
Private Circuits: Securing Hardware against Probing
Attacks

Yuval Ishai1�, Amit Sahai2, and David Wagner3

1 Technion — Israel Institute of Technology, yuvali@cs.technion.ac.il
2 Princeton University, sahai@cs.princeton.edu

3 University of California, Berkeley, daw@cs.berkeley.edu

Abstract. Can you guarantee secrecy even if an adversary can eavesdrop on
your brain? We consider the problem of protecting privacy in circuits, when faced
with an adversary that can access a bounded number of wires in the circuit. This
question is motivated by side channel attacks, which allow an adversary to gain
partial access to the inner workings of hardware. Recent work has shown that side
channel attacks pose a serious threat to cryptosystems implemented in embedded
devices. In this paper, we develop theoretical foundations for security against
side channels. In particular, we propose several efficient techniques for building
private circuits resisting this type of attacks. We initiate a systematic study of
the complexity of such private circuits, and in contrast to most prior work in this
area provide a formal threat model and give proofs of security for our constructions.

Keywords: Cryptanalysis, side channel attacks, provable security, secure multi-
party computation, circuit complexity.

1 Introduction

This paper concerns the following fascinating question: Is it possible to maintain secrecy
even if an adversary can eavesdrop on your brain?A bit more precisely, can we guarantee
privacy when one of the basic assumptions of cryptography breaks down, namely, when
the adversary can gain access to the insides of the hardware that is making use of our
secrets? We formalize this question in terms of protecting privacy in circuits, where an
adversary can access a bounded number of wires in the circuit. We initiate the study
of this problem and present several efficient techniques for achieving this new type of
privacy. Before describing the model and our contribution in more detail, we motivate
the problem by providing some necessary background.

1.1 Background

Our understanding of cryptography has made tremendous strides in the past three de-
cades, fueled in large part by the success of analysis- and proof-driven design. Most such
work has analyzed algorithms, not implementations: typically one thinks of a cryptosys-
tem as a black box implementing some mathematical function and implicitly assumes the
� Work done in part while at Princeton University.

D. Boneh (Ed.): CRYPTO 2003, LNCS 2729, pp. 463–481, 2003.
c© International Association for Cryptologic Research 2003

464 Y. Ishai, A. Sahai, and D. Wagner

implementation faithfully outputs what the function would (and nothing else). However,
in practice implementations are not always a true black box: partial information about
internal computations can be leaked (either directly or through side-channels), and this
may put security at risk.

This difference between implementations and algorithms has led to successful attacks
on many cryptographic implementations, even where the underlying algorithm was quite
sound. For instance, the power consumed during an encryption operation or the time
it takes for the operation to complete can leak information about intermediate values
during the computation [25,26], and this has led to practical attacks on smartcards.
Electromagnetic radiation [33,16,34], compromising emanations [36], crosstalk onto
the power line [37,35], return signals obtained by illuminating electronic equipment [3,
35], magnetic fields [32], cache hit ratios [24,30], and even sounds given off by rotor
machines [23] can similarly give the attacker a window of visibility on internal values
calculated during the computation. Also of interest is the probing attack, where the
attacker places a metal needle on a wire of interest and reads off the value carried along
that wire during the smartcard’s computation [2]. In general, side channel attacks have
proven to be a significant threat to the security of embedded devices.

The failure of proof-driven cryptography to anticipate these risks comes from an
implicit assumption in many1 currently accepted definitions in theoretical cryptography,
namely, the secrecy assumption. The secrecy assumption states that legitimate partic-
ipants in a cryptographic computation can keep intermediate values and key material
secret during a local computation. For instance, by modeling a chosen-plaintext attack
on the encryption scheme E as an algorithm AEk with oracle access to Ek, we implic-
itly assume that the device implementing Ek outputs only Ek(x) on input x, and does
not leak anything else about the computation of Ek(x). Thus the ‘Standard Model’ in
theoretical cryptography often takes the secrecy assumption for granted, but as we have
seen, there are a bevy of ways that the secrecy assumption can fail in real systems.

