
A Security Scheme for Mobile Agent Platforms
in Large-Scale Systems

Michelle S. Wangham, Joni da Silva Fraga, and Rafael R. Obelheiro

Department of Automation and Systems
Federal University of Santa Catarina

C. P. 476 – 88040-900 – Florianópolis – SC – Brazil
{wangham,fraga,rro}@das.ufsc.br

Abstract. Mobile agents have recently started being deployed in large-
scale distributed systems. However, this new technology brings some se-
curity concerns of its own. In this work, we propose a security scheme
for protecting mobile agent platforms in large-scale systems. This scheme
comprises a mutual authentication protocol for the platforms involved,
a mobile agent authenticator, and a method for generation of protection
domains. It is based on SPKI/SDSI chains of trust, and takes advantage
of the flexibility of the SPKI/SDSI certificate delegation infrastructure
to provide decentralized authorization and authentication control.

1 Introduction

A mobile agent in a large-scale network can be defined as a software agent
that is able to autonomously migrate from one host to another in a heteroge-
neous network, crossing various security domains. In order for these agents to
exist within a system or to form themselves a system, they require a computing
environment—an agent platform—for deployment and execution.

The ability to move agents (code + state) allows deployment of services and
applications in a more flexible, dynamic, and customizable way with respect
to the client-server paradigm [1]. Despite its many benefits, the mobile agent
paradigm introduces new security threats from malicious agents and platforms
[2]. Due to these threats, security mechanisms should be designed to protect the
communications infrastructure, agent platforms and agents themselves. This pa-
per concentrates on mechanisms for protecting agent platforms against malicious
agents, considering large-scale distributed systems.

One of the main concerns with an agent platform implementation is ensuring
that agents are not able to interfere with one another or with the underlying
agent platform [3]. A common approach for accomplishing it is to establish iso-
lated execution domains (protection domains) for each incoming mobile agent
and platform, and to control all inter-domain access. Protection against mali-
cious agents is not restricted to confining their execution to their own execution
domains in agent platforms; other issues need to be considered when distributed
large-scale systems are the focus. For instance, generation of these protection

A. Lioy and D. Mazzocchi (Eds.): CMS 2003, LNCS 2828, pp. 104–116, 2003.
c© IFIP International Federation for Information Processing 2003



A Security Scheme for Mobile Agent Platforms in Large-Scale Systems 105

domains depends on distributed authentication and authorization mechanisms,
which makes it a difficult task.

The Java platform is quickly becoming the language of choice for imple-
menting mobile agent systems. Besides being considered a de facto standard for
programming distributed applications, Java has several properties that make it
a good fit for this task. However, although Java is very convenient for the cre-
ating mobile agents, its static and centralized access control model poses some
limitations with regard to security policy definition.

These considerations have led us to design a security scheme for protect-
ing agent platforms against malicious mobile agents in large-scale systems. This
scheme takes advantage of the flexibility of the SPKI/SDSI certificate delega-
tion mechanisms to accomplish decentralized authentication and authorization.
It includes a protocol for establishing secure channels, an algorithm for authenti-
cation of incoming mobile agents, and a scheme for generating isolated protection
domains for agents that aims to overcome some limitations of the Java 2 access
control model.

2 Security in Mobile Agent Platforms

A mobile agent platform provides an environment where agents can execute
themselves and interact with other agents. A malicious agent can attack the
platform it is currently visiting or other agents on the same platform, thus pos-
ing a significant threat to this platform. Possible security threats facing mobile
agent platforms include [3]: masquerading, when an agent poses as an autho-
rized agent in an effort to gain access to services and resources to which it is
not entitled or to deceive the agent with which it is communicating; denial of
service, when an agent attempts to consume an excessive amount of the agent
platform’s computing resources or to send repeatedly messages to another agent;
unauthorized access, for example when an agent obtains read or write access to
data for which it has no authorization, including access to agent’s state or code,
and repudiation, when a agent participates in a transaction or communication
and later claims that it did not happen.

Establishing isolated domains for agents is the most common technique for
protecting agent platforms resources and functionalities against malicious agents.
In addition to this approach, other techniques were proposed based on conven-
tional security techniques. Some of these techniques are: safe code interpreta-
tion [4][5], digital signatures [4][6][7], path histories [8], State Appraisal [2], and
Proof-Carrying Code (PCC) [9].

