
H. Kosch, L. Böszörményi, H. Hellwagner (Eds.): Euro-Par 2003, LNCS 2790, pp. 1064–1073, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Modeling Context-Aware Behavior by Interpreted ECA
Rules

Wolfgang Beer1, Volker Christian1, Alois Ferscha1, and Lars Mehrmann2

1 Johannes Kepler University Linz, Department for Practical Informatics,
Altenbergerstrasse 69, 4040 Linz Austria

wolfgang.beer@jku.at, {voc, ferscha}@soft.uni-linz.ac.at
http://www.soft.uni-linz.ac.at

2 Siemens AG, CT SE2, Otto-Hahn-Ring 6, 81730 Munich, Germany
mehrmann@mchp.siemens.de

Abstract. The software architecture of distributed systems is about to change
due to new requirements of modern mobile devices. New network techniques,
like ad-hoc radio communication or peer-to-peer networks allow mobile devices
to sense their environment and to interact with other devices dynamically. This
paper presents a cutting-edge way to describe objects and their interaction, also
called context, as well as the possibility to configure such interaction scenarios.
A lookup mechanism collects information about the environment and a role-
based classification is responsible for identifying possible interaction partners.
Furthermore the configuration of scenario behavior with context rules is intro-
duced. Finally a comparison with already existing context frameworks is given
and a practical emergency scenario configuration is shown.

1 Introduction

More and more radio based wireless networks seem to become the standard for mobile
device interaction. For many tasks it is not necessary to be a participant of a global
area network, but to connect to an ad hoc network between several mobile devices.
Even personal area networks (PANs) get more and more popular, e. g. in an ad hoc
communication between a cellular phone, a handheld organizer and a headset. De-
pending on fixed networks, traditional software architecture for distributed applica-
tions contains aspects that harden its use in ad hoc communication environments.
Client server architecture depends on a reliable central server that offers services. In
ad hoc communication the network structure changes rapidly and normally it is not
possible to set up a globally accessible server. Therefore a mobile device has to act as
a server and as a client at the same time, to provide services like voice phone, or to use
services like calendar function or headset output.
The first question that comes to our mind, when using ad hoc communication, is how
to find other entities and how to describe their functionality. Moreover, it is necessary
to know how to describe the kind of interaction, which is possible with this new entity

Modeling Context-Aware Behavior by Interpreted ECA Rules 1065

that appeared. A set of devices is possibly able to solve higher-level problems that the
single device is not able to fulfill. Therefore, the single device has to be able to get
context information about its environment, i.e. to find compatible partners, in order to
solve joint problems. Embedded or personal mobile devices have to exchange sensor
and actuator information, to model a digital representation of the real world. With this
representation, digital devices should get sensitivity for the context of a human user, e.
g. the location or the environment noise and the problems the user would like to solve,
e. g. to switch to a louder sound profile. The digital devices could analyze the histori-
cal development of this context representation, to propose solutions for future prob-
lems. So, embedded wireless devices offer the chance to improve the kind of interac-
tion between human users and their digital helpers [10][1].

2 Description of Digital and Non-digital Objects

In traditional applications the programmer is responsible for connecting client and
server programs, to solve a certain kind of problem. The programmer is aware of the
interfaces, the network addresses, the functionality and maybe the reliability of the
different participants.

In modern peer-to-peer, ad-hoc communication environments the programmer does
not automatically get this information. If a device appears in another communication
range, it is totally unknown, which device it is and what services it offers, or demands.
Therefore it is necessary to get a semantic description of the unknown objects attrib-
utes and services. Various research projects deal with the problem of semantic infor-
mation modeling and distribution, often with the goal to extend the possibilities of
smart software agents and reasoning mechanisms.

Originally, the XML based W3C standard RDF (Resource Description Framework)
[8] and its schema language were developed to meet the requirements of semantic
information retrieval on the web. Various research projects deal also with the topic of
joint terminology, like the definition of ontology [11].
Generally, we distinguish between two ways of describing and classifying objects:

� Closed world assumption: Data and services are completely known at design
time. Therefore, it is easy to define a suitable semantic model, in order to
handle this information. It is not possible to add any unknown element in a
closed world assumption. Moreover, parts of information are explicitly ex-
cluded from the context world model, in order to simplify reasoning [13].