One possible reaction is to study implementation techniques that ensure the secrecy
assumption will always hold. For instance, we can consider adding large capacitors
to hide the power consumption, switch to dual-rail logic so that power consumption
will be independent of the data, shield the device in a tamper-resistant Faraday cage to
prevent information leakage through RF emanations, and so on. Many such hardware
countermeasures have been proposed in the literature. However, a limitation of such
approaches is that, generally speaking, each such countermeasure must be specially
tailored for the set of side channels it is intended to defeat, and one can only plan a
defense if one knows in advance what side channels an attacker might try to exploit.
Consequently, if the designer cannot predict all possible ways in which information
might leak, hardware countermeasures cannot be counted on to defend reliably against
side channel attacks.

This leaves reason to be concerned that hardware countermeasures may not be enough
on their own to guarantee security. If the attacker discovers a new class of side channel
attacks not anticipated by the system designer, all bets are off. Given the wide variety of
side channel attacks that have been discovered up till now, this seems like a significant

1 This implicit assumption is definitely not universal. For instance, the field of secure multi-party
computation asks for security even when some parties can be corrupted or observed.

Private Circuits: Securing Hardware against Probing Attacks 465

risk: As a general rule of thumb, wherever three or four such vulnerabilities are known, it
would be prudent to assume that there may be another, similar but unknown vulnerability
lurking in the wings waiting to be discovered. In particular, it is hard to predict what
other types of side channel pitfalls might be discovered in the future, and as a result, it is
hard to gain confidence that any given implementation will be free of side channels. This
is a “risk of the unknown”, rather than a known risk2, and risks of the unknown are the
worst kind of risks to assume. Consequently, the secrecy assumption seems optimistic,
and we submit that hardware countermeasures may not be the final answer.

A different possible response is to design algorithms that, when implemented, will
be inherently robust against side channel attacks. For instance, Daemen and Rijmen
proposed replacing each wire of a circuit by two wires, one carrying the original bit
and the other its complement [15]; Messerges proposed “data masking”, where each
value is split into two shares using a 2-out-of-2 secret sharing scheme [27]; Goubin
and Patarin suggested a “duplication” method based on similar methods [21]; and many
other proposals can be found in the literature. However, none of those schemes have
been proven secure, and unsurprisingly, some have since been broken [11,14]. This
experience suggests that the field needs to be put on solid theoretical foundations. For
obvious reasons, we would prefer a principled approach that has been proven secure
over an ad-hoc countermeasure.

1.2 Our Contribution

In this paper, we take on this challenge. Working in the context of Boolean circuits, we
show how to implement cryptosystems (or any algorithm) in a way that can tolerate the
presence of a large class of side channel attacks without loss of security. In particular,
we show how to transform any circuit implementing some cryptographic algorithm into
another, larger circuit that implements the same functionality but that will remain secure
even if the attacker can observe up to any t internal bits produced during the computation
within one clock cycle.

As a result, our constructions provide a generic defense against probing attacks. They
are generic in the sense that we defend against a large class of attacks. To defend against
information leakage, we do not need to know how the information might leak; rather, we
only need to predict how much information might leak or at what rate. Our constructions
are also generic in the sense that they apply to any cryptosystem of interest: rather than
trying to secure just, say, AES encryption, we show that any circuit whatsoever can be
made robust against probing attacks.

Also, we emphasize that our constructions are provably secure. We develop a formal
model of the adversary, propose definitions of security against probing attacks, and prove
that our constructions meet these definitions. This puts the field on a principled theoretical
footing and removes fears that our proposals might be broken by cryptanalysis.

Our Model. Ideally, we would like to achieve security against an all-powerful attacker,
i.e. one that can observe every internal value produced during the computation. How-
ever, this task is generally impossible to achieve, as follows from the impossibility of

2 We thank Mark Miller for introducing us to this turn of phrase.

466 Y. Ishai, A. Sahai, and D. Wagner

Table 1. A summary of our main results. Here n denotes the size of the original circuit and t the
number of adversarial probes we wish to tolerate.All uses of O() notation hide small constants. We
use Õ() to hide large constants, polylogarithmic factors, or polynomials in a security parameter.

