
An Experimental Investigation into the Rank
Function of the Heterogeneous Earliest Finish

Time Scheduling Algorithm

Henan Zhao and Rizos Sakellariou

Department of Computer Science, University of Manchester, U.K.

Abstract. This paper considers the Heterogeneous Earliest Finish Time
(HEFT) algorithm for scheduling the tasks of an application, represented
by a directed acyclic graph, onto a bounded number of heterogeneous
machines. We focus on the appropriate selection of the weight for the
nodes and edges of the graph, and experiment with a number of dif-
ferent schemes for computing these weights. Our findings indicate that
the length of the schedule produced may be affected significantly by the
scheme used, and suggest that the mean value based approach used by
HEFT may not be a particularly good choice.

1 Introduction

Among the scheduling algorithms for heterogeneous machines, the Heteroge-
neous Earliest Finish Time (HEFT) algorithm [3], a natural extension of the
classical list scheduling algorithm for homogeneous systems to cope with het-
erogeneity, has been shown to produce shorter schedule lengths more often than
other comparable algorithms. In classical list scheduling algorithms an applica-
tion is viewed as a directed acyclic graph (DAG), where nodes (or tasks) represent
computation and edges represent communication. By assigning a weight to each
node (typically, the corresponding computation cost) and edge (typically, the
corresponding communication cost), those algorithms prioritize the nodes to be
scheduled on the basis of a value computed by a rank function; this is typically a
function of the weights assigned to the nodes and edges of the graph. However,
in a heterogeneous setting, the values typically used for the weights cannot be
considered as constant any more: the computation cost of a task may vary, de-
pending on the machine that this would run on; same, the communication cost
may vary, depending on which machines are communicating. Although it has long
been known, in homogeneous environments, that the choice of the rank function
(and the values it returns) may affect the quality of the schedule produced, the
proposers of HEFT have not examined the different (and additional with regard
to homogeneous environments) possibilities that exist for computing the weights
in a heterogeneous environment; they opted for the intuitively appealing mean
values. In this paper, we consider a number of different options for computing
the weights in HEFT. We find that, on average, the mean value option is not
necessarily the most efficient choice, but, more importantly, the length of the
schedules produced may differ significantly from one option to another.

H. Kosch, L. Böszörményi, H. Hellwagner (Eds.): Euro-Par 2003, LNCS 2790, pp. 189–194, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

190 H. Zhao and R. Sakellariou

0

1 2 3 4 5

6 7 8

18 14

23

19

11
17 13

15132716

12 9 11

23

9

task M0 M1 M2 task M0 M1 M2
0 37 39 27 5 29 37 20
1 30 20 24 6 22 24 30
2 21 21 28 7 37 26 37
3 35 38 31 8 35 31 26
4 27 24 29 9 33 37 21

5

0

3

 2

M1 M2

1 4

8

9

6
7

M0
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

6

9

5 1

0

3

4

87

 2

M0 M1 M2

Fig. 1. A Motivating Example: Two different schedules for two different rank schemes.

2 Background and Motivation

The HEFT algorithm [3] works as follows. First, a weight is assigned to each node
and edge of the graph, based on the average computation and communication,
respectively. Then, the graph is traversed upwards and a rank value is assigned to
each node; this is based on the sum of the weight of the node with the maximum
value resulting from all possible summations that add the weight of an edge to
an immediate successor node with the rank value of that successor node. Tasks
are then scheduled, in order of their rank value, on the machine which gives the
earliest finish time. A task may be scheduled in an idle slot between two already
scheduled tasks on a machine as long as precedence constraints are preserved.

The use of the average computation and communication as weights in the
graph has been an ad hoc choice in the HEFT algorithm. However, there are
cases where the average value may not produce a good schedule. To illustrate
this consider the graph shown in Figure 1 (example adopted from [3]). The
communication cost between two nodes in the graph is given by the number next
to each edge, except when the two nodes will run on the same processor, in which
case it is zero. The computation cost of each task on three different machines is
given by the table. If the nodes are prioritized using as a weight the mean values
of the computation cost over all three machines (as in the original HEFT), then
the schedule produced has a length equal to 164 (right-hand side of the figure).
If, on the other hand, nodes are prioritized using as a weight the worst (i.e.,
maximum) values of the computation cost (over all three machines on which each
node may run), the schedule produced has a length equal to 143. This significant
improvement is the result of only a small difference in the priority order of the
nodes; in the first case, the order is {0, 3, 5, 1, 2, 4, 7, 8, 6, 9}, whereas, in the
second case, the order is {0, 3, 5, 2, 1, 4, 7, 8, 6, 9}. The question that motivated

An Experimental Investigation into the Rank Function 191

this work is what is the behaviour of the mean value as an option to compute the
weights over a large number of cases, and whether different schemes to compute
the weights can lead to significant variations in the performance of HEFT.

3 Methodology

We have developed a program that implements the HEFT algorithm, allowing
for different options for task prioritization. Its inputs are: a DAG representing
an application; the number of machines of the heterogeneous platform, M ; the
computation cost to execute each task of the DAG on each machine; the data
transfer rate between each machine; and, the amount of data required to be
transmitted from one task to another if these two tasks run on different machines.