Many of these mechanisms offer an effective security to agent platforms and
their resources for some classes of applications, particularly when techniques are
combined. For instance, the domain isolation technique combined to code signing
(as provided in the Java 2 platform [4]) makes it possible to implement run-time
access control based on the authority of an agent (the owner)1. However, these
1 Limitations of the Java 2 access control model are described in section 6.



106 M.S. Wangham, J. da Silva Fraga, and R.R. Obelheiro

techniques are not really suitable to large-scale applications. Moreover, access
control based solely on owner of the agent does not seem to be appropriate when
multi-hop agents with free destinations are taken into consideration, since the
trust in an agent depends not only on the owner and the forwarding platform
but also on all platforms visited by the agent [8]. Therefore, an effective authen-
tication and authorization scheme for large-scale mobile agent systems should
be based on agent credentials, on the identities of agent owners and on the lists
of platforms visited by agents. Identities and credentials are usually represented
by, and stored in, digital certificates, such as those used in SPKI/SDSI.

3 SPKI/SDSI Infrastructure

The Simple Public Key Infrastructure/Simple Distributed Security Infrastruc-
ture(SPKI/SDSI) specification defines a simple and flexible distributed authen-
tication and authorization infrastructure based on digital certificates and local
name spaces [10].

SPKI/SDSI uses an egalitarian model of trust. The subjects (or principals)
are public keys and each public key is a certificate authority [11]. There is no hi-
erarchical global infrastructure as in X.509. Two types of certificates are defined
by SPKI/SDSI: name and authorization certificates. An authorization certificate
grants specific authorizations from the issuer to the subject of the certificate;
these authorizations are bound to a name, a group of names or a key. The issuer
of the certificate can also allow a principal to delegate the received permissions
to other principals.

The SPKI/SDSI delegation model allows the construction of chains of trust
that begin with a service guardian and arrive in principals’ keys. When a given
subject desires to obtain access to some resource, it must present a signed request
and a chain of authorization certificates for checking the needed permissions [11].

Since SPKI/SDSI follows a decentralized approach to authentication and au-
thorization, it is suitable for large-scale systems. Access rights can be delegated
to form a chain of certificates (controlled distribution of authorization). Au-
thorizations and permissions can be freely defined and are not restricted to any
predefined set [10]. The issuer of a certificate can specify certain conditions under
which the certificate is valid; this provides for finer-grained control of delegation.
Since certificates are bound to keys instead of names, they eliminate the need for
finding the public key corresponding to a given name [12], and can be also used
in situations where anonymity is desired. Due to these advantages, SPKI/SDSI
certificates were chosen to represent agent credentials in our security scheme.

4 A Proposal for Authentication and Authorization
Based on Chains of Trust

We now present an authentication and authorization scheme for large-scale mo-
bile agent systems. We assume that agents have free itineraries and are multi-
hop, that is, the number of platforms they traverse in a given itinerary is not



A Security Scheme for Mobile Agent Platforms in Large-Scale Systems 107

fixed. SPKI/SDSI chains of trust and the concept of federations provide scala-
bility and flexibility to this scheme.

4.1 Platform Federations

In this scheme, we use the concept of federation introduced in [13], which em-
phasizes the grouping of principals with common interests. With that, mobile
agent platforms can group according to their service classes, constituting ser-
vice federations. For example, the Mold Enterprise Federation may group the
mobile agent platforms from enterprises that manufacture molds and matrices.
The purpose of a federation is to assist its members on reducing principal names
and on building new chains of trust through its Certificate Manager (CM) [13].
These chains of trust between client and service are quickly and efficiently es-
tablished from name and authorization certificates available at the certificate
repository of the service federation. By storing name and authorization certifi-
cates in these repositories, the services available in the associated platforms can
be announced. The inclusion of a platform in one of these federations should
be negotiated with the association that controls this certificate storage service.
The CM offers a certificate search alternative, either for name reduction or for
creating new authorization chains.

Besides, a member of a federation can join other federations and different
federations can establish trust relationships. The certificate managers can be
associated to each other, linking those who, for affinity, can better represent
the needs of their members, creating webs of federations with global scope. The
main function of a web of federations is to help a client, through its agents, in
the search for access privileges that link it to the guardian of a service (another
platform). Further details on the concept of federations can be found in [13].

