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Abstract. We introduce multi-channel attacks, i.e., side-channel
attacks which utilize multiple side-channels such as power and EM
simultaneously. We propose an adversarial model which combines a
CMOS leakage model and the maximum-likelihood principle for per-
forming and analyzing such attacks. This model is essential for deriving
the optimal and very often counter-intuitive techniques for channel
selection and data analysis. We show that using multiple channels is
better for template attacks by experimentally showing a three-fold
reduction in the error probability. Developing sound countermeasures
against multi-channel attacks requires a rigorous leakage assessment
methodology. Under suitable assumptions and approximations, our
model also yields a practical assessment methodology for net infor-
mation leakage from the power and all available EM channels in
constrained devices such as chip-cards. Classical DPA/DEMA style
attacks assume an adversary weaker than that of our model. For this
adversary, we apply the maximum-likelihood principle to such design
new and more efficient single and multiple-channel DPA/DEMA attacks.

Keywords: Side-channel attacks, Power Analysis, EM Analysis, DPA,
DEMA.

1 Introduction

1.1 The Problem

Recent research in side-channel attacks has validated and reinforced the ob-
servation that sensitive information can leak from cryptographic devices via a
multitude of channels. The seminal work of [AR] describing leakages in timing
and power channels was followed by the work of [TOJ7UT] showing leakages via
electromagnetic (EM) emanations. The work of [I] shows that even a single EM
probe can yield multiple EM signals via demodulation of different carriers. Fur-
ther, different EM carriers carry different information and some EM leakages
exceed leakages in the power channel. All these channels provide a rich source
of information for a determined adversary.

While it seems plausible that side-channel attacks can be significantly im-
proved by capturing multiple side-channel signals such as the various EM chan-
nels and possibly the power channel, a number of questions remain. Which
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side-channel signals should be collected? How should information from various
channels be combined? How can one quantify the advantage of using multiple
channels? These issues are especially relevant to an attacker since a significant
equipment cost is associated with capturing each additional side-channel signal.
Furthermore, in some situations, the detection risk associated with the addi-
tional equipment/probes required to capture a particular side channel has to be
weighed against the benefit provided by that channel.

1.2 Contributions

To address these issues, we present a formal adversarial model for multi-channel
analysis using the power and various EM channels. [| Our model is based on a
leakage model for CMOS devices and concepts from the Signal Detection and
Estimation Theory. This formal model can be used to assess how an adversary
can best exploit the wide array of signals available to him. In theory, this model
can also deal with the problem of optimal channel selection and data analysis.
However, in practice, a straight-forward application of this model can sometimes
be infeasible. We show a judicious choice of approximations that renders the
model useful for most practical applications.

Formulating such an adversarial model has numerous pitfalls. Ideally, the
model should capture the strongest possible multi-channel attacks on an im-
plementation of a cryptographic algorithm involving secret data. While such a
model is easy to define, using it to assess vulnerabilities and create attacks will
shift the focus from multi-channel information leakage to the specifics of the
algorithm and implementation.

To refocus the attention on information leakage from multiple side-channels,
we will only consider elementary leakages, i.e., information leaked during ele-
mentary operations of CMOS devices. This allows us to deal with information
leakage aspects of multiple channels while not losing sight of the goal of eval-
uating entire implementations. In fact, it can be shown that the leakage in an
entire computation is just the composition of elementary leakages from all of its
elementary operations[2].

We introduce an adversarial model that is based on this view of elementary
leakages of CMOS devices and is phrased in terms of the maximum likelihood
testing of hypotheses. The model provides a formal way of comparing efficacies of
various signal selection and processing techniques that can be used by a resource
limited adversary.

Applying the model to the problem of signal selection, we find that the opti-
mal strategies for picking even two best side-channels from a set of possibilities
can be complex and counter-intuitive. For instance, picking the two channels with
the best signal-to-noise ratios is quite often sub-optimal. The model also shows
how to best combine information from multiple channels. This can be viewed as
a generalization of template attacks [4] to the case of multiple channels. We pro-
vide experimental evidence to show that multi-channel based template attacks

! Combining the timing and power channel is already known, e.g., [L1].
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are superior to their single channel counterparts. Specifically, for a smart-card
ﬂ, we show that template attacks that use both an EM channel and a power
signal are superior to attacks that use only a single channel.