Applies to Privacy type Size Sec. Comments

any circuit perfect O(nt2) §4 our basic scheme
PRG circuits computational O(nt) §6 only applies to pseudorandom generators

any circuit computational O(nt2) + Õ(t3) §6 derandomized version of basic scheme
any circuit statistical Õ(nt) §5
any circuit statistical Õ((w + t)d) §5 layered circuit of width w and depth d

obfuscation [4]. Instead, we settle for achieving security against adversaries that are lim-
ited in their power to observe the computation. There are many ways we could consider
limiting the adversary, but in this paper we choose a simple metric: a t-limited adversary
is one that can observe at most t wires of the circuit within a certain time period (such
as during one clock cycle).3 We believe this is a reasonable restriction, as most side
channels give the attacker only partial information about the computation. In particular,
in probing attacks the cost of micro-probing equipment is directly related to the number
of needles one can manipulate at one time—a station with five probes is considerably
more expensive than one with only a single probe—and so an attacker is limited in the
number of wires that can be observed at any one time. Consequently, the value t is a
good measure of the cost of a probing attack. We refer the reader to Section 2 for a
more detailed treatment of the model, in particular for the useful case of stateful circuits
which carry state information from one invocation to the next.

Our model can be compared to that of Chari, et al., who took a first step by ana-
lyzing k-out-of-k secret sharing in a model where the attacker can obtain a noisy view
of all circuit elements [11], with applications to security against power analysis. That
work, however, did not provide security against probing attacks or other side channels
where the attacker can view any t wires of his choosing, and our constructions are quite
different from theirs. Also of relevance are works on exposure-resilient functions and
all-or-nothing transforms (e.g. [9]), which attempt to efficiently secure storage (but not
computation) against probing attacks, and work on oblivious RAM (cf. [20]) aimed at
protecting software by hiding the access pattern of a (trusted) CPU.

MPC on Silicon? There is an interesting relation between the problem we study and
that of secure multi-party computation (MPC). In some sense, our contribution may
be viewed as a novel application of MPC techniques to the design of secure hardware.
We would like to stress, however, that our focus and goals are quite different from the
traditional ones in the MPC literature, and that our main results are not derived from
state-of-the-art results in this area. We refer the reader to Appendix A for a detailed
discussion of the relation between our problem and the MPC problem.

3 By default, we allow the adversary to adaptively move its t probes between time periods, but
not within a time period. See Section 2 for more details.

Private Circuits: Securing Hardware against Probing Attacks 467

Our results. Our basic results are as follows. We show that any circuit with n gates can
be transformed into a circuit of size O(nt2) that is perfectly secure against all probing
attacks leaking up to t bits at a time (see Section 4). This general transformation increases
circuit size by a factor of O(t2), but for some specific cryptosystems we can do better.
For PRG’s, we can find constructions that yield an O(nt) transformed circuit size, rather
than O(nt2) (Section 6). Finally, we present statistically private transformations which
significantly improve the asymptotic efficiency of previous constructions, but whose
concrete efficiency becomes better only when t is quite large. See Table 1 for a summary
of the main results. Additional results, such as a trading circuit size for increased latency,
will be included in the full version of this paper.

We do not know how practical our constructions will be. However, our results al-
ready show that the cost of security is not too high. Since many cryptosystems can be
implemented quite efficiently in hardware (e.g., n ≈ 103 or 104 gates), and since our
use of big-O() notation typically does not hide any large constants, it seems that security
using our techniques is within the reach of modern systems. We leave a more thorough
performance analysis to others.

2 Definitions

Circuits. We will examine probing attacks in the setting of Boolean circuits. A de-
terministic circuit C is a directed acyclic graph whose vertices are Boolean gates and
whose edges are wires. We will assume without loss of generality that every gate has
fan-in at most 2 and fan-out at most 3. A randomized circuit is a circuit augmented with
random-bit gates. A random-bit gate is a gate with fan-in 0 that produces a random bit
and sends it along its output wire; the bit is selected uniformly and independently of
everything else afresh for each invocation of the circuit.

The size of a circuit (usually denoted by n) is defined as the number of gates and its
depth is the length of the longest path from an input to an output. We will sometimes
consider a width-w depth-d layered circuit, where the underlying graph is a depth-d
layered graph with at most w wires connecting two adjacent layers.

A stateful circuit is a circuit augmented with memory cells. A memory cell is a
stateful gate with fan-in 1: on any invocation of the circuit, it outputs the previous input
to the gate, and stores the current input for the next invocation. Thus, memory cells act as
delay elements. We extend the usual definition of a circuit by allowing stateful circuits
to possibly contain cycles, so long as every cycle traverses at least one memory cell.
When specifying a stateful circuit, we must also specify an initial state for the memory
cells. When C denotes a circuit with memory cells and s0 an initial state for the memory
cells, we write C[s0] for the circuit C with memory cells initially filled with s0. Stateful
circuits can also have external input and output wires. For instance, in an AES circuit the
internal memory cells contain the secret key, the input wires a plaintext, and the output
wires produce the corresponding ciphertext.