4.2 Authentication and Authorization Scheme

Fig. 1 shows the procedures defined in the security scheme, composed by preven-
tion and detection techniques that emphasize the protection of agent platforms
and their resources. In this scheme, after the mobile agent creation process, the
source and destination platforms (the ones which send and receive agents, re-
spectively) first go through a mutual authentication protocol so that a secure
channel between them can be established. After that, the agent will be sent
with its credentials to be authenticated by the destination platform and then
its domain of execution can be created. In other words, when an agent arrives
in a platform it presents its public key and a chain of SPKI/SDSI certificates
to a verifier that performs the authorization checks. From these information,
this verifier must generate the permissions required for the agent to be run in a
protection domain on its destination platform. This dynamic generation of per-
missions provides flexibility and follows the principle of least privilege. Chains
of trust also help to achieve the necessary scalability for Internet-based applica-
tions. The following section analyzes some aspects referring to the mechanisms
in the proposed scheme.



108 M.S. Wangham, J. da Silva Fraga, and R.R. Obelheiro

Fig. 1. Security Scheme for Agent Platform Protection

Creation of Mobile Agents. During the mobile agent creation process (see
Fig. 1, procedure 1), the owner, being the authority that an agent represents,
provides a set of SPKI/SDSI authorization certificates defining the agent’s cre-
dentials. It should be noted that this initial set of authorization certificates may
not be sufficient to grant access to certain resources in a given platform. So,
new certificates can be provided to the agent during its visits to other agent
platforms. For example, suppose that an agent needs to visit a transport enter-
prise associated to a mold enterprise. The agent may not have the certificates
needed to be received in this platform. Thus, the platform that represents the
mold enterprise can delegate certificates to this agent enabling it to access the
associated enterprise. The trust model proposed in SPKI/SDSI determines that
a client is responsible for finding certificates that enable it to access a given
service. Therefore, an agent can search for certificates on the webs of federations
and negotiate them when they are found.

The owner of the agent has to put in an object that will contain the list
of previously visited platforms (called the path register) a signature indicating
its identity and the identity of the first platform to be visited. This object is
attached to the agent. A list that indicates service federations whose member
platforms are authorized to execute the agent can be (optionally) defined and
attached to the agent. The path register and the list of federations are used to
analyze the history of the agent’s travels in the agent authentication process.

Finally, the agent’s owner must sign the code of the agent and its read-only
data, and then create the agent in its home platform to send it through the
network.

Secure Channel Establishment. In the proposed scheme, mutual authenti-
cation between the platforms involved must be established before agents can be
transferred. This authentication creates a secure channel in the communications
infrastructure between the authenticated parties that is used for agent transfers.

In accordance to the SPKI/SDSI model, identification is not done with
names, but with public keys, with digital signatures as the authentication mech-



A Security Scheme for Mobile Agent Platforms in Large-Scale Systems 109

anism. Thus, in platform authentication, for a digital signature to be verified, a
public key and a signed request must be present at the receiver.

Mutual authentication is performed during the secure channel establishment
between agents platforms. Fig. 2 shows the mutual authentication performed
with a challenge-response protocol, based on SPKI/SDSI certificates of the own-
ers (managers) of the platforms. The basis for authentication in SPKI/SDSI are
chains of authorization certificates [10].

In step 1, Fig. 2, the source platform sends a signed message containing a
request (establish trust) and a nonce (nonceSP), without any certificates. From
this request, the destination platform builds a signed challenge and sends it to
the source platform so that it can prove it has the required permissions (step 2).
The challenge is composed by information from the resource’s ACL, by nonceSP
and by a nonce generated by the destination platform (nonceDP). In step 3,
the source platform verifies the signature of the challenge to confirm the au-
thenticity of the destination platform. Then, it sends a signed response with the
request, nonceDP, and the authorization certificates for the desired operation.
From the chain of authorization certificates, the destination platform can check
the requester’s signature, finishing the authentication process (step 4).

Fig. 2. Protocol for Mutual Authentication of Platforms

It is important to note that the process of mutual authentication of platforms
is concluded with the establishment of a secure channel. This channel will be
used for all agents that are transferred between the two platforms, without need
for subsequent platform authentication.