� Open world assumption: Data and services are not known at design time.
Therefore, it is necessary to derive all the information from the semantic de-
scription of the participating agents. This issue is hard to realize and a major
problem in AI research [9].

Another important aspect, when we are speaking about the description of objects, is
the classification of objects. There are two different methods of classifying objects:

1066 W. Beer et al.

� Static classification: The class hierarchy is completely known at design time.
Once an object appears, its type either is part of the known class hierarchy, or
its type is unknown. The class hierarchy cannot change at runtime.

� Role based classification: An unknown object is classified by a library of at-
tribute information. The object’s set of attributes is compared with attribute
sets that are known. This library of attributes and known attribute sets (we
call them attribute templates) can be extended at runtime. Naturally an object
is able to fulfill more than one attribute template, so it acts in more than one
role. Objects can extend their functionality at runtime, i.e. their attribute tem-
plate is able to change at dynamically.

To support role-based classification with an open world assumption, our framework
is based on the work of XEROX Parc in 1995 [9]. Every object, called entity, is a
container for a set of attributes. This set of attributes fully describes the entity’s func-
tionality. A specific set of attributes is called an attribute template. It is responsible for
classifying an entity at runtime. An entity is likely to act in more than one role. As it is
shown in Figure 1, an entity, which owns the attributes {Name, Birthday, SocNum-
ber} would be classified as a person in the European union and in the United States.

Fig. 1. Entity classification with attribute templates

Without the social security number, the entity would be classified as a person in
Europe but not in the United States. So the role based classification of entities is based
on the set of attribute templates that are registered locally on the mobile device. The
classification of objects is not a task of the context middleware but of the applications
that run on it. Imagine a chat application that lists all persons in the local environment.
Therefore, the chat application itself has to provide an attribute template that defines
how the chat application specifies a person object.

Modeling Context-Aware Behavior by Interpreted ECA Rules 1067

3 Framework Architecture Overview

As already mentioned in section 2, an entity is classified by the set of attributes it
provides at runtime. The set of attributes possibly changes at runtime, when an entity
loads or unloads attributes over the network or from a local storage. Therefore an
entity has to reference a class loader and a transport layer, to load and to deploy new
attributes. The class loader itself retrieves class information, either from a local attrib-
ute repository or through the transport layer. Because of the recursive nature of the
attribute-entity architecture, it is possible for an entity to react as an attribute within
another entity, as it is shown in Figure 2.b.).

Fig. 2. a.) Shows dynamic attribute loading at run time, while b.) shows a simple recursive
attribute-entity architecture

Between every context information flow, including the loading or unloading of at-
tributes, the interpreter checks whether any additional actions should be performed.
These additional actions are specified in context rules. ECA (Event Condition Action)
rules are able to react on certain entity states, where the event specifies the context
event an attribute throws [3]. Context rules are described more detailed in Section 4.
Figure 2.a.) shows how an entity is able to load an attribute, called Heart Monitor, and
how the entity deploys it to another entity over a transport layer. The entities contain a
set of attributes, which may be updated at runtime. In this upgrading process special
attributes are loaded, which are necessary to fulfill a certain context scenario, see
Section 6. The transport layer does not depend on any specific protocol, it can be
changed at runtime. At the moment a TCP socket implementation is available as well
as a SOAP-HTTP implementation. We plan to implement an additional JXTA trans-
port layer, as far as JXTA provides reasonable performance on mobile devices.