We define two distinct notions of security, for stateless and stateful circuits. While
we view the stateful model as more interesting from an application point of view, the
stateless model is somewhat cleaner and solutions for this model are used as the basis
for solutions for the stateful model.

468 Y. Ishai, A. Sahai, and D. Wagner

Privacy for stateful circuits. Let T be an efficiently computable randomized algorithm
mapping a (stateful) circuit C along with an initial state s0 to a (stateful) circuit C ′ along
with an initial state s′

0. We say that T is a t-private stateful transformer if it satisfies
soundness and privacy, defined as follows:

Soundness. The input-output functionality of C initialized with s0 is indistinguishable
from that of C ′ initialized with s′

0. This should hold for any sequence of invocations on
an arbitrary sequence of inputs. In other words, C[s0] and C ′[s′

0] are indistinguishable
to an interactive distinguisher.

Privacy. We require that C ′ be private against a t-limited interactive adversary. Specif-
ically, the adversary is given access to C ′ initialized with s′

0 as its internal state. Then,
the adversary may invoke C ′ multiple times, adaptively choosing the inputs based on
the observed outputs. Prior to each invocation, the adversary may fix an arbitrary set of
t internal wires to which it will gain access in that invocation. We stress that while this
choice may be adaptive between invocations, i.e., may depend on the outputs and on
wire values observed in previous invocations, the adversary is assumed to be too slow
to move its probes while the values propagate through the circuit.4 To define privacy
against such a t-limited adversary, we require the existence of a simulator which can
simulate the adversary’s view using only a black-box access to C ′, i.e., without having
access to any internal wires.5

Note that randomization is vital for stateful transformers, for otherwise it is im-
possible to hide the initial state from the adversary. However, apart from the (trusted)
randomized initialization, the circuit C ′ may be deterministic.

We distinguish between three types of transformers: perfect, statistical, and computa-
tional, corresponding to the quality of indistinguishability in the soundness requirement
and the type of emulation provided by the simulator. For the latter two types of se-
curity, we assume that T is also given a security parameter k in terms of which the
indistinguishability is defined and the complexity of T is measured.

Privacy for stateless circuits. In contrast to the stateful case, where inputs and outputs
are considered public and it is only the internal state that is hidden, privacy for stateless
circuits should keep both inputs and outputs hidden in every invocation. To make this
possible, we allow the use of a randomized input encoder I and an output decoder O, a
pair of circuits whose internal wires cannot be probed by the adversary. Both I and O
should be independent of the circuit C being transformed, and will typically require a
small number of gates to compute. Thus, they may be thought of as being implemented
by expensive tamper-resistant hardware components. A private stateless transformer can
now be defined similarly to the stateful case.

Let T be an efficiently computable deterministic function mapping a stateless circuit
C to a stateless circuit C ′, and let I, O be as above. We say that (T, I, O) is a t-private
stateless transformer if it satisfies soundness and privacy, defined as follows:

4 Most of our constructions are in fact secure even against a fully adaptive adversary, that can also
move its probes within an invocation, as long as the total number of probes in each invocation
does not exceed t.

5 In a case where C is randomized, the adversary’s view should be simulated jointly with the
circuit’s outputs. This is necessary to capture information learned about the outputs.

Private Circuits: Securing Hardware against Probing Attacks 469

Soundness. The input-output functionality of O ◦C ′ ◦I (i.e., the iterated application of
I, C ′, O in that order) is indistinguishable from that of C. Note that in the deterministic
case this implies functional equivalence.

Privacy. We require that the view of any t-limited adversary, which attacks O ◦ C ′ ◦ I
by probing at most t wires in C ′, can be simulated from scratch, i.e. without access to
any wire in the circuit. As in the stateful case, the identity of the probed wires has to be
chosen in advance by the adversary.

3 Perfect Privacy for Stateless Circuits

In this section we present our first construction for protecting privacy in stateless circuits.
In the next section we will show how to use this to achieve protection for the more useful
model of stateful circuits, where the contents of memory are to be protected.

