Implementation of Adaptive Control Algorithms
in Robot Manipulators Using Parallel
Computing*

Juan C. Ferndndez', Vicente Herndndez?, and Lourdes Pefialver®

! Dept. de Ingenieria y Ciencia de los Computadores, Universidad Jaume I,
12071-Castellén (Spain), Phone: +34-964-728265; Fax: +34-964-728435,
jfernand@icc.uji.es
2 Dept. de Sistemas Informéticos y Computacién, Universidad Politécnica de
Valencia, 46071-Valencia (Spain), Tel: +34 96 3877356, Fax: +34 963877359,
vhernand@dsic.upv.es
3 Dept. de Informatica de Sistemas y Computadores, Universidad Politécnica de
Valencia, 46071-Valencia (Spain), Phone: +34-96-3877572; Fax: +34-96-3877579,
lourdes@disca.upv.es

Abstract. The dynamics equation of robot manipulators is non linear
and coupled. An inverse dynamic control algorithm that requires a full
knowledge of the dynamics of the system is one way to solve the control
movement. Adaptive control is used to identify the unknown parameters
(inertial parameters, mass, etc). The adaptive control algorithms are
based on the linear relationship of inertial parameters in the dynamic
equation. A formulation to generalize this relationship is applied to the
Johansson adaptive algorithm. The objective of this paper is to present
the implementation of this relationship using parallel computing and
apply it to an on-line identification problem in real-time.

1 Introduction

The dynamic equation of robot manipulator torque in open chain is determined
by highly coupled and non linear differential equation systems. It is necessary
to use approximate or cancelling techniques to apply some control algorithms,
such as inverse dynamic control, over the full system. To apply these control
techniques it is necessary to know the dynamics of the system. This knowl-
edge allows the existing relations among the different links to be established.
The links to establish the kinematic relations of the system are defined from
Denavit-Hartenberg parameters. Full knowledge of the dynamics, inertial pa-
rameters, mass and inertial moments for each arm, is usually unavailable. These
parameters should be estimated using least square or adaptive control tech-
niques. Using adaptive control it is possible to solve both movement control and
parameter identification problems. Some of these algorithms can be found in [I}

* This work is supported by the CICYT Project TIC2000-1151-C07-06.

H. Kosch, L. Bészérményi, H. Hellwagner (Eds.): Euro-Par 2003, LNCS 2790, pp. 491-f98] 2003.
© Springer-Verlag Berlin Heidelberg 2003

492 Juan C. Ferndndez, Vicente Herndndez, and Lourdes Penalver

Bl74]. One of the problems in applying this kind of algorithm is that of obtaining
the relationship

T = Yf(qaan)97 (1)

where Y;(q, ¢,), known as regressor, is an n X r matrix, n being the number
of links and r the number of parameters; and @ is the r x 1 parameter vector.
Considering all different parameters, r will be 10n.

The linear relationship for the adaptive Johansson algorithm using several
algebraic properties and definitions given in [6] is employed. This formulation
is a computable and general solution for any robot manipulator in open chain
using Denavit-Hartenberg parameters and is an extension of the Lagrange-Euler
formulation. The main problem of the Lagrange-Euler formulation is its high
computational cost, but there are several studies, [8]2], where this is reduced. In
this paper the parallel algorithm to obtain the linear relationship for the adaptive
Johansson algorithm using the Lagrange-Euler formulation is presented.

The structure of the paper is the following: In section two the dynamic model
is presented. Section three describes the Johansson adaptive control algorithm.
Section four presents the parallel algorithm to obtain the linear relationship for
the adaptive Johansson algorithm. The results for a Puma robot are described
in section five. And finally the conclusions of this paper are presented in the last
section.

2 The Dynamic Model
The dynamic equation of rigid manipulators with n arms in matrix form is

7 = D(q)§ + h(q,q) + c(q), (2)

where 7 is the n x 1 vector of nominal driving torques, ¢ is the n x 1 vector of
nominal generalized coordinates, ¢ and ¢ are the n x 1 vectors of the first and
second derivatives of the vector ¢ respectively, D is the inertia matrix, h(q, q) is
the vector of centrifugal and Coriolis forces and ¢(g) is the vector of gravitational
forces.