When prioritizing tasks, we have considered both upward and downward
ranking. Thus, the upward rank, ru(i), of a task i is recursively defined by

ru(i) = f1(w0
i , ..., wm

i , ..., wM−1
i) + max

∀j∈Si

(f2(c00
ij , ..., cmm′

ij , ..., cM−1,M−1
ij) + ru(j)),

where wm
i is the computation cost of task i on machine m, 0 ≤ m < M , Si is the

set of the immediate successors of task i, and cmm′
ij is the communication cost

between nodes i and j when i is executed by machine m and j by machine m′,
0 ≤ m, m′ < M . The communication cost is derived by dividing the amount of
data required to be transmitted between the tasks i and j by the data transfer
rate between the two machines m and m′. It is assumed that when i and j are
executed by the same machine (i.e., m = m′), the communication cost is zero.
Furthermore, the function f1 returns a value which is dependent on the compu-
tation cost of a given task on every machine, and the function f2 returns a value
which is dependent on the communication cost between two given tasks consid-
ering every combination of machines where the two given tasks may execute.
Similarly, the downward rank, rd(i), of a task i is recursively defined by

rd(i) = max
∀j∈Pi

(f1(w0
j , ..., wm

j , ..., wM−1
j) + f2(c00

ji , ..., cmm′
ji , ..., cM−1,M−1

ji) + rd(j)),

where Pi is the set of the immediate predecessors of task i.
Six approaches are used to compute a value for the functions f1, f2: (i) Mean

value (denoted by the shorthand M) returns the average over all the input argu-
ments; that is, f1 returns the average computation cost of a task and f2 returns
the average communication cost between two tasks (this is the approach used in
the original HEFT). (ii) Median value (ME) returns the median value over all
the input arguments for both f1 and f2. (iii) Worst value (W) returns the worst
value (i.e., maximum computation cost) for f1 and, for f2, the communication
cost between the two machines on which each of the two communicating tasks
has its highest computation cost. For example, in Figure 1, task 3 has its highest
computation cost on machine M1 and task 8 has its highest computation cost on
machine M0; then, the value returned by f2 is specified by the amount of data
transmitted between nodes 3 and 8 and the data transfer rate between machines

192 H. Zhao and R. Sakellariou

M0 and M1, i.e., c10
38 using the notation of the previous paragraph. (iv) Best value

(B) returns the best value (i.e., minimum computation cost) for f1 and, for f2,
the communication cost as determined by the procedure described previously.
(v)Simple Worst value (SW) returns the worst value for both f1 and f2 (i.e.,
maximum computation cost and maximum communication cost, respectively).
(Recall that this approach was used to prioritize the nodes when the schedule of
length equal to 143 was produced in the motivating example of Section 2) (vi)
Simple Best value (SB) returns the best value for both f1 and f2 (i.e., minimum
computation cost and minimum communication cost, respectively).

Since we use both upward and downward ranking with each of the above
approaches, a total of 2 × 6 = 12 different schemes are considered.

4 Experimental Results and Discussion

We compared the performance of the 12 different schemes in four sets of exper-
iments using four metrics [1]. The Average percentage degradation from the best
(APD) is the average (over all cases of a set of experiments) of the percentage
of degradation of the schedule length of a particular scheme from the scheme
returning the best solution. The Number of best solutions (NB) refers to the
number of times a particular scheme was the only one that produced the short-
est schedule. The number of best solutions equal with another scheme (NEB)
counts those cases where a scheme produced the shortest schedule length but at
least one scheme more achieved the same length. Finally, the worst percentage
degradation from the best (WPD), is the maximum percentage degradation from
the best of a given scheme over all cases of a particular set of experiments.

Two classes of DAGs were used in the experiments. In the first class, we
randomly generate graphs having between 25 and 100 nodes as follows. Each
graph has a single entry and a single exit node; all other nodes are divided into
levels. Each level is created progressively and has a random number of nodes,
which varies from two to half the number of the remaining (to be generated)
nodes. In the second class of graphs, we used task graphs representing a Laplace
equation solver, forms of which have been used in other related studies [2]. The
versions considered in our experiments have between 25 and 400 nodes.

Two different approaches were used to specify the degree of heterogeneity
of the machines. The first, referred by the name random computation cost, is
similar to the approach used in [3], in that the computation cost for a given task
and machine is selected randomly from a uniform distribution within a given
range. The second approach attempts to take account of the observation that, in
a heterogeneous environment, the factors affecting the execution of a given task
on a given machine are related primarily to particular characteristics (e.g., CPU
power) of the machine concerned. In this approach, a random number between
0.5 and 1 is first generated as a factor indicating the computational power of each
machine. Then, the cost for a given task on a given machine is within 5% of the
product of this number and a baseline computation cost for each task (selected
randomly). This approach is referred by the name proportional computation cost.