Similarly to interactive protocols for secure multi-party computation (e.g., [6,19]),
our construction makes use of a simple secret-sharing scheme. The new twist in the
circuit setting is that the atomic unit of information observable by the adversary is any
intermediate computation rather than an entire party in the protocol setting. We achieve
our result through a careful choice of intermediate computations, which allows us to
obtain privacy without losing efficiency. The constants involved in the result we present
here are quite small, and this construction may be of practical value. We now establish:

Theorem 1. There exists a perfectly t-private stateless transformer (T, I, O) such that
T maps any stateless circuit C of size n and depth d to a randomized stateless circuit of
size O(nt2) and depth O(d log t).

Proof. For simplicity, we focus on the case that C is deterministic. We start by describing
the construction of the transformer (T, I, O). Let6 m = 2t.

Input Encoder I: Each binary input x is mapped to m + 1 binary values: First, m
random binary values r1, . . . , rm are chosen using m random-bit gates. The encoding
is then these m random values together with rm+1 = x ⊕ r1 ⊕ · · · ⊕ rm. The circuit I
computes the encoding of each input bit independently in this way.

Output Decoder O: Corresponding to each output bit of C will be m + 1 bits
y1, . . . , ym+1 produced by T (C). The associated output bit of C computed by O will
be y1 ⊕ · · · ⊕ ym+1.

Circuit Transformer T : Assume without loss of generality that the circuit C consists
of only NOT and AND gates. We will construct a transformed circuit C ′, maintaining
the invariant that corresponding to each wire in C will be m + 1 wires in C ′ carrying
an additive m + 1 out of m + 1 secret sharing of the value on that wire of C. The circuit
C ′ is obtained by transforming the gates of C as follows.

For a NOT gate acting on a wire w, we merely take the m + 1 wires w1, . . . , wm+1
associated with w in C ′, and put a NOT gate on w1.

6 Note that there is a way to slightly modify this construction which requires m = t instead of
m = 2t. See below.

470 Y. Ishai, A. Sahai, and D. Wagner

Consider an AND gate in C with inputs a, b and output c. In C ′, we will have
corresponding wires a1, . . . , am+1 and b1, . . . , bm+1. Recall that a =

∑
i ai mod 2

and b =
∑

i bi mod 2. Thus c = (a AND b) =
∑

i,j aibj mod 2. The difficulty is in
computing shares of c by grouping together elements from the summation so that t
intermediate values do not reveal any information to the adversary. We now describe our
technique for doing so: In the transformation of this gate, we first compute intermediate
values zi,j for i �= j. For each 1 ≤ i < j ≤ m + 1, we introduce a random-bit gate
producing a random bit zi,j . Then we compute zj,i = (zi,j ⊕ aibj) ⊕ ajbi. Note that
individually each zi,j is distributed uniformly, but any pair zi,j and zj,i depend on ai,
aj , bi, and bj . Now, we compute the output bits c1, . . . , cm in C ′ of this AND gate in C
as

ci = aibi ⊕
⊕

j �=i

zi,j .

In this way, each AND gate in C is expanded to a “gadget” of O(m2) gates in C ′, and
the gadgets in C ′ are connected in the same way that the AND gates of C are connected.
The resulting circuit, call it C ′, is the transformed version of C produced by T : i.e., we
define T (C) = C ′, with C ′ as above. This completes the description of T .

Clearly, this construction preserves the functionality of the original circuit. To prove
t-privacy, we must show how to simulate the view of the t-limited adversary without
knowing the input values for C. The simulation will proceed by running the adversary,
and providing it with answers to its t queries. We will show that the distribution of
answers our simulation provides is identical to the distribution the adversary would
obtain in a real attack on C ′.

The simplest description of the simulator is just this: Answer all adversary queries
based on the evaluation of the circuit C ′ when fed uniform and independent bits as
input. In order to prove that this simulation works, we give a different description of
the simulator. We first describe the simulator for a circuit C consisting of a single AND
gate, and then extend the proof and simulation to the general case.

Simulation for a single gate. Let C ′ be the transformed circuit, consisting of a
single gadget, with input wires {ai} and {bi}, and outputs {ci}. Recall that in a true
evaluation of C ′, the ai’s and bi’s are additive secret shares with the property that any m
shares from the ai’s are distributed as uniform independent random bits, and similarly
for the bi’s. We will argue that a perfect simulation of the adversary’s query responses
is possible based on knowledge of m or fewer shares from the ai’s and the bi’s. Since
such a collection of shares is distributed uniformly, this will establish our result.