3 Johansson Adaptive Control Algorithm

The desired reference trajectory followed by the manipulator is assumed to be
available as bounded functions of time in terms of joint accelerations §,., angular
velocities ¢, and angular positions ¢.. A stable non linear reference model is
also possible if the errors of accelerations, velocities and positions are defined as

€ C] — qr
q—dqr

The control objective is to follow a given bounded reference trajectory g, with
no position errors e or velocity errors é. Let Py, £2,5 € R™™™ and Pyg € R™*"

Implementation of Adaptive Control Algorithms in Robot Manipulators 493

be positive definite matrices and define Pjo = Pq_ql_Q. Let Yy € R"*" and Y}, €
R be defined from the relation

Y](qrv(b%“a(jvq.r)g+YJg(qer7QTaqvq.7‘) (4)
= —§D(Q)(e + Pige) + D(q)(Gr — Pi2é) + h(q,d)d + c(q)-

For any choice of Py, = PqTq >0, Pyg = ng >0,2=07>05=5">0, the
adaptive control law is given by

9(Qr7 q, Grs Q»qr) = _P(;elyJT(é + P12€)7 (5)

T(qra Q7QT7 q.a ijﬁé) = Y:]é + YJO - (S + Pq(I‘Qiqu(I)(é + P126)+qu€. (6)

3.1 Reformulation

Using several algebraic properties and definitions given in [6] it is possible to
obtain a computable version of Y;(q., ¢, ¢, ¢, G.). Considering u = é + Pjse, the
expression for the derivative of the inertial matrix is given by

D(q)u =Y, (9)0, (7)
where
rtr (Bp,y1) 77 (Bpyie) - - 77 (Bpuin)
Yy, (q) = 0 rtr(Bpys) et Bouzn) | ®)
0 0 3 :
0 0 0 rtr (Bpynn)
T
Oy = [v(J1) v(Ja) - v(Jn)], 9)
with o
i
Bpuij = Z Z (Uij @ Uiy + Uij @ Uyj) Gy up. (10)
—11=1

where Jj, is the inertia tensor related to link %, Uy, is the effect of the movement
of link % on all the points of link j and Uyj; is the effect of the movement of links
j and [on all the points of link k. The operator rtr of a matrix is a row vector
whose components are the traces of the columns in this matrix, and v is the
operator vector-column of an m X n matrix where the first m components of v
are the components of the first column of the matrix, the second m components
of v are the components of the second column of the matrix, and so on, [6].
Considering v = §,. — P12¢é, the expression for the inertial matrix is given by

D(q)v = Ypu(q)0p, (11)

where

494 Juan C. Ferndndez, Vicente Herndndez, and Lourdes Penalver

rtr (Bpy11) rtr (Bpyi2) - -+ 1tr (Bpuin)
0 rtr (Bpy22) - rtr (Bpyan)

0 0 . :
0 0 0 rtr (Bpunn)
with .
Bpwir = »_(Uir @ Uji)v;. (13)
j=1

The expression for the centrifugal and Coriolis forces is given by

h(q, Q) = Yh(qa q)eh

where
rtr (Bpi1) rtr (Bpi2) <+ rtr (Brin)
. 0 tr (B "o rtr (Bhan
Yi(q.4) = r (Braz) M(.m . (14)
0 0 . :
0 0 0 rtr (Bhnn)
with
i g
thy ZZ Ulj & Ulk‘] qkql (15)
k=11=1

The vector of gravitational forces can be expressed as a linear relationship
with the inertial parameters

C(Q) = YC(Q)em (16)
where
Yerr Yero - Yern gTUn gTUrs -+ gTUL,
0 Yeoo -+ Yeop 0 ¢TUs - gTUs,
0 o . 0 0 " :
0 0 0 Yeun 0 0 0 ¢TU.,
Oc = [mar mory - - mnfn}Ta (18)

where 7; is the position of the centre of mass of link ¢ (m;) with respect to the
origin of coordinates of link 3.
From the previous results, the computable version of Y is given by

1
Y; = _§YDu +Yp, +Y, +Y.. (19)

The next section describes the parallel algorithm to obtain expressions (b)), (B)

and ().

Implementation of Adaptive Control Algorithms in Robot Manipulators 495

4 Parallel Algorithm

The parallel algorithm to obtain ([3) is presented below, where n is the number
of links and p is the number of processors. To determine the calculations of
each processor, two parameters have been defined, iy, the initial link, and fj
the final link of processor P. Then P, computes the operations of the links
ks @kt1, ", fk- In this case:

— Processor P; has the values i1 = 1 and f; = n—p+1 to obtain the matrices
and vectors involved in the Johansson parallel algorithm.