1068 W. Beer et al.

3.1 XML Configuration of Entities

Entities exist in containers, which manage their lookup mechanism, transport and
lifecycle. A container has the possibility to host a performance-optimal collection of
entities. A desktop computer would probably host a larger set of entities, while a mo-
bile device is limited to a small set. Containers can exchange entities at runtime in
order to optimize performance or to minimize network load. To minimize network
load, it is possible to host a personal entity on a desktop computer when the user is in
the office. When the user leaves his office, his entity description travels with him,
hosted on his PDA. At the container startup time, a set of entities is loaded by the
Dynamic Loader attribute of the container. XML configuration files inform the con-
tainer, which initial set of entities should be loaded and which initial sets of attributes
the entities own. The attribute-specific configuration is also located in separate XML
configuration files, which were referenced by the entity configurations. The following
figure shows how a simple container configuration is modeled in XML on a mobile
device.

Fig. 3. XML configuration of containers and entities

3.2 Lookup

Communication in ad-hoc mode requires a mechanism that discovers entities, which
are inside the communication range of an entity. In order to find a service provider in
an ad-hoc network it is necessary to announce the presence of mobile devices in the
environment. For a small number of service providers, it is possible to use Broadcast
or Multicast IP solutions to announce their presence in the network. Broadcasting of
service provider access information is not scalable and therefore not directly used for
larger networks. Discovery protocols like SLP (Service Location Protocol) and the
discovery mechanism of JINI (Java Intelligent Network Infrastructure) introduce hy-
brid solutions, where Multicast IP is used for searching in local networks and fixed
addresses are used for global service discovery [12].

Modeling Context-Aware Behavior by Interpreted ECA Rules 1069

The lookup mechanism implemented in context framework also uses a hybrid solution
where fixed service provider addresses are used for global service discovery. Alterna-
tively, it is possible to use Broadcast or Multicast IP service provider announcement
for local area discovery. A context container is responsible for announcing and re-
ceiving the presence of entities and their services. Additionally, the context lookup
informs about the set of attributes of an entity, which enables the role-based classifi-
cation. A difference to JINI is, that our solution runs on Java Personal edition version
1.1.8 and is lightweight enough to run on mobile devices. Another difference is, that
our lookup solution sends XML based lookup information. The use of XML is a per-
formance drawback, but one of the major disadvantages of JINI is, that only Java
based service providers are supported, through the use of Java Object Serialization.

4 Dynamic Interaction of Entities through Context Rules

In any context scenario, it is important that the entities can update or change their
relations at runtime. As it is described in Section 2, an entity is able to dynamically
classify unknown objects that appear in its environment with attribute templates. In
this connection we defined a context rule:

“A context rule specifies the reaction of an entity on a specified context state and
defines therefore the event based interaction between entities”

An entity is able to sense its environment with sensors and to change the information
in the scenarios world model, as shown in Figure 3.a.). The sensing mechanism could
be either event-triggered or time-triggered, as it was already observed in [2]. The
framework has to transform the lower level sensor input into information that fits in
the framework’s context world model.
In the context framework the set of entity attributes contain the high-level context
information about an object. So the values of these attributes provide an entity state. A
context event is triggered by an attribute, if its state changes and it would like to in-
form its entity. To react on a specific entity state, it is necessary to define a context
rule inside the entity. Context rules define an ECA (Event-Condition-Action) match-
ing service [3], as it is already known from active database research [7].

4.1 Context Rule Syntax

We defined a configuration syntax, which is easy to understand for humans and more
compact than XML-coded ECA definitions:

Rules = “rules” [Targets] “{“ { Rule } “}”.
Targets = “for” EntityOrTemplate { “,” EntityOrTemplate }.
Rule = “on” Event [“if” Condition] Action

The non terminal symbol EntityOrTemplate describes an entity or a template which
defines a set of similar entities as target for the rule. Thus it is possible to bind the rule
to a specific entity or to a specific role, specified with a template name. Because of

1070 W. Beer et al.

very limited space, the non terminal symbols Event, Condition and Action are not
shown in EBNF here. The following example shows a set of rules, that is bound to all
entities, which act in the role of a Person:

rules for <Person> { ... }

Fig. 4. a.) Shows the context information transformation and event triggering, while b.)
shows the lookup and interface WSDL description delivery.