Suppose an adversary corrupts wires w1, . . . , wt in C ′. We will define a set I ⊂
[m + 1] of indices such that the joint distribution of values assigned to the wires wh

(for any specific inputs a and b to the original circuit C) can be perfectly and efficiently
simulated given the values of a|I := (ai)i∈I and b|I . As mentioned above, the values a|I
and b|I , in turn, can be perfectly simulated by picking them uniformly and independently
at random, as long as |I| ≤ m. Hence, it suffices to describe a procedure for constructing
the set I and simulating the values of the t corrupted wires wh given a|I and b|I . We
describe such a procedure now.

Private Circuits: Securing Hardware against Probing Attacks 471

1. Initially, I is empty and all wh are unassigned.
2. For every wire wh of the form ai, bi, aibi, zi,j (for any i �= j), or a sum of values of

the above form (including ci as a special case), add i to I . Note that this covers all
wires in C ′ except for wires corresponding to aibj or zi,j ⊕ aibj for some i �= j.
For such wires, add both i and j to I .7

3. Now that the set I has been determined—and note that since there are at most t
wires wh, the cardinality of I can be at most m = 2t—we show how to complete
a perfect simulation of the values on wh using only the values a|I and b|I . Assign
values to the zi,j as follows:

• If i /∈ I (regardless of j), then zi,j does not enter into the computation for any
wh. Thus, its value can be left unassigned.

• If i ∈ I , but j /∈ I , then zi,j is assigned a random independent value. Analysis:
Note that if i < j this is what would have happened in the real circuit C ′. If
i > j, however, we are making use of the fact that by construction, zj,i will
never be used in the computation of any wh. Hence we can treat zi,j as a
uniformly random and independent value.

• If both i ∈ I and j ∈ I , then we have access to ai, aj , bi, and bj . Thus, we
compute zi,j and zj,i exactly as they would have been computed in the actual
circuit C ′; i.e., one of them (say zj,i) is assigned a random value and the other
zi,j is assigned zj,i ⊕ aibj ⊕ ajbi.

4. For every wire wh of the form ai, bi, aibi, zi,j (for any i �= j), or a sum of values
of the above form (including ci as a special case), we know that i ∈ I , and all the
needed values of zi,j have already been assigned in a perfect simulation. Thus, wh

can be computed in a perfect simulation.
5. The only types of wires remaining are wh = aibj or wh = zi,j ⊕ aibj . But by Step

2, both i, j ∈ I , and by Step 3, zi,j has been assigned, thus the value of wh can be
simulated perfectly.

6. Note that all ci values for i ∈ I can be simulated perfectly by the argument above.
This completes the simulation and the argument of correctness.

Simulation for a general circuit. The simulation for a general transformed circuit
C ′ proceeds very similarly to the above. First, examining each gadget g inC ′, we compute
the set I . Note that since a total of t wires can be corrupted throughout the circuit C ′, the
size of the set I will still be bounded by m. Next we perform the simulation as above,
working our way from the inputs of C ′ to the outputs. Note that by the observation in
Step 6 above, we maintain the invariant that for each gadget g, the shares of the inputs
to g with indices belonging to I are perfectly simulated. Thus, inductively, the values of
all corrupted wires in C ′ are simulated perfectly.

Re-randomized outputs. We observe that as long as every output of C ′ has passed
through oneAND gadget (if this is not the case, we can artificiallyAND an output bit with
itself), then for each original output bit, the encoded outputs are m-wise independent even

7 We note that by changing the construction slightly, namely by computing (ai + r)bj and rbj

where r is a fresh random value, we could have avoided increasing I by 2 indices rather than
just 1 for any single wire observed by the adversary. This would have allowed us to choose
m = t rather than m = 2t as we have chosen now.

472 Y. Ishai, A. Sahai, and D. Wagner

given the entire encoding of the inputs. This can be used to prove that the construction
is in fact secure against a stronger type of adversary who may observe at most t′ wires
in each gadget, where t′ = Ω(t).8

Improvement in randomness use. We note, omitting the proof in this abstract, that in
the above construction the same randomness (i.e., the choices of zi,j for i < j) could be
used in all the gadgets. This reduces the number of random bits to O(t2).