An Experimental Investigation into the Rank Function 193

(a) Random DAGs, 25-100 tasks, 2-8 ma-
chines, random comp. cost

(c) Laplace, 25-400 tasks, 2-8 machines,
random comp. cost

(b) Random DAGs, 25-100 tasks, 2-8 ma-
chines, proportional comp. cost

(d) Laplace, 25-400 tasks, 2-8 machines,
proportional comp. cost

Fig. 2. Average percentage degradation from the best; 4 different sets of experiments.

All combinations above (2 families of graphs × 2 approaches for heterogene-
ity) lead to 4 different sets of experiments. For each set, we vary the task graph
granularity so that a communication to computation ratio [1] between 0 and 4 is
achieved; the number of available machines is also varied between 2 and 8. We
consider a total of 2000 cases in each set of experiments.

The APD for each of the 12 schemes and for each set of experiments is shown
in Figure 2. The shorthand denoting each scheme is a concatenation of: the
shorthand of the approach used to compute the weights (see Section 3) and the
suffix ‘&U’ or ‘&D’ depending on whether ranking is performed upward or down-
ward, respectively. From the figure, the best 6 schemes in each set (starting with
the best) are: (a) {B&U, SW&U, M&U, ME&U, W&U, SB&U}; (b) {SW&U,
ME&U, M&U, B&U, W&U, SB&U}; (c) {SW&D, W&U, SW&U, B&U, W&D,
M&D}; (d) {B&U, W&U, SB&D, B&D, W&D, SB&U}. Mean value schemes
are outperformed in every experiment. In (a), M&U is worse than B&U by 7.6%;
in (b), M&U is worse than SW&U by 14.8%; in (c), M&D is worse than SW&D
by 4.4%; and, in (d), M&D is worse than B&U by 20.8%, while M&U is worst
amongst all schemes. There is no clear pattern favouring one scheme; however,
we notice that B&U is always among the best 4, and W&U is always among the
best 5. Another observation is that upward schemes always outperform down-
ward schemes for randomly generated DAGs, but not for Laplace.

Table 1 shows the values of the remaining three metrics, NB, NEB, WPD.
On the basis of the value NB +NEB, the only scheme which is consistently

194 H. Zhao and R. Sakellariou

Table 1. NB, NEB, and WPD for each set of experiments in Figure 1.

Experiment (a) Experiment (b) Experiment (c) Experiment (d)
NB NEB WPD NB NEB WPD NB NEB WPD NB NEB WPD

M&U 236 10 25.0 233 97 36.0 157 21 34.8 112 27 47.2
M&D 64 22 27.7 149 79 33.7 139 30 33.4 87 31 35.6
ME&U 186 72 26.4 200 185 21.1 133 13 34.8 121 31 32.4
ME&D 35 47 26.2 65 144 33.7 138 28 34.0 94 34 41.4
W&U 242 5 25.8 161 67 39.0 207 3 29.8 263 2 38.9
W&D 116 3 23.5 69 131 36.6 180 2 30.4 181 0 42.1
B&U 369 1 27.6 59 183 39.0 165 1 36.8 273 2 33.8
B&D 109 0 22.0 21 178 31.0 145 4 36.5 171 1 30.3
SW&U 242 72 26.4 225 193 21.1 167 17 34.8 117 24 32.0
SW&D 37 43 26.2 40 152 33.7 153 22 31.0 117 31 35.6
SB&U 159 5 29.2 19 189 39.0 190 0 34.4 191 1 42.2
SB&D 68 1 32.5 6 183 31.0 164 1 36.3 195 2 34.3

among the best 5 is W&U. Although the WPD metric, refers to a single bad
case (one out of 2000), it is interesting to notice that the performance of any
scheme may deviate from that of the best scheme significantly. At one extreme,
M&U performed 47.2% worse than the best scheme in the case.

The main observations from the results presented can be summarized as fol-
lows: (i) There are significant differences between the performance of HEFT
depending on the scheme used for computing the weights. (ii) There is no evi-
dence to suggest that the use of mean values should be preferred; instead, our
results seem to indicate the opposite. (iii) Upward ranking appears to perform
in many cases, but not always, better than downward ranking. (iv) Based on
the relative ranking of the performance of B&U and W&U with respect to other
schemes, there is some evidence in favour of these two schemes.

Thus, the performance of HEFT can be improved by checking the schedule
produced by each scheme (or some of them) and taking the best. This would
increase the cost of the algorithm, but it may be a trade-off worth making. Future
research could focus on ways to improve the scheduling process by making it less
sensitive to the different schemes for ranking nodes.

References

1. Y.-K. Kwok and I. Ahmad. Benchmarking and Comparison of the Task Graph
Scheduling Algorithms. Journal of Parallel and Distributed Computing, 59, pp. 381–
422, 1999.

2. A. Radulescu and A.J.C. van Gemund. Fast and Effective Task Scheduling in Het-
erogeneous Systems. 9th Heterogeneous Computing Workshop, pp. 229–238, 2000.

3. H. Topcuoglu, S. Hariri, and M.-Y. Wu. Performance-Effective and Low-Complexity
Task Scheduling for Heterogeneous Computing. IEEE Transactions on Parallel and
Distributed Systems, 13(3), pp. 260–274, March 2002.

	Introduction
	Background and Motivation
	Methodology
	Experimental Results and Discussion