Our model for multi-channel attacks is also valuable for the designers of
cryptographic implementations since they need to know the amount of leakage
from multiple sensors to select the appropriate level of countermeasures. We de-
scribe a methodology for assessing any type of leakage in an information-theoretic
sense. The methodology permits the computation of bounds on the best error
probability achieved by an all-powerful adversary. While such an assessment is
impractical for arbitrary devices, it is feasible for the practically important case
of chipcards with small word lengths.

One drawback of our model is assumption of a very powerful adversary who
has full knowledge of the characteristics of the target device and is capable
of performing attacks similar to template attacks on the device. In practice,
such attacks are tedious to mount and often adversaries don’t have knowledge
about the device. Thus, DPA-style attacks continue to be important due to their
simplicity and immediate applicability to unknown implementations. Using the
maximum likelihood testing as a basis, we show how current single channel
DPA-style attacks can be greatly improved and how multiple-channel DPA-style
attacks can be designed. The key to these improvements is a relaxation of the
maximum likelihood test which estimates the unknown parameters of the test
on the fly. We provide empirical evidence to show that a better analysis can
give a substantial reduction in the number of samples needed for a traditional
DPA attack and even a better reduction factor when a multiple-channel DPA
attack is carried out using a power and an EM channel with very similar leakage
characteristics.

2 Adversarial Model

This section develops an adversarial model to formally address issues related to
the leakage of information via multiple side-channel signals.

2.1 CMOS Side-Channel Elementary Leakages

In CMOS devices, all data processing is typically controlled by a “square-wave”
shaped clock. Each clock edge triggers a short sequence of state changing events
and corresponding currents in the data processing units. The events are transient
and a steady state is achieved well before the next clock edge. At any clock cycle,
all the events and resulting currents are determined by a comparatively small
number of bits of the logic state of the device, i.e., one only needs to consider
the state of active circuits during that clock cycle and not the entire state of the
device. These bits, termed as relevant bits in [3], constitute the relevant state of
the device.

2 A pseudonym is used to protect vendor identity; S is a 6805-based sub-micron, double
metal technology card with inbuilt noise generators
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Signals found on side-channels such as power and EM result from the cur-
rent flows within the device and are affected by the random thermal noise. As
mentioned above, ideally, the current flows in a CMOS device are directly at-
tributable to the relevant state of the device. However, in practice, there may
be many very small leakage currents in the inactive parts of the circuit. These
leakages can be approximated as a small Gaussian noise term having negligible
correlation with any particular active part of the circuit.

Thus as a very good approximation, all side-channel emanations during a
clock cycle carry information only about the events and the relevant state of
the device that occurs during the clock cycle. This is strongly supported by the
experimental results which show that algorithmic bits are significantly correlated
to the power/EM signals only during the clock cycles when they are actively
involved in a computation. Thus it is natural to model side-channel leakage
from the CMOS devices in terms of the leakages of the relevant state that occur
during each clock cycle. We term the operation performed by the device during
each clock cycle as an elementary operation and define the corresponding leakage
of the relevant state information from side-channels as an elementary leakage.

2.2 Adversarial Model for Elementary Leakages

Given the concept of elementary leakages, it is natural to formulate side-channel
attacks in terms of how successful an adversary can be in obtaining information
about the relevant state. For example, an adversary may be interested in the
LSB of the data bus during a LOAD instruction. This has a natural formulation
as a binary hypothesis testing problem for the adversaryﬁ. Such a formulation
also makes sense as traditionally the binary hypothesis testing has been central
to the notions of side-channel attack resistance and leakage immunity [3//5].

