
Fault Tolerant Peer-to-Peer Dissemination
Network

Konstantinos G. Zerfiridis and Helen D. Karatza

Department of Informatics, Aristotle University of Thessaloniki,
54124 Thessaloniki, Greece

{zerf,karatza}@csd.auth.gr

Abstract. The widespread use of broadband networks gave new ground
for Peer-to-Peer systems. The evolution of these systems made P2P file
sharing networks one of the most popular ways of sharing content. Due
to their distributed nature, such networks tend to be a reliable source
for highly anticipated files. However, along with the benefits of P2P
networks, certain patterns became apparent. Uneven flow of data and
intersperse congestion points could result on increased mean response
time or even network failure. In this paper the structure of Peercast,
an agent based dissemination network, is presented. Emphasis is given
to the self organizing nature of the dissemination tree, and simulation
results depict its behavior under strenuous conditions.. . .

1 Introduction

While today the servers are able to acquire more bandwidth, they can not keep
up with the rapidly increasing requests of the users. The demand for faster
service increased as broadband connections became available. But if a file of
considerable size has to be disseminated to a considerable amount of receivers,
the network could be saturated quickly, clogging the host computer. Such is the
case for example when any highly anticipated software is released and several
people are trying to download it at the same time. This became known as the
midnight madness problem [1].

As today’s needs for data transfer steadily increase, traditional ways of mak-
ing data available to the masses become obsolete. Conventional FTP servers can
no longer serve as a way of distributing large amounts of data. Mirroring the
required content on several dispersed servers, cannot always compensate for the
rapid traffic increase.

The main architecture used for casting data through the Internet is IP mul-
ticast, which mainly targets real time non-reliable applications. It extends the
IP architecture so that packets travel only once on the same parts of a network
to reach multiple receivers. A transmitted packet is replicated only if it needs
to, on network routers along the way to the receivers. Although it has been
considered as the foundation for Internet distribution and it is available in most
routers and on most operating systems, IP multicast has not so far lived up to
early expectations. Its fundamental problem is that it requires that all recipients

H. Kosch, L. Böszörményi, H. Hellwagner (Eds.): Euro-Par 2003, LNCS 2790, pp. 1257–1264, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



1258 K.G. Zerfiridis and H.D. Karatza

receive the content at the same time. The most popular solution to this problem
was to multicast the content multiple times until all of the recipients obtain it.
IP multicast might be considered ideal for applications that require relatively
high and constant throughput but not much delay. However it is not suitable for
applications that may tolerate significant delays but no losses. This is the case
with file distribution.

These days, a new way of disseminating files emerged. File sharing networks
[2] are perhaps the most commonly used Peer-to-Peer applications. Such systems
have been used for diverse applications: combining the computational power of
thousands of computers, forming collaborative communities, instant messaging,
etc. P2P file sharing networks’ main purpose is to create a common pool of files
where everybody can search and retrieve any shared files. Depending on the algo-
rithm used, these sharing networks can be divided in two groups. Networks that
maintain a single database of peers and their content references are known as
centralized. Such file sharing networks [3] have several advantages, such as easy
control and maintenance, and some disadvantages as, for example, server over-
load. On the other hand, dynamically reorganizing networks such as Gnutella [4],
have a rather more elaborate service discovery mechanism, avoiding this way the
use of a centralized server. Those kinds of networks are known as decentralized,
and their main advantage is the absence of a single point of failure.

File sharing networks had never been designed for file dissemination. Nev-
ertheless people turn to them to find highly anticipated software or even video
files, when the official server stops responding due to high demand. Extensive
research has been done about how existing P2P networks operate over time and
how they can be optimized [4,5]. However, the dissemination process of highly
anticipated files on P2P networks over unreliable network connections remains
unexplored. Peercast, a P2P network first presented in [6], is designed to assist
the dissemination of a file in a heterogeneous network of clients. The purpose
of this paper is to show Peercast’s performance in the long term under different
network conditions. Simulation results depict how network failures can affect
this process.

The structure of this paper is as follows. In section 2 the Peercast’s structure
is shown, along with its latest extensions. Section 3 elaborates on the simulation
model of the system and the simulated network failures. The results and drawn
conclusions are summarized in section 4 and finally, section 5 presents suggestions
for further research.

2 The Network

When a file needs to be downloaded by more clients than the server can handle,
alternative algorithms have to be utilized. The naive way of avoiding retrans-
missions is to pipeline the file through all the clients. But this is not a viable
solution because clients might have to indefinitely wait to be served.