For secure channel establishment, an underlying security technology—Secure
Sockets Layer (SSL)—is used to ensure confidentiality and integrity of commu-
nications between agent platforms. When a secure channel is established, the
source platform sends the agent to the destination platform along with its its
credentials for building an execution domain that is appropriate for the agent.

Mobile Agents Authentication. Before instantiating a thread to an agent,
the destination platform must authenticate the received agent. In order to pro-
tect against an agent, a platform depends not only on the verification of the
agent’s owner authenticity, but also on the degree of trust in the platforms al-
ready visited by the agent, since a mobile agent can become malicious by virtue
of its state having been corrupted by previously visited platforms [2]. One of the



110 M.S. Wangham, J. da Silva Fraga, and R.R. Obelheiro

contributions of this paper is the definition of a multi-hop authenticator that es-
tablishes trust on an agent, based on the authenticity of the owner of the agent,
on the authenticity of the platforms visited by the agent and on the federations
defined by the owner of the agent.

Consider the authenticator shown in Fig. 3; upon receiving a mobile agent,
a platform must first check, through verification of the agent’s signature (code
and read-only data), that this agent has not been corrupted and confirm its
association to a principal, its owner (step 1). Thus, modifications introduced by
malicious platforms can be easily detected by any platform visited by the agent.

Fig. 3. Multi-hop Agents Authenticator

For one-hop agents, the technique proposed in step 1 ensures the integrity
of an agent, but for multi-hop agents this technique is insufficient. For detecting
possible modifications and checking the agent’s traveling history, the destination
agent platform must analyze the agent’s path register (step 2). For that purpose,
each platform visited by the agent should add to the agent’s path register a
signed entry containing its identity (public key) and the identity (public key) of
the next platform to be visited, forming a history of the path followed by the
agent. In step 2, Fig. 3, the platform administrator has to define how the agent’s
path register is analyzed and how the trust level is established. The possibilities
shown in Fig 3 include only step 2.1, only step 2.2, or both steps2.

Moreover, we suggest that platform-generated sensitive data (write-once
data) should be stored in a container to be carried by the agents (as proposed by
Karnik in [7]). These sensitive data should be signed by the generating platform
so that possible modifications can be detected. This approach is vulnerable to
some attacks, however [14][15][16]. For instance, Roth [16] describes an attack
where a malicious platform, which is visited a second time by an agent or which
colludes with another platform, deletes all items that were added to the agent’s
container since one of its previous visits or since the agent’s departure from the
first platform. In this paper, we focus on protecting agent platforms, but it is
our intention to address the protection of agents in future work.

Generation of Protection Domains. Protection domains and the permis-
sions assigned to them are defined after trust in an agent has been established
2 An inconvenient is that analyzing an agent’s path becomes costlier as the path

register grows.



A Security Scheme for Mobile Agent Platforms in Large-Scale Systems 111

(a result from previous procedures). They are based on the agent’s SPKI/SDSI
authorization certificates and on trust and risk levels. The platform guardian
verifies the agent’s certificates in order to define the set of permissions. This
decouples the privileges granted to agents (their credentials) from the privileges
required to access resources (the access control policy), which provides flexibility
and scalability to the security scheme.

Some extensions to the Java 2 security model are needed for generating the
protection domain where an agent will be run. These extensions, represented
by grey boxes in Fig. 4, are: SPKISecureClassLoader, required for extracting
certificates from the incoming agent and for creating a protection domain of a
thread; SPKIPolicy, an object that represents a policy that defines, from the
certificates carried by an agent, which Java permissions will be associated to the
application domain; and SPKIVerifier, required for verifying the authenticity of
SPKI certificates.

Following the dynamics depicted in Fig. 4, the platform administrator de-
scribes the security policy of the agent platform by mapping the authorization
granted from SPKI/SDSI certificates to Java permissions, defining for that pur-
pose a policy file. When an agent is received in a platform, its credentials are
forwarded by SPKISecureClassLoader to the SPKIPolicy object which interprets
them. When SPKI permissions are mapped to Java permissions, the Java sup-
port generates the corresponding protection domain for the thread that runs the
agent; the Java permissions are made available through PermissionCollection.