The adversarial model consists of two phases. The first phase, known as the
the profiling phase, is a training phase for the adversary. He is given a training
device identical to the target device, an elementary operation, two distinct prob-
ability distributions By and B; on the relevant states from which the operation
can be invoked and a set of sensors for monitoring side-channel signals. The
adversary can invoke the elementary operation, on the training device, starting
from any relevant state. It is expected that adversary uses this phase to prepare
an attack.

In the second phase, known as the hypothesis testing phase, the adversary
is given the target device and the same set of sensors. He is allowed to make a
bounded number of invocations to the same elementary operation on the target
device starting from a relevant state that is drawn independently for each invo-
cation according to exactly one of the two distributions By or By. The choice of
distribution is unknown to the adversary and his task is to use the signals on
the sensors to select the correct hypothesis (H, for By and Hy for By) about

3 In general, the adversary faces an M-ary hypothesis testing problem on functions
of relevant state, for which results are straightforward generalizations of binary hy-
pothesis testing.
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the distribution used. The utility of the side-channels can then be measured in
terms of the success probability achieved by the adversary as a function of the
number of invocations.

2.3 Sophisticated Attack Strategies

Assume that an adversary acquires L statistically independent sets of sensor
signals O;,7 = 1,..., L. These L sets of signals may correspond to L invocations
of an operation on the target device. Also assume that there are K equally
likely hypotheses Hy, k = 1,..., K, on the origin of these signals. Let p(O|H)
be the probability distribution of the sensor signals under the hypothesis H.
Under these assumptions, the mazimum likelihood hypothesis test is optimal and
it decides in favor of the hypothesis Hj, if

L
k = argmax | [ p(O;|Hy). (1)
ISkSK ;5

While the maximum likelihood test is optimal, it is usually impractical as
an exact characterization of the probability distribution of the sensor signals
O may be infeasible. Such a characterization has to capture the nature of each
of the sensor signals and the dependencies among them. This could further be
complicated by the fact that, in addition to the thermal noise, the sensor signals
could also display additional structure due to the interplay between properties
of the device and those of the distributions of the relevant states. For example,
if the hypothesis was on the LSB of a register while the device produced widely
different signals only when the MSB was different, the sensor signals will display
a bimodal effect attributable to the MSB. It turns out that in practice one
can obtain near optimal results by making the right assumptions about the
sensor signals. Such assumptions greatly simplify the task of hypothesis testing
by requiring only a partial characterization of sensor signals.

The Gaussian Assumption. One such widely applicable assumption is the
Gaussian assumption which states that under the hypothesis H, the sensor signal
O has a multivariate Gaussian distribution with mean py and a covariance
matrix Xp. A multivariate Gaussian distribution p(-|H) has the following form:

plolH) =~ expl—g (0~ ) T (0 ), 0<R", (@)

where | X g| denotes the determinant of X'y and 2;11 denotes the inverse of Y.

The Gaussian assumption holds for a large number of devices and hypotheses
encountered in the practice. In fact this assumption has been used successfully
in the case of chip-cards [4].
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It can be shown that under the Gaussian assumption, the maximum likeli-
hood hypothesis testing for a single observation O and two equally likely hy-
pothesis Hy and H 1ﬁ simplifies to the following comparison:

(O—pry) " Ept(O—pipy) = (O—pp, )" (O —pp, )2 In(| Sy, ) —In(| Dy |)
(3)

where a decision is made in favor of H; if the above comparison is true, and in
favor of Hy otherwise.

In many cases of practical interest, noise in the sensor signals does not depend
on the hypothesis, that is, Yy, = Yy, = Xn. In such cases, the following
well-known result from the Statistics gives the probability of error in maximum-
likelihood hypothesis testing [12]:

Fact 1 For equally likely binary hypotheses, the probability of error in the max-
imum likelihood testing is given by

P. = ;erfc<2\A/§> (4)

where A2 = (ug, — )T EN" (fomr, — 1, ) and erfe(z) = 1—erf(z). Note that A2
has a nice interpretation as the optimal signal-to-noise ratio that an adversary
can achieve under the Gaussian assumption.