The proposed algorithm uses a self-organizing tree of clients. The server can
upload the file to a certain number of clients simultaneously. When the server



Fault Tolerant Peer-to-Peer Dissemination Network 1259

successfully uploads a file to a client, it keeps a reference of this client to a
short list (up to 100 entries). The server has a queue, but most of the clients are
expected to find this queue full. This is the case especially at the beginning of the
dissemination process, as clients arrive faster than the server can handle. In this
case, the server sends to the client the list of clients that already downloaded the
file. This way, the new client can download the file from a peer that was already
served, removing the congestion from the server.

When a client finishes the download, it acts as a server for other clients.
Similarly to the server, the clients have a short queue. If a client A requests
the file from a client B that has it, and that client B can not serve client A
immediately, A is queued. If the queue is full, client B sends its own list of
clients that it served to client A, so that it can continue searching. If a client
is not able to be served or queued, it retries after a certain period of time to
contact the server.

The peers are not expected to stay on-line for ever. But when a peer leaves the
network, the dissemination tree is left in an inconsistent state. That’s because
the clients who were served from that peer are no longer accessible from the
tree’s root. In order to take advantage of all the peers that are willing to help
in the dissemination process, the clients that are not occupied by serving other
clients, periodically check with their parent peer. If the parent is not on-line
or it is not accessible due to network failure, the client contacts the server and
assigns itself as the server’s child. If this fails, it requests from the server its list
of served clients and tries to assigns itself to one of those clients. If this fails also,
the client waits for a certain amount of time and retries.

As it was mentioned earlier, in order to avoid server explosion, the list of
children that the server has, is limited. If this list is full and a new child has to
be added, the server removes from the list its oldest child, accepts the new one,
and forces the new peer to adopt the removed client to its own list. This way,
the server always has a list of serving peers that recently became available and
therefore are more likely to have empty queues and stay on-line longer.

In order to utilize all the available upload bandwidth, a single peer can serve
several clients concurrently. Additionally, each client can initiate multiple con-
current download connections in order to utilize all the available download band-
width. At the end of the transfer, the downloading client chooses randomly one
of the assisting peers and requests to be listed on that one. The way to derive the
optimal number of simultaneous upload connections and queue size is discussed
in [6]. In brief, Peercast dynamically increases the number of connection slots
used when the rate of arrivals balances with the rate of clients being served as
shown in figure 1a. As a mean of keeping track of the number of served clients,
the server instructs a small percentage (5%) of the arriving clients, to send back
a message when they finish downloading the file. This way the server can esti-
mate when the balance will occur. At that point it propagates a message to all
the peers in its list and to every new client in order to increase the number of
concurrent connections and decrease the queue size.



1260 K.G. Zerfiridis and H.D. Karatza

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

12 36 60 84 108 132 156 180 204 228 252 276
Hours in simulation

M
ea

n
re

sp
o

n
se

ti
m

e

0% failure 40% failure 80% failure

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0 25 50 75 100 125 150 175 200 225 250 275 300 325
Time (hours)

N
u

m
b

er
o

f
cl

ie
n

ts

total served clients on-line clients

served, on-line clients arrivals

Fig. 1. a) Network’s state over time, b) Mean response time in 12-hour intervals ac-
cording to each client’s arrival

Several issues arise about the performance of this algorithm under different
network conditions in a heterogeneous network of clients. For example, how is
the mean response time affected by several local congestion points or network
failures? Can such problems affect dramatically the dissemination process? How
does the system respond if a considerable number of peers refuse to assist?

3 Simulation Model

In this section details are presented about the simulation model for the pro-
posed network, and show how different strategies might affect the dissemination
process. The system was populated with clients arriving according to the ex-
ponential distribution. The simulation period was set to be 2 weeks (1209600
seconds). During the first week the mean interarrival time was incremented lin-
early from 5 to 20 sec in order to simulate demand on a highly anticipated file.
For the second week the exponential distribution was used with 20 sec mean
interarrival time. The file size was set to be 650MB (the size of a full CD).

All the clients that populated the system were set to have broadband con-
nections to the Internet, resembling cable modems and DSL. This is done in
order to use a realistic model. As in many cases, such connections have different
download and upload speeds. Four different categories of users were used. The
first category (10% of the clients) had download and upload speed of 256 Kbps,
the second (40%) had 384 Kbps and 128 Kbps, the third (20%) had 384 Kbps
(download and upload), and the fourth (30%) had 1.5 Mbps and 384 Kbps re-
spectively. This configuration is a theoretical model, and is used to compare how
the same network performs under different conditions.

These kinds of clients are always on-line. However, they are not expected
to share that file for ever. Therefore they were set to leave the dissemination
network with exponential distribution and mean time of four days. The server
(a client from category 4) was set to never go off line. An additional difference



Fault Tolerant Peer-to-Peer Dissemination Network 1261

between the server and the clients is that the server keeps a limited list of up
to 100 clients that it served, whereas the clients have an unlimited list. That’s
because clients are not expected to stay on the network for ever, and therefore
they do not run the risk of collapsing because of an overwhelming list.

