore this explanation could be generalized by referring to
the XOR distribution table[4] of the S-boxes. It appears then that paradoxically
good S-boxes with respect to differential cryptanalysis are also those making our
fault attack the most efficient...


	Introduction
	The Attack
	Application to the AES
	Overview of the AES Structure
	Previous Works about Fault Analysis on the AES
	Our Results

	Application to K{relax fontsize {9}{11}selectfont abovedisplayskip 8.5p @ plus3p @ minus4p @ abovedisplayshortskip z @ plus2p @ belowdisplayshortskip 4p @ plus2p @ minus2p @ def leftmargin leftmargini parsep 0p @ plus1p @ minusp @ topsep 8p @ plus2p @ minus4p @ itemsep 0p @ {leftmargin leftmargini parsep 0p @ plus1p @ minusp @ topsep 8p @ plus2p @ minus4p @ itemsep 0p @ }belowdisplayskip abovedisplayskip {}HAZAD}
	Brief Description of K{relax fontsize {9}{11}selectfont abovedisplayskip 8.5p @ plus3p @ minus4p @ abovedisplayshortskip z @ plus2p @ belowdisplayshortskip 4p @ plus2p @ minus2p @ def leftmargin leftmargini parsep 0p @ plus1p @ minusp @ topsep 8p @ plus2p @ minus4p @ itemsep 0p @ {leftmargin leftmargini parsep 0p @ plus1p @ minusp @ topsep 8p @ plus2p @ minus4p @ itemsep 0p @ }belowdisplayskip abovedisplayskip {}HAZAD}
	Our Attack Applied to K{relax fontsize {9}{11}selectfont abovedisplayskip 8.5p @ plus3p @ minus4p @ abovedisplayshortskip z @ plus2p @ belowdisplayshortskip 4p @ plus2p @ minus2p @ def leftmargin leftmargini parsep 0p @ plus1p @ minusp @ topsep 8p @ plus2p @ minus4p @ itemsep 0p @ {leftmargin leftmargini parsep 0p @ plus1p @ minusp @ topsep 8p @ plus2p @ minus4p @ itemsep 0p @ }belowdisplayskip abovedisplayskip {}HAZAD}

	Conclusion
	Deeper Analysis of the AES Case



