
On Utilizing Experiment Data Repository for
Performance Analysis of Parallel Applications�

Hong-Linh Truong and Thomas Fahringer

Institute for Software Science, University of Vienna
Liechtensteinstr. 22, A-1090 Vienna, Austria

{truong,tf}@par.univie.ac.at

Abstract. Performance data usually must be archived for various per-
formance analysis and optimization tasks such as multi-experiment anal-
ysis, performance comparison, automated performance diagnosis. How-
ever, little effort has been done to employ data repositories to organize
and store performance data. This lack of systematic organization of data
has hindered several aspects of performance analysis tools such as perfor-
mance comparison, performance data sharing and tools integration. In
this paper we describe our approach to exploit a relational-based exper-
iment data repository in SCALEA which is a performance instrumenta-
tion, measurement, analysis and visualization tool for parallel programs.
We present the design and use of SCALEA’s experiment data repository
which is employed to store information about performance experiments
including application, source code, machine information and performance
data. Performance results are associated with experiments, source code
and machine information. SCALEA is able to offer search and filter ca-
pabilities, to support multi-experiment analysis as well as to provide
well-defined interfaces for accessing the data repository and leveraging
the performance data sharing and tools integration.

1 Introduction

Collecting and archiving performance data are important tasks required by var-
ious performance analysis and optimization processes such as multi-experiment
analysis, performance comparison and automated performance diagnosis. How-
ever, little effort has been done to employ data repositories to organize and store
performance data. This lack of systematic organization of data has hindered sev-
eral aspects of performance analysis tools. For example, users commonly create
their own performance collections, extract performance data and use external
tools to compare performance outcome of several experiments manually. More-
over, different performance tools employ different performance data formats and
they lack well-defined interfaces for accessing the data. As a result, the collabo-
ration among performance tools and high-level tools is hampered.
� This research is partially supported by the Austrian Science Fund as part of the

Aurora Project under contract SFBF1104.

H. Kosch, L. Böszörményi, H. Hellwagner (Eds.): Euro-Par 2003, LNCS 2790, pp. 27–37, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



28 H.-L. Truong and T. Fahringer

Utilizing a data repository and providing well-known interfaces to access data
in the repository can help to overcome the abovementioned limitations. We can
structure the data associated with performance experiments thus performance
results can always be associated with their source codes and machine description
on which the experiment has been taken. Based on that, any other performance
tool can store its performance data for a given application to the same reposi-
tory thus providing a large potential to enable more sophisticated performance
analysis. And then, any other tools or system software can easily access the per-
formance data through a well-defined interface. To do so, we have investigated
and exploited a relational-based experiment data repository in SCALEA [12,11]
which is a performance instrumentation, measurement, analysis and visualiza-
tion tool for parallel programs.

In this paper, we present the design and use of SCALEA’s experiment data
repository which is employed to store performance data and information about
performance experiment which alleviates the association of performance informa-
tion with experiments and source code. SCALEA’s experiment data repository
has been implemented with relational database, SQL and accessed through in-
terfaces based on JDBC. We demonstrate significant achievements gained when
exploiting this data repository such as the capabilities to support search and
multi-experiment analysis, to facilitate and leverage performance data sharing
and collaboration among different tools. We also discuss other directions on uti-
lizing performance data repository for performance analysis.

The rest of this paper is organized as follows: Section 2 details the SCALEA’s
experiment data repository. We then illustrate achievements gained from the use
of the experiment data repository in Section 3. We discuss other directions to
utilize the experiment data repository in Section 4. The related work is presented
in Section 5 followed by the conclusion and future work in Section 6.

2 Experiment Data Repository

2.1 Experiment-Related Data

Figure 1 shows the structure of the data stored in SCALEA’s experiment data
repository. An experiment refers to a sequential or parallel execution of a program
on a given target architecture. Every experiment is described by experiment-
related data, which includes information about the application code, the part of a
machine on which the code has been executed, and performance information. An
application (program) may have a number of code versions, each of them consists
of a set of source files and is associated with one or several experiments. Every
source file has one or several static code regions (ranging from entire program
units to single statements), uniquely specified by their positions – start/end line
and column – where the region begins and ends in the source file.

Experiments are associated with virtual machines on which they have been
taken. The virtual machine is a collection of physical machines to execute the
experiment; it is described as a set of computational nodes (e.g. single-processor



On Utilizing Experiment Data Repository for Performance Analysis 29

Application

name
...

Version

versionInfo
...

SourceFile

name
content
location
...

CodeRegion

start_line
start_col
end_line
end_col
...

Experiment

startTime
endTime
commandLine
compiler
compilerOptions
...