— Processors Py, k = 2 : p, have the values iy, = fr, = n — p + k to obtain the
matrices and vectors involved in the Johansson parallel algorithm.

To obtain ([9) matrices Yy YDo, Y, and Y, can be computed. These matri-
ces are calculated using matrices U;; (structure U Eq. 20)) and matrices Uy,
(structure DU Eq. (22)). Matrices U;; mean the effect of movement of link j on
all the points of link 7, and matrices U;;;, mean the effect of movement of links
j and k on all the points of link 7. The structure U is given by

Ui Uig -+ Uy Q141 Q14 .- Q1 A,
Uy -+ Usy 041Q2 1Ay -+ 04104 1A,
U= | =) : , (20)
Unn OAn—lQn nilAn

where (Q; is the constant matrix that allows us to calculate the partial derivative
of *Aj;, the transformation matrix of a robot manipulator. To obtain U, matrices
*A;j (structure A Eq. 1)) are necessary. This structure is given by

VA, %45 - Y4,

1A, -.. 14,
(21)

n—lA
n

where “A; = “A; ;971 A; i = 0:n — 2. The matrices of the diagonal, "1 A;,
i =1 : n, are obtained from the robot parameters [3]. In the parallel algorithm
Py computes “A;, i =0: fy — 1, j =i+ 1: fr. This is the unique case where
the values of parameters i and f, are different from the parameters defined
previously, in this case:

— Processor P; has the values i1 = 1 and f; = n—p+ 1 to obtain the matrices
of A.

— Processors Py, k = 2 : p, have the values i, = 1 and f; = n—p-+ k to obtain
the matrices of A.

Processor Py, needs A;, i = iy, : fi, to obtain matrices Uy;, @ = 45 : fx. To
obtain the remaining matrices of U, Uy, j = ix : fr, © = 2 : j, each processor
needs 94,1 and i_lAj, j =g : fx, i = 2 : j. All these matrices have been
computed previously.

496 Juan C. Ferndndez, Vicente Herndndez, and Lourdes Penalver

To obtain matrices Uy, the following structure, DU, is defined

DU = [DU, DU, --- DU, |". (22)
As Uyji = Ujp, it is only necessary to compute the following block of DUj,
1=1:n

Uiii Ussixr -+ Uyn
, . 0 Uiitti+1 - Uiigin
DU;(i:n,i:n)= (23)
0 0 - Upp

Given that P, £ = 1 : p, has the required U matrices, it computes Uy;; =
OUij, j =ik fryi=1:7.

To obtain the remaining matrices of DU, Py, k = 1 : p, computes Ujjx,
k=ig: fr,i=2:kand j=1:k.

There are two situations:

— To obtain the matrices of row i, Uy; = V;Q; i_lAj, processor P needs V;,
i =2: fr,and 1A, j =i : fr, i = 2 : j. These matrices have been
computed previously.

— To obtain the matrices of row I > i, Uy; = Uy—1Qq l_lAj, l_lAj is first
computed by Pg. But U;;_; has been computed in another processor. In
order to avoid communications Py replicates the computation of this matrix.

Then, each processor calculates the block of columns of the structures U
and DU corresponding to rank [ig : fx]. Pg, Kk = 1 : p, computes rtr(BDuij),
1tr(Bpuij), rtr(Bpij) and Ye;, j =i ¢ fr and i =1: 5.

As the processors have all the information to compute B, Bp and By, no
communication among them is necessary. To obtain matrix Y, no communica-
tion is necessary because each processor has the required U matrices. With this
information Py, computes expression ([[d)).

To obtain (@), each processor Py computes the following expression

0; = —PaorYjru;, (24)
j=1

for i = ik . fk~

And finally, the control law 7 = Y60 — (S + Py 271 Py)u + Pyye must be
computed. Pyy and {2 can be considered as diagonal matrices. Each processor
P}, computes 7;, ¢ =1 : fj, using the matrices Y j;; and él that it has calculated.

Each processor sends the computed vector 7; to processor P,. This processor
receives these values and it obtains the final value of 7. This is the only commu-
nication in the algorithm. The term (S + P, 271 Pyq)u + P,4e is also computed
in P,.