In the rest of this section, we will present two applications of the theory
discussed above. In the first application, a strategy for selecting multiple side
channels is presented. In the second application, a template attack on multiple
channels is devised.

2.4 Multiple Channel Selection

Consider a resource limited adversary who can select at most M channels for an
attack. When viewed in terms of our model, this problem conceptually has a very
simple solution: The adversary should choose those M channels that minimize
his probability of error in the maximum likelihood testing.

This apparently simple technique can be quite subtle and tricky in prac-
tice. Clearly, in situations where a well-prepared adversary has nicely character-
ized /approximated signals from each of the channels under each hypothesis and
the corresponding joint noise probability distribution between all the channels,
the adversary can also calculate the error probability for each possible choice
of M channels, at least for small M. For example, if the noise is Gaussian and
independent of the hypothesis, then from Equation [ since erfc(-) decreases ex-
ponentially with A, the goal of an adversary limited to just two channels, would
be to choose channels in such a manner, as to maximize the output signal-to-
noise ratio AZ.

4 Generalizations to multiple observations and more than two hypotheses are straight-
forward.
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If instead of a rigorous approach, channels are selected by heuristic tech-
niques, then the resulting selection could be sub-optimal for various subtle rea-
sons. Firstly, different side-channels could leak different aspects of information
relative to the hypotheses being tested and sometimes there could be value
in combining channels which provide widely dissimilar information rather than
combining those which provide similar but partial information. Secondly, even
if many channels provide the same information, picking multiple channels from
this set could still be valuable since that may be almost as good as having the
ability to make multiple invocations of the device with the same data and col-
lecting a single side-channel. Even for the case where only two side-channels
can be selected, the optimal choice is quite tricky and subtle as shown by the
example below where the naive approach of choosing the two signals with best
signal-to-noise ratios is shown to be sub-optimal.

Ezample 1. Consider the case where an adversary can collect two signals [Oq,
05]" at a single point in time, such that under the hypothesis Hy, Op = Ng,
for k = 1,2, and under the hypothesis Hy, O = Sk + Ni. Assume that N; =
(N1, N2)T has zero mean multivariate Gaussian distribution with

_(lr
= (p 1)

Note that O; and O, have signal-to-noise ratios of S? and S35 respectively. After
some algebraic manipulations, we get

(51 + 52)2 (51 — 52)2 (5)
2(1+p) 2(1=p)

Now, consider the case of an adversary who discovers two AM modulated carrier
frequencies which are close and carry compromising information, both of which
have very high and equally good signal-to-noise ratios (57 = S5) and another
AM modulated carrier in a very different band with a lower signal-to-noise ratio.
An intuitive approach would be to pick the two carriers with high signal-to-noise
ratio. In this case S; = Sy and we get, A% = 25%/(1 + p). Since both signals
originate from carriers of similar frequencies, the noise that they carry will have
a high correlation coefficient p, which reduces A? at the output. On the other
hand, if the adversary collects one signal from a good carrier and the other from
the worse quality carrier in the different band, then the noise correlation is likely
to be lower or even 0. In this case:

(S1+ 52)? L (S1 — S2)?

2 2

It is clear that the combination of a high and a low signal-to-noise ratio signals
would be a better strategy as long as S5/S% > (1 — p)/(1 + p). For example, if
p > 1/3, then choosing carriers from different frequency bands with even half
the signal-to-noise ratio results in better hypothesis testing. |

A% =

A? =

= S3(1+ S3/5%) (6)

Based on above analysis, in our experiments we routinely rejected a stronger
channel which is colocated with another collected channel and chose a channel
further away in the spectrum even if it had a lower signal-to-noise ratio.
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2.5 Multi-channel Template Attacks

In [], the power of using the maximum likelihood principle together with the
Gaussian assumption was shown to be very effective in classifying successive
bytes of an RC4 key using a single power side-channel signal. Expanding the tem-
plate approach to multiple channel is straightforward. In the template attack, at
any stage, the adversary uses an identical device to build exact characterizations
for the signal and noise for each of the K possibilities he has to classify. Then he
uses these characterizations to classify the one signal he is given from the tar-
get device. The first step in the template approach is the identification of those
time instances (or indices of sample points) where the average signals for each
of the K possibilities differ significantly. The second step is to compute the joint
noise distribution of the channel at those points for each of the K possibilities.
The third step is to classify the given signal into the K possibilities using the
maximum likelihood testing.