RegionSummary

computationalNode
processID
threadID
codeRegionID
...

PerformanceMetric

name
value

VirtualMachine

name
nodes[]
nprocs[]
...

1:n

1:n 1:n

1:n

n:1 1:n

1:n

1:n

m:n
Cluster

name
peakFlops
benchmarkFlops
...

Network

name
bandwidth
latency
...

NetworkMPColPerf

libName
numNode
barrier
bcast[]
...

NetworkMPP2PPerf

libName
uniDirectionSync[]
biDirectionSync[]
aSync[]
...

NodeSharedMemoryPerf

libName
lock[]
fork[]
join[]
...

ComputationalNode

hostName
hostAddresses
systemModel
physMem
virtMem
numCpu
cpuType
cpuSpeed
osName
peakFlops
benchmarkFlops
...

1:n

1:n1:n

n:1 1:n

1:n

Fig. 1. SCALEA’s Experiment-Related Data Model

systems, SMP nodes) of clusters. A Cluster is a group of computational nodes
(physical machines) connected by specific networks. Computational nodes in the
same cluster have the same physical configuration. Note that this structure is
still suitable for a network of workstations as workstations can be classified into
groups of machines having the same configuration. Specific information of phys-
ical machines such as memory capacity, peak FLOPS is measured and stored in
the data repository. In addition, for each computational node, performance char-
acteristics of shared memory operations (e.g. lock, barrier, fork/join thread) are
benchmarked and stored in NodeSharedMemoryPerf. Similarly, for each network
of a cluster, performance characteristics of message passing model are also bench-
marked and stored in NetworkMPColPef and NetworkMPP2PPerf for collective
and point-to-point operations, respectively.

A region summary refers to the performance information collected for a given
code region on a specific processing unit (consisting of computational node, pro-
cess, thread). The region summaries are associated with performance metrics
that comprise performance overheads, timing information, and hardware pa-
rameters. A region summary has a link to a parent region summary; this link
reflects the calling relationship between the two regions recorded in the dynamic
code region call graph [12].

2.2 Implementation Overview

Figure 2 depicts components that interact with the experiment data repository.
The post-processing is used to store source programs and the instrumentation
description file [12] generated by SCALEA instrumentation system [11] into the



30 H.-L. Truong and T. Fahringer

OpenMP, MPI, HPF,
Hybrid Programs

Experiment
 Data Repository

Overhead
Analyzer

Profile/Trace Files

Post ProcessingInstrumentation
Description File

System
benchmark

Single
Experiment

Analysis

Multi-Experiment
Analysis

External tools

Searching

Fig. 2. Components interacting with SCALEA’s Experiment Data Repository

data repository. In addition, it filters raw performance data collected for each
experiment and stores the filtered data into the repository.

The overhead analyzer performs the overhead analysis according to the over-
head classification [11] based on filtered data in the repository (or trace/profile
files). The resulting overhead is then stored into the data repository.

The system benchmark is used to collect system information (memory, hard-
disk, etc), to determine specific information (e.g. overhead of probes, time to
access a lock), and to perform benchmarks for every target machine of interest.
By using available MPI and OpenMP benchmarks, reference values of system
performance are obtained for both message passing (e.g. blocking send/receive,
collective) and shared memory operations (e.g. lock, barrier) with various net-
works (e.g. Fast-Ethernet, Myrinet), libraries (e.g. MPICH, PGI OpenMP) on
different architectures (e.g. Linux x86, Sun Sparc). The obtained results aim to
assist the correlation analysis between application- and system-specific metrics.

Based on data availability in the repository, various analyses can be con-
ducted such as single- and multi-experiment analysis, searching. Moreover, data
can be exported into XML format which further facilitates accessing performance
information by other tools (e.g. compilers or runtime systems) and applications.

The experiment data repository is implemented with PostgreSQL [8] which
is a relational database system supported on many platforms. All components
interacting with the data repository are written in Java and the connection
realizing between these components with the database is powered by JDBC.

2.3 Experiment-Related Data APIs

Each table shown in Fig. 1 is associated with a Java class. In addition, we
define two classes ProcessingUnit and ExperimentData. The first class is used to
describe the processing unit where the code region is executed; a process unit
consists of information about computational node, process, thread. The latter



On Utilizing Experiment Data Repository for Performance Analysis 31

implements interfaces used to access experiment data. Bellow, we just highlight
some classes with few selected data members and methods:
public class PerformanceMetric {

public String metricName;
public Object metricValue;
...