Implementation of Adaptive Control Algorithms in Robot Manipulators 497
5 Experimental Results

The sequential algorithm is evaluated using sequential execution time, 7. The
parallel algorithms are evaluated using parallel execution time T}, (p processors),
Speed-up, S, = T1 /T, and efficiency, E, = S,/p. The results have been obtained
using the parameters of a Puma 600 robot with six links. In the parallel algo-
rithms 2, 3 and 4 processors have been used. In each case the links have been
distributed among the processors according to i, and fi parameters. To present
the results the following notation is used: pxax - - - x, where px is the number of
processors used and az - - -z is the number of links computed by each processor.
For example, in p2a31, the first three links are calculated in P; and the fourth
link is computed in Ps.

A Beowulf cluster with 32 nodes connected via Myrinet switch has been
used. Each node is an Intel Pentium-II processor at 300MHz with 128 MBytes
RAM. Communication routines in MPI and C language are used. Table () shows
the results, in miliseconds, of computing the parallel algorithm of the adaptive
Johansson control where Ty = 9.14, using this cluster.

Table 1. Experimental results with n = 6 links when a Beowulf cluster is used.

Algorithm|p| T, |Speed-up|Efficiency
p2a33 |[2/8.36| 1.085 | 54.67%
p2a42 2| 7.1 | 1.286 | 64.31%
p2abl |2|5.446| 1.678 83.94%
p3a222 |3| 5.5 1.65 55.33%
p3a321 [3/4.86| 1.88 62.69%
p3adll |3/4.86| 1.88 62.69%
p4a3l1l [4]4.922] 1.857 46.43%

The best efficiency is obtained using two processors, where the first processor
computes links one to five and the second processor computes the last link.
The shortest execution time is obtained using three processors, where the first
processor calculates links one to four, the second processor computes the fifth
link, and the last link is computed by processor three. Execution time increases
when four processors are used because the load balance is not good. The objective
is to reduce execution time even though efficiency is not good.

6 Conclusions

Given the generalized formulation for the linear relationship between variable dy-
namic and inertial terms it is possible to apply this formulation to the Johansson
adaptive algorithm using the Lagrange-Fuler formulation. Although the use of

498 Juan C. Ferndndez, Vicente Herndndez, and Lourdes Penalver

the Lagrange-Euler formulation has a high computational cost, it is possible to
reduce it in two ways:

— Eliminating the high quantity of null terms and exploiting the properties of
the matrices.

— Using parallel computing to obtain the different matrices of the dynamic
equation and the linear relationship of the Johansson adaptive algorithm.

Using these two techniques it is possible to obtain the linear relationship of the
Johansson adaptive algorithm and apply it to an on-line identification because we
have reduced the time requirements. The two techniques can be used in other
adaptive algorithms, such as Slotine-Li, and in optimal control. The shortest
execution time is obtained using three processors, and the best efficiency is
obtained with two. The parallel algorithm can be used for a robot manipulator
with more than two links. In this paper this formulation is applied to a six links
Puma manipulator.

References

1. Craig, J.: Adaptive Control of Mechanical Manipulators, Addison-Wesley (1988).

2. Fernéndez, J.C: Simulacién Dindmica y Control de Robots Industriales Utilizando
Computacién Paralela, Ph.D. Univ. Politécnica de Valencia (1999).

3. Fu, K.S., Gonzalez, R.C., Lee, C.S.G: Robotics: Control, Sensing, Vision and Intel-
ligence, New York, McGraw-Hill, 580 pages (1987).

4. Johansson, R.: Adaptive Control of Robot Manipulator Motion, IEEE Transactions
on Robotics and Automation, 4(6), 483-490 (1990).

5. Ortega, J.M., Spong M.: Adaptive Motion Control of Rigid Robots: A Tutorial,
Automatica 25(6), 877-888 (1989).

6. Penalver, L.: Modelado Dindmico e Identificacién Paramétrica para el Control de
Robots Manipuladores, Ph.D. Univ. Politécnica de Valencia (1998).

7. Slotine, J.J., Li, W.: On Adaptive Control of Robot Manipulators, International
Journal Robotics Research, 6(3), 49-59 (1987).

8. Zomaya, A.Y.: Modelling and Simulation of Robot Manipulators. A Parallel Pro-
cessing Approach, World Scientific Series in Robotics and Automated Systems, 8,
(1992).

	Introduction
	The Dynamic Model
	Johansson Adaptive Control Algorithm
	Reformulation

	Parallel Algorithm
	Experimental Results
	Conclusions