For multiple-channels, the template attack is identical except that the signals
from the multiple channels are concatenated together to yield a larger signal, i.e.,
for each invocation, a combined signal is created by concatenating the signals
from the individual observed channels. Notice that the process of identifying the
time instances and sample points could end up selecting somewhat different time
slices for each channel, depending purely on the nature of leakage in each chan-
nel. The maximum likelihood testing will pick up information from all channels
(possibly at different times) for classification.

To show that multiple channels help the classification process, we invoke an
operation on the smart card S with two different input bytes and look at just 3
cycles during which the input was first processed. We collected EM and power
samples simultaneously and evaluated how well the template attack could classify
a single EM /power trace into the two hypotheses HO and H1 for the input byte.
We did this classification first using exactly one of the power/EM channels and
then performed the classification using both channels simultaneously. Figures [I]
shows the mean EM and Power signals for these hypothesis during these 3 cycles
side by side Fig Bl shows the error rate of our classification effort for inputs
belonging to each hypothesis. One can clearly notice that using both channels
simultaneously results in better classification compared to any single channel.

3 Leakage Assessment Methodology for Chipcards

The model developed in Section can be used to derive a practical method-
ology for assessing information leakage from any L power and EM channels for
simple CMOS devices such as 8-bit chipcards. Several key properties make such
a methodology feasible. Firstly, for a fixed relevant state, the noise at any cycle
is well-approximated by a Gaussian distribution. Thus, in the hypothesis test-
ing phase, the problem becomes one of distinguishing between two distributions

5 The slight offset in time is due to delay of EM signals with respect to the power
signal.
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Fig. 1. Mean Power and EM signals during 3 cycles for two hypothesis

Correct Hypothesis|Error(Pwr)|Error(EM)|Error(EM+Pwr)
HO 9.5% 15.1% 2.8%
H1 20.1% 15.2% 6.6%

Fig. 2. Signal classification error using Power, EM and combination of Power and EM

By and By which are mixtures of Gaussians. Thus, if the number of relevant
states (typically exponential in twice the word length) is small, each Gaussian
in the collection can be profiled and the success probability for hypothesis test-
ing can be computed. The problem of capturing leakages across multiple bands
in multiple channels can be practically solved by splitting each channel into
slightly overlapping bands upto a reasonable upper limit. Details of this assess-
ment methodology with such practical considerations are given in the Appendix.

4 Single and Multi-channel DPA Attacks

In section 2] we assumed that the adversary had access to a test device identical
to the target device and that he could carry out a profiling stage using the test
device. In many circumstances, access to a test device may not be possible. In
such cases, a DPA-style attack is preferred since it assumes no prior knowledge of
device characteristics or implementation. In this section, we apply tools from the
detection theory to optimize existing single channel DPA attacks and propose
new multiple channel DPA attacks.

4.1 Improving DPA

In the traditional DPA attack, an adversary collects a set of N signals, O;,7 =
1,..., N emanating from a given channel. Assume that the signals are normalized
to have zero sample average over all N signals. For each hypothesis H under
consideration, the NN signals are divided into two bins, termed the 0-bin and the
1-bin with Ny and Ny 1 samples respectively. Let ppo[j] and pp1[j] be the
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sample means of signals in the 0-bin and the 1-bin respectively for the hypothesis
H. The next step in the DPA attack consists of computing the differences of
sample means pg[j] = pwolj] — pm,1[j] for all hypotheses, and deciding in favor
of the hypothesis H; if |pm,[j]| has the largest peak among all differences of
means. In other words, the decision metric for the hypothesis H at time j is
given by

Milj) = (waroli) — pnal7]) @

and the decision is made in favor of the hypothesis H; if for some value of j, say
Jo, My, [jo] >= Mpglj] for all H and j.