}
public class ProcessingUnit {

...
public ProcessingUnit(String node,int process, int thread) {...}

}
public class RegionSummary {

...
public PerformanceMetric[] getMetrics(){...}
public PerformanceMetric getMetric(String metricName){...}

}
public class ExperimentData {

DatabaseConnection connection;
...
public ProcessingUnit[] getProcessingUnits(Experiment e){...}
public RegionSummary[] getRegionSummaries(CodeRegion cr, Experiment e)

{...}
public RegionSummary getRegionSummary(CodeRegion cr, ProcessingUnit

pu, , Experiment e) {...}
...

}
Based on the well-defined APIs, external tools can easily access data in

the repository, using the data for their own purpose. For example, a tool
can compute identified overhead

total execution time ratio for code region 1 in computational node
gsr1.vcpc.univie.ac.at, process 1, thread 0 of experiment 1 based on identified
overhead (denoted by oall ident) and total execution time (denoted by wtime)
as follows:
CodeRegion cr = new CodeRegion(‘‘region1’’);
Experiment e = new Experiment(‘‘experiment1’’);
ProcessingUnit pu = new ProcessingUnit(‘‘gsr1.vcpc.ac.at’’,1,0);
ExperimentData ed = new ExperimentData(new DatabaseConnection(...));
RegionSummary rs = ed.getRegionSummary (cr,pu,e);
PerformanceMetric overhead=rs.getMetric(’’oall ident’’);
PerformanceMetric wtime =rs.getMetric(‘‘wtime’’);
double overheadRatio=((Double)overhead.metricValue).doubleValue()/

((Double)wtime.metricValue).doubleValue();

3 Achievements of Using Experiment Data Repository

3.1 Search and Filter Capabilities

Most existing performance tools lack basic search and filter capabilities. Com-
monly, the tools allow the user to browse code regions and associated perfor-
mance metrics through various views (e.g. process time-lines with zooming and



32 H.-L. Truong and T. Fahringer

scrolling, histograms of state durations and message data [14,3]) of performance
data. Those views are crucial but mostly require all data to be loaded into the
memory, eventually making the tools in-scalable. Moreover, the user has diffi-
culty to find out the occurrence of events with interesting criteria of performance
metrics, e.g. code regions with overhead of data movement [11] larger than 50% of
total execution time. Search of performance data will allow the user to quickly
identify interesting code regions. Filtering performance data being visualized
helps to increase the scalability of performance tools. Utilizing a data repository
allows to power the archive, to facilitate search and filter with great flexibility
and robustness based on SQL language and to minimize the implementation’s
cost.

Fig. 3. Interface for Search and Filter in SCALEA
Fig. 4. Specify complex
performance conditions

Figure 3 presents the interface for search and filter in SCALEA. The user can
select any experiment for searching code regions under selection criteria. For each
experiment, the user can choose code region types (e.g. send/receive,OpenMP
loop), specify metric constraints based on performance metrics (timing, hard-
ware parameter, overhead) and opt the processing unit (computational nodes,
processes, threads) on which the code regions are executed. Metric constraints
can be made in a simple way by forming clauses of selection conditions
based on available performance metrics (see Fig. 3). They can also be con-
structed by selecting quantitative characteristics (Figure 4). For instance, the
user may define characteristics for L2 cache miss ratio by expressing L2 cache
miss ratio as rL2 cache miss ratio = L2 cache misses

L2 cache accesses and then discretizing the
L2 cache miss ratio as follows: good if rL2 cache miss ratio ≤ 0.3, average if
0.3 < rL2 cache miss ratio

< 0.7, and poor if rL2 cache miss ratio ≥ 0.7. These quantitative characteristics
can be stored into the experiment data repository for later use. SCALEA will
transfer user-specified conditions into SQL language, perform the search and



On Utilizing Experiment Data Repository for Performance Analysis 33

Fig. 5. Results of Performance Search

return the result. For example, the searching result based on the conditions in
Fig. 3 is shown in Fig. 5. In the top-left window, the code region summaries met
the search conditions are visualized. By clicking into a code region summary, the
source code and corresponding performance metrics of the code region summary
will be shown in the top-right and bottom window, respectively.

3.2 Multi-experiment Analysis

Most existing performance tools [5,3,13] investigate the performance for individ-
ual experiments one at a time. To archive experiment data in the repository,
SCALEA goes beyond this limitation by supporting multi-experiment analysis.
The user can select several experiments, code regions and performance metrics
of interest of which associated data are stored in the data repository (see Figure
6). The outcome of every selected code regions and metrics is then analyzed and
visualized for all experiments. SCALEA’s multi-experiment analysis supports:

– performance comparison for different sets of experiments: The user
can analyze the overall execution of the application across different sets of
experiments; experiments in a set are grouped based on their properties (e.g.
problem sizes, communication libraries, platforms).