Unprotected inputs and outputs. We have described the construction above for
protecting all inputs and outputs. It is easy to modify the construction so that certain
inputs and outputs are unencoded, and may be observed by both the adversary and the
simulator. This is useful in the stateful model, discussed next.

4 Perfect Privacy for Stateful Circuits

In this section we show how to achieve privacy in the stateful model, as defined in
Section 2. This model is perhaps much more natural and realistic than the stateless
model we considered in the previous section; however, as we show below, achieving
privacy in this model is easy once privacy has been achieved in the stateless model.

Our goal is to transform a stateful circuit C into a t-private stateful circuit C ′ by using
a privacy transformer for the stateless case. We now describe the construction. Recall
that a stateless privacy transformer must encode the input in some way; we assume
that the output is encoded using the same encoding. We also assume that the stateless
transformer enjoys the re-randomized outputs property, namely that the output encoding
for each original output bit is t-wise independent even given all encodings of input
bits. Let us refer to the encoding of the stateless transformer as Et(x), where t is the
privacy threshold of the stateless transformer, and x is the input being transformed. We
represent each memory cell in C using the same representation. Relying on our stateless
transformer as a building block, a stateful transformer T = (TC , Ts) can proceed as
follows. The memory x of C is stored in C ′ in encoded form E2t(x).9 C ′ will work
by considering the transformed memory E2t(x) as an input to the original circuit C,
which is transformed using the stateless 2t-privacy transformation. We also modify C
so that the next state of the memory is always an output. Then, these encoded outputs
are fed back into memory for the next clock cycle. The regular inputs and outputs of C
are unprotected, and need not be encoded. This completes the description of TC .

A simulation argument proving the correctness of this transformer proceeds very
similarly to the stateless case analyzed above. In fact, a sequence of invocations of a
stateful circuit may be unwound into a larger stateless circuit with an equivalent func-
tionality. Here, the initial state is viewed as a hidden input, and the final state as a hidden
output. Thus, the security proof for the stateful case essentially reduces to that of the

8 The ratio between t and t′ depends on the maximal fan-out of C (which we fixed to 3 by
default). This dependence can be eliminated by slightly modifying the construction.

9 Note that the use of 2t as a threshold is critical, since the adversary could observe t bits of the
inputs to the memory at the end of one clock cycle, and then another t bits of the outputs of the
memory in the next clock cycle; in this way the adversary would observe 2t bits of the state of
the memory.

Private Circuits: Securing Hardware against Probing Attacks 473

stateless case. 10 In the “unwound” circuit, the adversary can corrupt up to t wires in each
of the concatenated circuits Q produced by the stateless transformation. The simulation
proof proceeds exactly as before; the additional corruptions do not obstruct the proof
because of the re-randomization property: the outputs of one Q are t-wise independent
conditioned on all the values of the inputs to Q; thus in order to provide a full joint
simulation of the entire unwound circuit, we need only be able to recover a bounded set
of inputs from each component Q. To summarize, we have shown:

Theorem 2. There exists a perfectly t-private stateful circuit transformer which maps
any stateful circuit C of size n and depth d to a randomized stateful circuit of size O(nt2)
and depth O(d log t).

5 Statistically Private Transformers

In this section we obtain statistically-private transformers which improve the previous
constructions when the privacy threshold t is large. For the description and analysis
of these transformers, it is convenient to rely on the following notion of average-case
security.

Definition 1. A circuit transformer T = T (C, k) is said to be (statistically) p-private
in the average case if C ′ = T (C, k) is statistically private against an adversary which
corrupts each wire in C ′ with independent probability p. That is, the joint distribution
of the random set of corrupted wires and the values observed by the adversary can be
simulated up to a k−ω(1) statistical distance.

We note that a p-adversary as above is roughly the same as an adversary that corrupts
a uniformly random subset of p|C ′| wires in C ′. Intuitively, average-case privacy in this
sense should be easier to realize than the standard (worst-case) notion of privacy. Indeed,
the circuit transformer from the previous section with k additive shares (i.e., m = k) is
perfectly private with respect to any adversary corrupting k/4 wires in each gadget. It
follows that the view of an adversary corrupting each wire with probability, say, 1/(10k)
can be perfectly simulated except with negligible failure probability. Thus, we have:

Lemma 1. There exists a circuit transformer T (C, k) producing a circuit C ′ of size
O(k2|C|), such that T is Ω(1/k)-private in the average case.