The traditional DPA attack and its variations have been successfully applied
to attack several cryptographic implementations. However, by using the theory
developed in the previous section, the effectiveness of traditional DPA can be
increased significantly.

Before proceeding further, assume a void hypothesis H, which corresponds
to a random bifurcation of the NN signals into the 0-bin and the 1-bin. Using
the Gaussian assumption and Equation [3, the metric of a hypothesis H; with
respect to the null hypothesis at time j is given by

()~ Bl 1) (o) — Bl 1))

Mpy,[j] = Viwm,[5]] B Vg, 4] _ln(V[MH; [J]]

In order to compute this metric, we need the values of the following parameters:
Elpm, 7], Vipm, 7], Elprlf]], and V{pg[j]]. Since in the DPA attack, the ad-
versary skips the profiling phase of the attack, (§) is not directly applicable. In
such cases, the theory suggests that unknown parameters of the test equation be
estimated directly from the collected signals. If the adversary uses a maximum-
likelihood estimate of these parameters, then the resulting test is referred to as
the generalized maximum-likelihood testing.

For the DPA attack, calculating the maximum likelihood estimate of the
test parameters involves solving a set of nonlinear coupled equations. Therefore,
instead of using the maximum-likelihood estimates of these parameters, we use
sample estimates as follows: Let J%LO[j] and a%,yl[j] be the sample variances of
the signals in the 0-bin and the 1-bin respectively at time j for hypothesis H.
We propose the following sample estimatorsﬁ of parameters in (§):

Elupjll = pulj]

Vil = 7200 Tl o)

5 We omit the derivation of these estimators as the derivation is tedious and follows
from straight-forward algebraic manipulations.
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Sbox Hyp|Min Samples (Mean-diff) | Min Samples(Max-Likl)
S1,B3 640 350
S2,B3 630 210
S7,B3 110 40
S8,B3 130 90

Fig. 3. DPA results, mean-difference vs. approx. generalized maximum-likelihood

Substituting these in (8)), we get the following formula for the metric:

2 . . 5 .
(um ] = p, [J']) T obl | 7 U]
My, [j] = : — (2 =) (10)
H;lJ Pl E Pl p 3 3 ;
UH,U,O[J] UHUJ[J] O-HI,,O[]] UHU,l[J]
No + Ny No + Ny

Intuitively, the signals in the 0-bin and 1-bin have similar distributions un-
der the wrong hypothesis due to a random bifurcation of signals in the two bins.
However, for the correct hypothesis, the distribution of signals in the 0-bin differs
from the distribution of signals in the 1-bin. The traditional DPA attack only
takes into account the differences in sample means. On the other hand, Equa-
tion [T takes both the sample means and variances into account, and therefore
may provide a better hypothesis test.

Figure Bl shows the results of applying this method to attacking the S-box
lookup for a DES implementation. The first column shows the bit being pre-
dicted, the second shows the number of samples required for the correct key
hypothesis to emerge as the winner under the traditional DPA metric while the
third column shows the number of samples needed with the new metric. Clearly
by using a better metric, our improvement in the DPA attack reduces the number
of signals needed by a factor of 1.4-3.

4.2 Multi-channel DPA Attack

Multi-channel DPA attack is a generalization of the single-channel DPA attack.
In this case, the adversary collects N signals, O;,7 = 1,..., N. In turn, each
of the signals O; is a collection of L signals collected from L side-channels.
Thus, O; = [O},...,0%]T where O! represents the i-th signal from the I-th
channel. Note that all DPA style attacks treat each time instant independently
and leakages from multiple channels can only be pooled together if they occur
at the same time. Thus, in order for multi-channel DPA attacks to be effective,
the selected channels must have very similar leakage characteristics.