Fig. 4. Dynamics for Protection Domain Generation

If a thread (agent) makes an access request to a resource outside of its ap-
plication domain, that is, in a system domain, AccessController is activated to
check whether the access must be allowed. It must verify, in the created protec-
tion domain, whether the principal has a corresponding Permission object in its
collection of permissions. If it does, the thread can exchange domains, entering
in the system domain.



112 M.S. Wangham, J. da Silva Fraga, and R.R. Obelheiro

5 Implementation

A prototype of the security scheme for protection of agent platforms has been
defined and implemented in order to demonstrate its suitability. The architecture
of this prototype is shown in Fig. 5.

Fig. 5. Architecture of the Prototype

For the mobile agents support layer we have chosen IBM Aglets3, an open-
source platform that uses the Java platform. Aglets provides mechanisms for
code and state information mobility, and an environment (called Tahiti) which
supports creation, cloning, dispatching, and retraction of agents. Aglets supports
both Agent Transfer protocol (ATP) and Java Remote Method Invocation (RMI)
as communication infrastructures. In our work, we have chosen to use only RMI
because it is better suited to purely Java-based distributed systems.

The SPKI/SDSI Infrastructure component of the prototype architecture is
responsible for the creation of SPKI/SDSI certificates for agent platforms and
mobile agents. For this component, we have adapted an existing Java library
that implements SDSI 2.0 [17] and provides the necessary functionalities.

A tool for assisting the agent creation process was implemented. This GUI-
based application allows an owner to define the credentials and list of federations
for an agent, to sign the code and read-only data, and to initialize the path
register and the write-once container.

The protocol for secure channel establishment (see Fig. 2) was implemented
with the SDSI 2.0 library and with Java 2 cryptographic tools. SSL support is
provided by the iSaSiLk toolkit4. The Aglets platform was adapted to optionally
use RMI over SSL.

The multi-hop authenticator described in section 4.2 is being implemented
with the Java 2 cryptographic tools and the SDSI 2.0 library. Presently, all entries
in an agent’s path register are analyzed considering only step 2.1 (Fig. 3). Only
two levels of trust were defined according to the list of federations: authorized
or non-authorized platforms. That is, the platform either is or is not a member
3 http://aglets.sourceforge.net/
4 http://jce.iaik.tugraz.at/products/02 isasilk/



A Security Scheme for Mobile Agent Platforms in Large-Scale Systems 113

of a federation present in the list of federations previously defined for the agent
mission. The multi-hop algorithm as currently defined is shown in Fig. 6.

Fig. 6. Multi-hop Authenticator

The scheme for generation of protection domains (see Fig. 4) has been fully
designed but only partially implemented in the Aglets Platform. When a agent
is dispatched, the Aglets Platform attaches the certificates defined in the agent
creation to the serialized agent through SPKIAgletWriter. When the agent is
received in the destination platform, SPKISecureClassLoader calls SPKIAgle-
tReader to extract these certificates.

6 Related Work

Most Java-based agent platforms take advantage of the Java security models
(especially the Java 2 version) to implement part of their security mechanisms.
Among these platforms, there are commercial ones, such as IBM Aglets and
GMDFokus Grasshopper, and academic ones, such as SOMA (University of
Bologna) and Ajanta (University of Minnesota).

These mobile agent platforms extend the Java Security Manager to provide
a more flexible and adequate solution to agent platforms and to implement
protection domains that isolate mobile agents, preventing malicious attacks from
them. The difference between authorization schemes in these platforms lies in
the information used to determine the set of access rights for an incoming agent.
Aglets and Ajanta use only the agent’s owner identity. Grasshopper uses access
control policies based on the owner’s identity or on the name of its group (group
membership). In SOMA the principals are associated to roles that identify the
operations allowed on the resources of the system. All these approaches are not
really suitable to large-scale systems.

Besides, it is important to note that the Java 2 access control model has
some limitations that need to be analyzed. Instead of following the distributed



114 M.S. Wangham, J. da Silva Fraga, and R.R. Obelheiro

nature of its execution model, the Java 2 security model uses a centralized au-
thorization scheme5. When running, each code is labeled as belonging to one or
more protection domains. Each domain has a set of permissions associated from
a policy configuration file. Therefore, this file defines a static mapping between
each mobile component and the permissions granted to it for execution in a lo-
cal environment. In addition to a number of difficulties related to programming,
development of a distributed and dynamic environment is constrained by limi-
tations that stem from the concentration of trust on a single configuration file,
which demands an up-front static definition of all distributed components in the
system and their corresponding security attributes.