An entity owns a rule interpreter, which is responsible for catching specific events and
reacting on them. Also the attribute loading events or the lookup events can be caught
by the rule interpreter. The context rule interpreter is able to load an initial set of rules
from a file, referenced by the entity’s XML configuration. After the container startup,
the entity is able to receive new context rules over the transport layer. These new
context rules are registered with the interpreter. Considering the easy plain-text syntax
of our context rules, it is also possible to register new context rules from mobile de-
vices like cellular phones or PDAs. Distributed rule deployment is a convenient fea-
ture to develop a context scenario on a laptop computer and deploy it to different mo-
bile devices.

Attribute Interface Description with WSDL
Distributed scenario development and deployment is also supported by the interface
description of attributes with WSDL (Web Service Definition Language). As the
lookup service collects information, which set of attributes an unknown entity pro-
vides, the entity is also able to deliver WSDL information for its attributes, as it is

Modeling Context-Aware Behavior by Interpreted ECA Rules 1071

shown in Figure 3.b.). With these types of information it is easy to generate context
rules automatically or to use a visual builder tool to generate context behavior.

Rule Consistency
One major problem of the context rule management and deployment is to maintain the
consistence of rules. This problem statement is already solved by expert systems, or
generally by artificial intelligence research. In fact expert system shells like CLIPS or
Jess [5] offer the possibility to reason about entities and their relations. For this pur-
pose it is planned to integrate the Jess library into the context framework, in order to
manage entity relationship reasoning. At the moment the interpreter itself triggers
actions according to incoming events, but it is not able to check the consistence of new
rules.

Advantages of Interpreted Context ECA Rules
One of the most important advantages of controlling complex interaction scenarios
with interpreted ECA rules is the high degree of flexibility to change the interaction
topology at runtime. Therefore, it is possible to change the interaction partners and the
interaction itself at runtime. With the use of attribute templates the rules for handling
specific events can be routed to a group of entities that fulfill a specific role. The cur-
rent implementation of our ECA rule syntax enables the dynamic delivery and lifecy-
cle management of rules at runtime. The rules are coded with the use of a proprietary
rule syntax, which enables short and concise creation of new rules, also on mobile
devices. Another possible module would be a visual builder tool, to support the crea-
tion of context rules, or even the creation of whole interaction scenarios without pro-
gramming. These aspects, of context modeling through ECA rules, allow nontechnical
people to control smart environments and devices without knowledge of a complex
system, which a smart environment definitely is. As an example for an abstract view
on complex scenario modeling, the Washington’s Department of Bioengineering de-
veloped a tool called Labscape. With Labscape it is possible to model complex sce-
narios in a laboratory [6].

5 Example Context Scenario

To demonstrate the abilities of the context middleware, a complex emergency scenario
simulation was built (aware of the fact that real-time applications normally are not
implemented in Java). For an compact, out of the box demonstrator we simulated
indoor location sensors with RFID transponders and active readers (in a real world
outdoor scenario we would use differential GPS and GPRS as transmission protocol).
The scenario starts with an automatic emergency call, triggered by a heart patients
PDA-HeartMonitor device:

rules for <HeartPatients> {

 on HeartMonitor.Alarm() {

 <EmergencyDispatcher>.EmergencyCall:Alarm($Patient);
 }
}

1072 W. Beer et al.

The lookup identifies all entities, acting in the role of an EmergencyDispatcher, to
which the emergency call is delivered to. When the emergency dispatcher receives an
emergency call a rule catches this call and delivers some reaction possibilities to the
human emergency dispatcher:

rules for <EmergencyDispatcher> {

 on EmergencyCall.Alarm(Patient p) {

 Map.ShowPatient(p);

 Map.ShowNearestAmbulances(p.location);

 Map.ShowNearestHospital(p.location);

 }
}

When the human emergency dispatcher reacts on the emergency call, the chosen am-
bulance car is informed:

rules for <EmergencyDispatcher> {

 on EmergencyCall.SendAmbulance(Ambulance a, Patient p, Hospital h) {

 a.Alarm:SendTo(p, h);

 }
}

The three context rules, that are shown above, are a small and primitive subset of the
mass of context rules that form the complete emergency scenario. They should just
explain the purpose of such an abstraction layer.