The formulae for computing the metric for multi-channel DPA attack are
generalizations of those for the single channel. The main difference is that the
expected value of sample mean difference at time j under hypothesis H is a
vector of length L, with the [-th entry being the sample mean difference of the
[-th channel. Furthermore, the variance of the b-bin under hypothesis H at time
J, is a covariance matrix of size L x L with the i, j-th entry being the correlation
between signals from the i-th and j-th channels. Once again, as in the DPA
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attack, the adversary does not have the luxury of estimating these parameters.
Therefore, we substitute sample estimates for these parameters along the same
lines as in Equation 9] We skip the cumbersome formulae and directly go to the
results of multi-channel DPA attacks.

Figure [ shows sample results of an attack on the S-box lookups in a DES
implementation using the power channel together with an EM channel whose
leakage is similar to the power channel. The first column shows the bit being
predicted, the second shows the number of signals required for the correct key
hypothesis to emerge as the winner using both channels with the multi-channel
metric, the last two columns show the number of signals needed for the power
and EM channels separately using the new DPA/DEMA metric. From this it
is clear that the number of invocations needed for two channel attacks can be
significantly less compared to single-channel attacks.

Sbox Hyp|Min Samples(Pwr+EM)|Min Samples(Pwr)|Min Samples(EM)
S1,B1 150 170 640
S1,B2 60 (>1000) 340
S1,B3 110 350 160
S2,B2 30 50 230
S2,B3 120 210 340
S4,B0 60 200 340
S6,B1 180 180 190
S7,B3 30 40 520
S8,B3 60 90 140

Fig. 4. Multi-Channel DPA-style attack using Power, EM and Power&EM. and EM

4.3 Future Work on Single/Multi-channel DPA/DEMA Attacks

It is well known to DPA/DEMA practitioners that for the correct hypothe-
sis, the correlation signal with respect to time shows multiple peaks. However,
current analysis techniques, including the ones presented here, do not combine
information from peaks occurring at different time instances. This problem also
manifests itself when combining various Power and EM channels since peaks on
different channels may not coincide. One can also view the efficacy gap between
template attacks and DPA attacks as a manifestation of the same problem.

We have started work which promises to bridge this gap. The main idea is
to estimate the characteristics of useful peaks on the fly given only the collected
signals (without using a training set) and apply techniques based on maximum-
likelihood principle to identify the correct hypothesis.
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Appendix: Leakage Assessment for Chipcards

In this section, we address the question of whether one can assess and quan-
tify the net leakage of information from multiple sensors. Can the information
obtained by combining leakages from several (or even all possible) signals from
available sensors be quantified regardless of the signal processing capabilities and
computing power of an adversary?

Maximum likelihood testing is the optimal way to perform hypothesis test-
ing. Thus, we use it to craft a methodology to assess information leakage from
elementary operations. Our methodology takes into account signals extractable
from all the given sensors across the entire EM spectrum. Results of such an
assessment will enable one to bound the success probability of the optimal ad-
versary for any given hypothesis.

Assume, that for a single invocation, the adversary captures the emanations
across the entire electromagnetic spectrum from all sensors in an observation
vector O. Let {2 denote the space of all possible observation vectors O. Since the
likelihood ratio, A(O) is a function of the random vector O, the best achievable
success probability, Ps, is given by:
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P, = Z I{40)>13PN1(O — S1) + I1 4(0)<13PNo (O — So) (11)
Oco

where I, denotes the indicator function of the set A, and pn1(O — Sp) and
pno(O — Sp) are noise distributions under the hypothesis 1 and 0.