– overhead analysis for multi-experiment: Various sources of perfor-
mance overheads across experiments can be examined.

– study parallel speedup and parallel efficiency at both program and
code region level: Commonly, those metrics are applied only at the level of
the entire program. SCALEA, however, supports to examine the scalability
at both program and code region level.



34 H.-L. Truong and T. Fahringer

Fig. 6. Interface for Multi-Experiment Analysis

3.3 Data Sharing and Tools Integration

One of the key reasons for utilizing the data repository is the need to support
data sharing and tools integration. Via well-defined interfaces, other tools can
retrieve data from the experiment data repository and use the data for their
own purpose. For example, AKSUM [2] which is a high-level semi-automatic
performance bottleneck analysis has employed SCALEA to instrument user’s
programs, to measure and analyze performance overheads of code regions of the
programs. AKSUM then accesses performance data (overheads, timing, hard-
ware parameters) of code regions on the data repository, computes performance
properties [1] and conducts the high-level bottleneck analysis based on these
properties. In another case, the PerformanceProphet [7] which supports perfor-
mance modeling and prediction on cluster architectures has used data stored
in the experiment data repository to build the cost functions for the applica-
tion model represented in UML forms. The model is then simulated in order to
predict the execution behaviour of parallel programs.

Performance data can also be exported into XML format so that it can easily
be transfered and processed by other tools. For example, performance data of
code region 1 can be saved in XML format as follows:

<coderegion id="1">
<metric name=’’wtime’’ value=’’1.09039995E8’’ />
<metric name=’’odata_send’’ value=’’2986000.0’’ />
<metric name=’’odata_recv’’ value=’’5.6923546E7’’ />

</coderegion>

where each performance metric of the region is represented as a tuple
(name,value). Note that wtime (stands for wall clock time), odata send (over-
head of send operations), odata recv (overhead of recv operations) are unique



On Utilizing Experiment Data Repository for Performance Analysis 35

performance metric names described in a performance metric catalog which holds
information of performance metrics (e.g. unique metric name, data type, well-
defined meaning) supported by SCALEA.

4 Further Directions

In this section, we discuss further directions on utilizing the experiment data
repository for performance analysis:

– A query language for performance data can be designed to support
ad hoc and interactive searching and filtering for occurrence of events with
criteria of performance metrics and/or performance problems in order to
facilitate flexible and efficient discovery of interesting performance informa-
tion. Such a language can be implemented on top of search facilities provided
by database systems and be based on performance property language [1].

– Automatic scalable analysis techniques such as decision trees, rule as-
sociations, clusters, classifications should be exploited to discover the knowl-
edge of performance information on the repository. These techniques are
particularly useful for executing very complex queries on non-main-memory
data. However, currently these techniques are rarely used in performance
analysis due to lack of systematic organization of performance data.

– Providing standardization APIs for acquiring and exploiting per-
formance data is one of the keys to bring the simplicity, efficiency and
success to the collaboration among tools. The well-defined APIs should be
independent on the internal data representation and organization of each
tool but based on an agreement of well-defined semantics.

5 Related Work

Significant works on performance analysis have been done by Paradyn [10], TAU
[5], VAMPIR [3], EXPERT [13], etc. SCALEA differs from these approaches by
storing experiment-related data to a data repository, and by supporting also
multi-experiment performance analysis.

In [4], information about each experiment is stored in a Program Event and
techniques for comparison between experiments are done automatically. A pro-
totype of Program Event has been implemented, however, the lack of capability
to export and share performance data has hindered external tools from using
and exploiting data in Program Events.

Prophesy [9] provides a repository to store performance data for performing
the automatic generation of performance models. Data measured and analyzed
by SCALEA can be used by Prophesy for modeling systems.

USRA Tool family [6] collects and combines information of parallel programs
from various sources at the level of subroutines and loops. Information is stored
in flat files which can further be saved in a format understood by spreadsheet



36 H.-L. Truong and T. Fahringer

programs. SCALEA’s repository provides a better infrastructure for storing,
querying and exporting performance data with a relational database system.

APART proposes the performance-related data specification [1] which stim-
ulates our experiment-related data model. Besides performance-related data, we
also provide system-related data.

6 Conclusions and Future Work

The main contributions of this paper are centered on the design and achievements
of the experiment data repository in SCALEA which is a performance analysis
tool for OpenMP/MPI and mixed parallel programs. We have described a novel
design of SCALEA’s experiment data repository holding all relevant experiment
information and demonstrated several achievements gained from the employ-
ment of the data repository. The data repository has increasingly supported the
automation of the performance analysis and optimization process.