The actual connection speed between two clients is calculated at the begin-
ning of each session, taking into consideration the theoretical maximum speed
they could achieve and an exponentially distributed surcharge, in order to simu-
late additional network traffic and sparse bottlenecks. If a new client cannot be
served or queued immediately, it waits for 600 seconds and retries.

At the beginning of the dissemination, two download and two upload con-
nections were used in order to speed up the creation of a critical mass of served
clients. The critical mass is the point where the rate of served clients in the sys-
tem starts to decline (figure 1a). That happens when the rate of arriving and the
rate of departing clients balance out. When the server estimates that the critical
mass has been reached, it propagates a message through the peers in its list,
notifying the clients to change the upload/download slots from 2 to 4. Addition-
ally, the waiting queue on each client drops from 8 to 4 entries. The number of
concurrent uploading and downloading streams at any time and the queue size
are derived from simulation results showed in [6]. This switch is done in order to
reduce mean response time, as newly arriving clients should not be queued on
long queues. When the critical mass has been reached, they are more likely to
find service from clients found deeper in the dissemination tree, optimizing this
way all the available network’s resources.

As it was mentioned earlier, the behavior of this network can change sig-
nificantly under certain conditions. The system’s performance is investigated at
the beginning (2 weeks) of the dissemination, under different conditions. Our
focus is on how the system behaves under network failure. More specifically,
the simulations tested the system’s performance when a certain percentage of
connections failed. At any given time, the connection between any two clients
(including the server) was set to have a predefined chance of failure. The system
was tested using 0, 40 and 80 percent chance that any given client cannot con-
tact another peer in order to be served or queued on it. This is done in order
to simulate local network bottlenecks and network or system failures. If a client
cannot contact a peer, it tries to find another. If no clients are found, it contacts
the server to request an updated list of clients. In the case that even the server
is not accessible, it retries after 600 seconds.

Additional simulations show the system’s behavior when a percentage of the
clients refuse assistance to other peers. In this case it is assumed that those
clients go off-line immediately after they finish the download, and do not rejoin
the network later on. This is expected to decrease dramatically the performance
of the dissemination process. Nevertheless it is a behavior that can be expected.
We test the system’s performance when 0, 10 and 40 percent of the clients
depart from the network immediately after they have been served. All of these
simulations are done using a reliable network (0% connection failures). It should
be noted that all network failure simulations were done using 10% of such clients.



1262 K.G. Zerfiridis and H.D. Karatza

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 15 29 44 58 73 87 10
1

11
6

13
0

14
5

15
9

17
4

18
8

20
3

21
7

23
1

24
6

26
0

27
5

28
9

30
4

31
8

33
3

Time (hours)

T
o

ta
lc

lie
n

ts
se

rv
ed

0% failure 40% failure 80% failure

0

5000

10000

15000

20000

25000

30000

35000

0 15 29 44 58 73 87 10
1

11
6

13
0

14
5

15
9

17
4

18
8

20
3

21
7

23
1

24
6

26
0

27
5

28
9

30
4

31
8

33
3

Time (hours)

O
n

-l
in

e
&

se
rv

ed
cl

ie
n

ts

0% failure 40% failure 80% failure

Fig. 2. Network failure tests over time: a) total clients served, b) served clients that
are still on-line

The theoretical case that all the clients are willing to cooperate in the process
for a certain period of time is examined in order to compare the degradation of
performance that occurs to the rest of the cases.

4 Simulation Results and Conclusion

Figure 2a reveals that local network or system failures have an effect on the
dissemination process, but not significant. More specifically, at the beginning
of the dissemination there is a drop at the number of served clients. This is
more obvious in the 80% network failure simulation. Nevertheless, as shown in
table 1, the mean response time increased only by an average of 3.5% for the
40% case and 8.5% for the 80% case. This disproportional drop of performance
is justifiable, as clients that are temporarily inaccessible by one peer, can be
accessible by another. Figure 2a depicts that the network’s resources are volatile
at the beginning of the process, but as more peers join the network, their resource
utilization increases steadily.

In figure 2b, the number of currently on-line peers is shown to be increased in
the case of 80% network failure. That’s because the server is not able to determine
accurately when the critical mass has been built. This is also responsible for the
higher mean response time shown in table 1. The increased mean response time
in all cases can be explained as the clients that arrive early on the dissemination
process have to wait for a long period of time to be served. When the rate of
arrivals balances with the rate of clients being served, the mean response time
stabilizes to lower levels. Therefore, clients arriving later in the system benefit
from a faster service. This is depicted in figure 1b where mean response time is
shown in 12 hour intervals according to each client’s arrival in the system.