When the adversary has access to multiple invocations, an easier way of
estimating the probability of success/error involves a technique based on mo-
ment generating functions. We begin by defining the logarithm of the moment
generating function of the likelihood ratio:

u(s) =1n( D" pha(0 = S1)pkg (0 = S0)) (12)

Ocn

The following is a well-known result from Information Theory:

Fact 2 Assume we have several statistically independent observation vectordl
01,0s,...,0,. For this case, the best possible exponent in the probability of
error is given by the Chernoff Information:
def . def
o &f < _ 13

o, pi(s) 1i(5m) (13)
Note that u(-) is a smooth, infinitely differentiable, convex function and there-
fore it is possible to approximate s,, by interpolating in the domain of interest
and finding the minima. Furthermore, under certain mild conditions on the pa-
rameters, the error probability can be approximated by:

P~ ! exp(Li(5m)) (14)

V8TLY ($m)Sm (1 — 8pm,)
Note that in order to evaluate (1) or (), we need to estimate pno(-) and
pn1(+). In general, this can be a difficult task. However by exploiting certain

characteristics of the CMOS devices, estimation of pno(+) and pn1(-) can be
made more tractable.

Practical Considerations

We will now outline some of the practical issues associated with estimating pno(-)
and pn1 (+) for any hypothesis. The key here is to estimate the noise distribution
for each cycle of each elementary operation and for each relevant state R that
the operation can be invoked with. This results in the signal characterization,
Sk, and the noise distribution, pygr () which is sufficient for evaluating pno(-)
and pN1(+).

There are two crucial assumptions that facilitate estimating pNgr(+): first, on
chipcards examined by us the typical clock cycle is 270 nanoseconds. For such

" For simplicity, this paper deals with independent elementary operation invocations.
Techniques also exist for adaptive invocations.
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devices, most of the compromising emanations are well below 1 GHz which can
be captured by sampling the signals at a Nyquist rate of 2 GHz. This sampling
rate results in a vector of 540 points per cycle per sensor. Alternatively, one can
also capture all compromising emanations by sampling judiciously chosen and
slightly overlapping bands of the EM spectrum. The choice of selected bands is
dictated by considerations such as signal strength and limitations of the available
equipment. Note that the slight overlapping of EM bands would result in a
corresponding increase in the number of samples per clock cycle, however it
remains in the range of 600-800 samples per sensor.

The second assumption, borne out in practice (see [4]), is that fora fixed
relevant state, the noise distribution pygr(-) can be approximated by a Gaussian
distribution. This fact greatly simplifies the estimation of pnr(-) as only about
one thousand samples are needed to roughly characterize pngr(+). Moreover, the
noise density can be stored compactly in terms of the parameters of the Gaussian
distribution.

These two assumptions imply that in order to estimate pnr(:) for a fixed
relevant state R, we need to repeatedly invoke (say 1000 times) an operation
on the device starting in the state R, and collect samples of the emanations as
described above. Subsequently, the signal characterization Sg can be obtained by
averaging the collected samples. The noise characterization is obtained by first
subtracting Sg from each of the samples and then using the Gaussian assumption
to estimate the parameters of the noise distribution.

The assessment can now be used to bound the success of any hypothesis
testing attack in our adversarial model. For any two given distributions By and
B on the relevant states, the corresponding signal and noise characterizations,
So,51,pno0(+), and pN1(-), are a weighted sum of the signal and noise assess-
ments of the constituent relevant states Sr and pngr(+). The error probability of
maximum-likelihood testing for a single invocation or its exponent for L invoca-
tions can then be bounded using () and ([3) respectively.

We now give a rough estimate of the effort required to obtain the leakage
assessment of an elementary operation. The biggest constraint in this process is
the time required to collect samples from approximately one thousand invoca-
tions for each relevant state of the elementary operation. For an r-bit machine,
the relevant states of interest are approximately 227; thus the leakage assessment
requires time to perform approximately 1000 % 22" invocations. Assuming that
the noise is Gaussian and that each sensor produces an observation vector of
length 800, for n sensors the covariance matrix Xy has (800 * n)? entries. It
follows that the computation burden of estimating the noise distribution would
be proportional to (800 % n)2. Such an approach is certainly feasible for an eval-
uation agency, from both a physical and computational viewpoint, as long as
the size of the relevant state, r, is small. In our experiments, we found such
assessment possible for a variety of 8-bit chipcards.
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