Agent authentication is essential for implementing an effective authorization
scheme in mobile agent systems. The Aglets and Grasshopper platforms do not
have mechanisms for mobile agent authentication. SOMA authenticates agents
based on several data contained in its credentials: domain and place of origin,
class which implements the agent and user responsible for the agent. Before
migration, these information, the initial state of agent and its code are digitally
signed by the user that creates the agent. When an agent arrives at a remote site,
its credentials are verified with regard to authenticity by checking the signature of
the agent’s owner. The Ajanta platform uses a challenge-response authentication
protocol with random nonce generation to prevent replay attacks, based on the
signature of the agent’s owner.

In comparison to the static model in Java 2 and to the platforms discussed
above, our scheme has the advantage of decoupling privilege attributes (cre-
dentials) from control attributes (policies), its use of some Java security features
notwithstanding. This means that, although a policy configuration file still needs
to be statically defined, the proposed mechanisms add the flexibility offered by
SPKI certificates to domain generation. That is, domains are dynamically defined
when an agent aggregates to its credentials the delegated certificates received
during its itinerary.

Besides, in the agent authentication process described in section 5, the infor-
mation used to determine an agent’s set of access rights is based not only on the
identity of the agent’s owner, but also on the public keys of the owner and of the
visited platforms, which avoids global name resolutions in large-scale systems.

Two related proposals use SPKI/SDSI certificates to improve access control
in Java 2. The first, developed by Nikander and Partnen [12], uses SPKI autho-
rization certificates to delegate Java permissions that directly describe possible
permissions associated to a protection domain. In this work, the authorization
tag of the SPKI certificate was extended to express Java permissions. This solu-
tion has the disadvantage of using modified SPKI certificates. The second work
[18] proposes two improvements to access control in Java 2: association of access
control information to each mobile code segment (applet) as attributes, and the
introduction of intermediate elements in the access control scheme for assisting

5 This centralization refers to the fact that all access control is done from a single
configuration file that defines the whole security policy of a machine. Thus, there is
only one ACL relating all subjects and objects in the machine.



A Security Scheme for Mobile Agent Platforms in Large-Scale Systems 115

the configuration of access control attributes of incoming mobile programs and of
access control information located in the runtime environments. The SPKI/SDSI
group mechanism is implemented through name certificates and makes these im-
provements possible. Molva and Roudier’s work [18] does not provide details on
how their proposal can be implemented nor on how to combine it to current Java
2 security model.

Both works discussed above do not deal with mutual authentication between
source and destination platforms nor analyze the history of the visited platforms
to establish trust on mobile code. Only the first proposal has flexibility charac-
teristics similar to the ones proposed in the present work, in which the domains
are formed according to the certificates delegated to an agent in its creation
and throughout its itinerary. Nikander and Partanen propose that the search for
forming new chains should be responsibility of the server. However, as mentioned
before, this is not in accordance to the SPKI/SDSI model.

7 Concluding Remarks

Security issues still hamper the development of applications with mobile systems.
Current security mechanisms do not present satisfactory results for protecting
mobile agent platforms. There are even more limitations when we consider large-
scale systems, which impose stronger requirements with regard to flexibility and
scalability.

Our security scheme was motivated by perception of these limitations and a
concern with aspects of security specific to large-scale applications. Its purpose
is to prevent mobile agent attacks against platforms, defining a procedure that
employs a combination of prevention and detection techniques. This scheme is
based on decentralized authorization and authentication control that is suitable
for large-scale systems due to its use of SPKI/SDSI authorization certificates.
The mechanism of authorization certificate delegation allows a separation be-
tween agent credentials and security policy definition. The scheme for generation
of protection domains is more flexible than those of the related works.

The work described in this paper, although not fully implemented yet, al-
ready presents satisfactory results. As soon as it is concluded, its performance
will be properly evaluated. This prototype is currently being integrated to a dis-
tributed Internet-based application in order to demonstrate its usefulness [19].
Considering the protection of platforms from agents and of the communication
channel, the proposed security scheme effectively mitigates the perceived security
threats, albeit further work is still needed to define mechanisms for protection
of mobile agents against malicious agent platforms.