However, employing the data repository introduces extra overheads in com-
parison with other non-employing-data-repository tools; the extra overheads oc-
cur in filtering and storing raw data to and retrieving data from the database.
In the current implementation, we observed the bottleneck in accessing the data
repository with large data volume. We are going to enhance our access methods
and database structure to solve this problem. In addition, we intend to work on
the issues discussed in Section 4.

References

1. T. Fahringer, M. Gerndt, Bernd Mohr, Felix Wolf, G. Riley, and J. Träff. Knowl-
edge Specification for Automatic Performance Analysis, Revised Version. APART
Technical Report, Workpackage 2, Identification and Formalization of Knowledge,
Technical Report http://www.kfa-juelich.de/apart/result.html, August 2001.

2. T. Fahringer and C. Seragiotto. Automatic search for performance problems in
parallel and distributed programs by using multi-experiment analysis. In Inter-
national Conference On High Performance Computing (HiPC 2002), Bangalore,
India, December 2002. Springer Verlag.

3. Pallas GmbH. VAMPIR: Visualization and Analysis of MPI Programs.
http://www.pallas.com/e/products/vampir/index.htm.

4. Karen L. Karavanic and Barton P. Miller. Experiment Management Support for
Performance Tuning. In Proceedings of Supercomputing’97 (CD-ROM), San Jose,
CA, November 1997. ACM SIGARCH and IEEE.

5. Allen Malony and Sameer Shende. Performance technology for complex parallel
and distributed systems. In In G. Kotsis and P. Kacsuk (Eds.), Third Interna-
tional Austrian/Hungarian Workshop on Distributed and Parallel Systems (DAP-
SYS 2000), pages 37–46. Kluwer Academic Publishers, Sept. 2000.

6. Insung Park, Michael Voss, Brian Armstrong, and Rudolf Eigenmann. Parallel pro-
gramming and performance evaluation with the URSA tool family. International
Journal of Parallel Programming, 26(5):541–??, ???? 1998.



On Utilizing Experiment Data Repository for Performance Analysis 37

7. S. Pllana and T. Fahringer. UML Based Modeling of Performance Oriented Par-
allel and Distributed Applications. In Proceedings of the 2002 Winter Simulation
Conference, San Diego, California, USA, December 2002. IEEE.

8. PostgreSQL 7.1.2. http://www.postgresql.org/docs/.
9. V. Taylor, X. Wu, J. Geisler, X. Li, Z. Lan, R. Stevens, M. Hereld, and Ivan

R.Judson. Prophesy:An Infrastructure for Analyzing and Modeling the Perfor-
mance of Parallel and Distributed Applications. In Proc.of the Ninth IEEE Inter-
national Symposium on High Performance Distributed Computing (HPDC’s 2000),
Pittsburgh, August 2000. IEEE Computer Society Press.

10. Paradyn Parallel Performance Tools. http://www.cs.wisc.edu/paradyn/.
11. Hong-Linh Truong and Thomas Fahringer. SCALEA: A Performance Analysis

Tool for Distributed and Parallel Program. In 8th International Europar Confer-
ence(EuroPar 2002), Lecture Notes in Computer Science, Paderborn, Germany,
August 2002. Springer-Verlag.

12. Hong-Linh Truong, Thomas Fahringer, Georg Madsen, Allen D. Malony, Hans
Moritsch, and Sameer Shende. On Using SCALEA for Performance Analysis of
Distributed and Parallel Programs. In Proceeding of the 9th IEEE/ACM High-
Performance Networking and Computing Conference (SC’2001), Denver, USA,
November 2001.

13. Felix Wolf and Bernd Mohr. Automatic Performance Analysis of Hybrid
MPI/OpenMP Applications. In Proceedings of the Eleventh Euromicro Confer-
ence on Parallel, Distributed and Network-based Processing (PDP-11), pages 13–
22. IEEE Computer Society Press, February 2003.

14. Omer Zaki, Ewing Lusk, William Gropp, and Deborah Swider. Toward scalable
performance visualization with Jumpshot. The International Journal of High Per-
formance Computing Applications, 13(3):277–288, Fall 1999.


	Introduction
	Experiment Data Repository
	Experiment-Related Data
	Implementation Overview
	Experiment-Related Data APIs

	Achievements of Using Experiment Data Repository
	Search and Filter Capabilities
	Multi-experiment Analysis
	Data Sharing and Tools Integration

	Further Directions
	Related Work
	Conclusions and Future Work