An additional test that was executed at the end of the simulations showed
the integrity of the dissemination tree under these conditions. More specifically,
in the case of the 40% network failure, by iterating through the tree, 0.5% of the



Fault Tolerant Peer-to-Peer Dissemination Network 1263

Fig. 3. Percentage of clients departs from the network immediately after completing
the download a) total clients served over time, b) served clients that are still on-line

currently on-line serving-peers were found to be unreachable. This percentage
increased to 10% for the 80% case. Those clients were in a timeout loop in order
to try to reassign themselves in the tree. This shows that the nature of the
self-organizing tree is relatively reliable to harsh conditions.

In figure 3a, the degradation of performance is shown to be proportional
to the number of clients that depart from the system without assisting in the
dissemination process. This is also shown in table 2 where the mean response
time increased by an average of 4% when 10% of the clients leave the system
as soon as they are served, and by 45% in the 40% case. Additionally, figure 3b
shows that the critical mass is reached much earlier in the first case. That’s
because it is essential for the performance of the dissemination process that
each client within this system acts as a server for other peers when it is served.

Further simulation results, not presented here due to space limitations, show
that if a file of smaller size is used the impact of the clients that refuse to
serve other peers is getting smaller. Overall, the system’s behavior in strenuous
conditions can be considered satisfactory. Its performance decrease is minimal
in network failures, and the decentralized self-organizing tree of served clients
proved to be reliable and scalable. The utilization of peer-to-peer technology for
this task revealed a flexible way of reliably disseminating static data in a high
number of clients, as long as the interested parties act collectively.

5 Future Work

Additional simulation experiments are under way, using distributions varying
with time for more realistic long run simulations, as depicted in [7]. Peercast is
an evolving platform. For the current P2P network implementation we used a
monolithic approach: all the data has to be sent to a client, before this client
starts sending it to another peer. A new version that replicates groups of 256KB
packets, to adjacent peers as they arrive, is under way. This is expected to



1264 K.G. Zerfiridis and H.D. Karatza

Table 1. Mean response time over different amount of network failures (10% dropouts)

Net failures 256/256 384/128 384/384 1.5/384

0% 210377 199498 199672 182107
40% 216783 207291 207037 188381
80% 227610 216455 217156 197314

Table 2. Mean response time over different percentage of clients leaving immediately

Dropouts 256/256 384/128 384/384 1.5/384

0% 201812 192129 192077 174603
10% 210377 199498 199672 182107
40% 289458 278221 278129 257649

alleviate the problems that are caused from peers that go off-line immediately
or soon after they finish downloading the requested file. The synchronization
between the peers is done in predetermine time intervals, called epochs [8]. The
peers are segmented in virtual groups according to their bandwidth and the
epoch size depends on an estimation of the minimum bandwidth between the
peers that form each dissemination group. Simulation results from this network
are expected to show alleviation of several issues raised in this paper.

References

1. Schooler, E., Gemmell, J.: Using Multicast FEC to solve the Midnight Madness
Problem. Technical Report, Microsoft research (1997)

2. Parameswaran, M., Susarla, A., Whinston, A.B.: P2P Networking: An Information
Sharing Alternative. IEEE Computer Journal, Vol. 34. (2001) 31-38.

3. Shirky C.: Peer-to-Peer: Harnessing the Benefits of a Disruptive Technology /
Listening to Napster. I.A. Oram (ed.), O’Reilly & Associates.

4. Ripeanu, M., Foster, I., Iamnitchi, A.: Mapping the Gnutella Network: Properties
of large scale peer to peer systems and implications for system design. Internet
Computing Journal, IEEE Computer Society (2002) 50–57

5. Markatos, E.P.: Tracing a large-scale Peer to Peer System: an hour in the life
of Gnutella. Proceedings of the CCGrid 2002, Second IEEE/ACM International
Symposium on Cluster Computing and the Grid (2002) 65–74

6. Zerfiridis K.G., Karatza, H.D.: Large Scale Dissemination using a Peer-to-Peer
Network. Proceedings of the 3rd IEEE/ACM International Symposium on Cluster
Computing and the Grid 2003, Tokyo (2003) 421–427

7. Karatza, H.D.: Task Scheduling Performance in Distributed Systems with Time
Varying Workload. Neural, Parallel & Scientific Computations, Vol. 10. Dynamic
Publishers, Atlanta, (2002) 325–338

8. Karatza, H.D., Hilzer R.C.: Epoch Load Sharing in a Network of Workstations.
Proceedings of the 34th Annual Simulation Symposium, IEEE Computer Society
Press, SCS, Seattle, Washington (2001) 36–42


	Introduction
	The Network
	Simulation Model
	Simulation Results and Conclusion
	Future Work