Fig. 5. RFID reader with PDA device and a model emergency car with sensor equipment.

5.1 Emergency Scenario Hardware Setup

The hardware setup is based on three Siemens Loox devices for hosting the patient,
the mobile doctors and the ambulance car entities. In order to receive sensor informa-
tion about the proximity location of entities RFID (Radio Frequency Identification)

Modeling Context-Aware Behavior by Interpreted ECA Rules 1073

readers were used. For network ad-hoc communication purposes, wireless
IEEE802.11b compact flash cards are used. The opened device is shown in Figure 4.
To get proximity location information, the presentation floor material is tagged with
RFID transponders. The devices are now able to find themselves with the lookup
mechanism and to communicate over the context containers transport layer. The
emergency scenario is modeled with ECA context rules, in order to define the behav-
ior and the interaction between the emergency entities.

6 Conclusion

The goal of this work was, to show how complex ad-hoc scenarios could be modeled
by defining ECA rules for each entity, which is relevant for the scenario. A very flexi-
ble and stable context middleware software framework was implemented and tested
within an example scenario. Many different simulated entities (emergency cars 1-10,
mobile doctors 1-5, 1-10 ambulance drivers and nurses) were hosted in mobile context
containers, to show the flexibility of our context middleware. The scenario is not
bound to any fixed behavior, but could be changed at runtime through distributed ECA
rule deployment. Major future issues will be the visual composition of ECA context
rules and a lightweight security model to restrict access to the context model.

References

1. A. K. DEY, G. D. ABOWD: Toward a Better Understanding of Context and Context-
Awareness. GIT, GVU Technical Report GIT-GVU-99-22, June 1999.

2. A. FERSCHA, S. VOGL, W. BEER: Ubiquitous context sensing in wireless environments,
4th DAPSYS, Kluwer Academic Publishers 2002

3. Diego López de Ipiña: An ECA Rule-Matching Service for Simpler Development of Re-
active Applications, Published as a supplement to the Proceedings of Middleware 2001 at
IEEE Distributed Systems Online, Vol. 2, No. 7, November 2001

4. J. PASCOE, N. Ryan, D. Morse: Issues in developing context-aware computing. Handheld
and Ubiquitous Computing, Nr. 1707 in Lecture Notes in Computer Science, pages 208–
221, Heidelberg, Germany, September 1999. Springer-Verlag

5. JESS (Java Expert System Shell), http://herzberg.ca.sandia.gov/jess/
6. L. ARNSTEIN et al., „Labscape: A Smart Environment for the Cell Biology Laboratory”,

IEEE Pervasive Computing, July-September 2002, pp. 13–21.
7. PATON N.W. and Diaz O.: Active Databases Survey, ACM Computing Surveys, Vol. 31

No. 1, pp. 63–103, March 1999
8. RDF (Resource Description Framework), http://www.w3.org/RDF/
9. R. WANT, W. SCHILIT, et. al.: The PARCTAB Ubiquitous Computing Experiment,

Technical Report CSL-95-1, Xerox Palo Alto Research Center, March 1995.
10. SENTIENT COMPUTING, AT&T Laboratories, http://www.uk.research.att.com/spirit/
11. SEMANTIC WEB Organisation, http://www.semanticweb.org
12. SLP (Service Location Protocol), http://www.ietf.org/rfc/rfc2608.txt
13. T. KINDBERG, et al.: people, places, things: web presence for the real world

	1 Introduction
	2 Description of Digital and Non-digital Objects
	3 Framework Architecture Overview
	XML Configuration of Entities
	Lookup

	4 Dynamic Interaction of Entities through Context Rules
	Context Rule Syntax
	Attribute Interface Description with WSDL
	Rule Consistency
	Advantages of Interpreted Context ECA Rules

	5 Example Context Scenario
	Emergency Scenario Hardware Setup

	Conclusion
	References