Acknowledgments. The authors thank the “IFM (Instituto Fábrica do
Milênio)” and “Chains of Trust” project (CNPq 552175/01-3) members for their
contributions, especially Elizabeth Fernandes, Galeno Jung, Ricardo Schmidt,
and Rafael Deitos. We also thank the anonymous reviewers for their helpful



116 M.S. Wangham, J. da Silva Fraga, and R.R. Obelheiro

comments. The first and second authors are supported by CNPq (Brazil). The
third author is supported by CAPES (Brazil).

References

1. Vigna, G., ed.: Mobile Agents and Security. LNCS 1419. Springer-Verlag (1998)
2. Farmer, W., Guttman, J., Swarup, V.: Security for mobile agents: Issues and

requirements. In: Proc. 19th National Information System Security Conference.
(1996)

3. Jansen, W., Karygiannis, T.: Mobile agent security. Technical Report NIST Special
Publication 800-19, National Institute of Standards and Technology (1999)

4. Sun: Java 2 SDK security documentation. (2003)
http://java.sun.com/security/.

5. Levy, J., Ousterhout, J., Welch, B.: The Safe-Tcl security model. Technical Report
SMLI TR-97-60, Sun Microsystems (1997)

6. Gray, R., Kotz, D., Cybenko, G., Rus, D.: D’Agents: Security in a multiple-
language, mobile agent systems. In Vigna, G., ed.: Mobile Agents and Security.
LNCS 1419. Springer-Verlag (1998) 154–187

7. Karnik, N.: Security in Mobile Agent Systems. PhD thesis, University of Minnesota
(1998)

8. Ordille, J.: When agents roam, who can you trust? In: 1st Conference on Emerging
Technologies and Applications in Communications. (1996)

9. Necula, G., Lee, P.: Safe, untrusted agents using proof-carrying code. In Vigna,
G., ed.: Mobile Agents and Security. LNCS 1419. Springer-Verlag (1998) 61–91

10. Ellison, C.M., Frantz, B., Lampson, B., Rivest, R., Thomas, B., Ylönen, T.: SPKI
requirements. RFC 2693, Internet Engineering Task Force (1999)

11. Clarke, D.E.: SPKI/SDSI HTTP server/certificate chain discovery in SPKI/SDSI.
Master’s thesis, Massachusetts Institute of Technology (MIT) (2001)

12. Nikander, P., Partanen, J.: Distributed policy management for JDK 1.2. In: Proc.
1999 Network and Distributed Systems Security Symposium. (1999)

13. Santin, A., Fraga, J., Mello, E., Siqueira, F.: Extending the SPKI/SDSI model
through federation webs. In: Proc. 7th IFIP Conference on Communications and
Multimedia Security. (2003)

14. Yee, B.: A sanctuary for mobile agents. In: Secure Internet Programming. LNCS
1603. Springer-Verlag (1997) 261–273

15. Karjoth, G., Asokan, N., Gulcu, C.: Protecting the computing results of free-
roaming agents. In: Proc. 2nd International Workshop on Mobile Agents. (1998)

16. Roth, V.: On the robustness of some cryptographic protocols for mobile agent
protection. In Picco, G.P., ed.: Mobile Agents. LNCS 2240. Springer-Verlag (2001)
1–14

17. Morcos, A.: A Java implementation of Simple Distributed Security Infrastructure.
Master’s thesis, Massachusetts Institute of Technology (1998)

18. Molva, R., Roudier, Y.: A distributed access control model for Java. In: European
Symposium on Research in Computer Security (ESORICS). (2000)

19. Rabelo, R., Wangham, M., Schmidt, R., Fraga, J.: Trust building in the creation
of virtual enterprises in mobile agent-based architectures. In: 4th IFIP Working
Conference on Virtual Enterprises. (2003)

http://java.sun.com/security/

	Introduction
	Security in Mobile Agent Platforms
	SPKI/SDSI Infrastructure
	A Proposal for Authentication and Authorization Based on Chains of Trust
	Platform Federations
	Authentication and Authorization Scheme

	Implementation
	Related Work
	Concluding Remarks