In contrast, achieving worst-case privacy against an adversary corrupting Ω(|C ′|/k)
of the wires in C ′ appears to be much harder; in particular, the constructions from the
previous section are very far from achieving this when |C ′| � k. The key idea underlying
the asymptotic improvements in this section is the following reduction from worst-case
privacy to average-case privacy.

We start with an efficient circuit transformer T guaranteeing p-privacy in the average
case. We then transform its output C ′ = T (C, k) into a larger circuit C̃ ′, which in a sense
may be viewed as a “sparse” implementation of C ′. The circuit C̃ ′ will carry out the same
10 One technical difference between the two models is that the inputs and outputs in the stateful

model are known to the adversary. However, these values are given to the simulator “for free”
and can thus be easily incorporated into the simulation.

474 Y. Ishai, A. Sahai, and D. Wagner

computation performed by C ′ in essentially the same way, but will effectively utilize
only a small random subset of its wires; all remaining wires of C̃ ′ will be independent of
the inputs and thus rendered useless to the adversary. We stress that the subset of useful
wires in C̃ ′ will only be determined during the invocation of C̃ ′ and will therefore be
independent of the set of corrupted wires. Hence, for an appropriate choice of parameters,
the (worst-case) t-privacy of C̃ ′ will reduce to the average-case p-privacy of C ′.

We will describe two distinct instantiations of the above approach. The first is some-
what simpler, but incurs an Õ(t) · kO(1) multiplicative blowup to the circuit size (see
Remark 1). When t � k, this already provides an asymptotic improvement over the
previous solutions, which incur an O(t2) overhead. In the second construction, which
is only sketched in this abstract, we manage to avoid the dependence on t by amortizing
it over multiple gates.

Both instantiations make use of sorting networks as a building block. A sorting
network is a layered circuit from � integer-valued input wires to � integer-valued output
wires, which outputs its input sequence in a sorted order. The internal gates in a sorting
network are of a very special type: each such gate, called a comparator, has two inputs
and two outputs and returns its pair of inputs in a sorted order. The celebrated AKS
network [1] achieves the optimal parameters of O(� log �) size and O(log �) depth.
However, in terms of practical efficiency it is preferable to use simpler sorting networks,
such as Batcher’s [5], whose slightly inferior asymptotic complexity (O(� log2 �) size
and O(log2 �) depth) hides much smaller constants.

A gate-by-gate approach. Our initial construction transforms the circuit C ′ = T (C, k)
to a circuit C̃ ′ as follows. With each wire i of C ′ there are � wires of C̃ ′ labeled
(i, 1), . . . , (i, �), where the parameter � will be determined later. It is convenient to
assume that these wires can carry ternary values from the set {0, 1, $}. The execution
of C̃ ′ will maintain the following invariant relative to an execution of C ′: if wire i of
C ′ carries a value vi ∈ {0, 1}, then the wires (i, 1), . . . , (i, �) will carry the value vi

in a random position (independently of other �-tuples) and the value $ in the remaining
� − 1 positions. This property can be easily initialized at the inputs level by appropri-
ately defining the input encoder of C̃ ′. Similarly, the output decoder of C̃ ′ can be easily
obtained from that of C ′.

It remains to describe how to emulate a gate of C ′ while maintaining the above
invariant. Suppose that vi = vi1 ∗ vi2 , i.e., the value of wire i in C ′ is obtained by
applying some commutative boolean operation ‘*’ to the values of wires i1, i2. We
replace this gate in C ′ with a 2�-input, �-output gadget in C̃ ′, which first routes the
values vi1 , vi2 to two random but adjacent positions, and then combines them to form
the output. One should be careful, however, to implement this computation so that even
by observing intermediate values, the adversary will not be able to learn more values vi

than it is entitled to. Such an implementation for a gadget is given below.

Preprocessing. Let r, r1, . . . , r� be � + 1 uniformly random and independent integers
from the range [0, 2k]. For each 1 ≤ j ≤ �, use the values vi1,j , vi2,j (of wires (i1, j)
and (i2, j)) to form a pair (keyj , valj) such that: (1) keyj is set to rj if vi1,j = vi2,j = $
and to r otherwise; (2) valj is set to $ if both vi1,j , vi2,j are $, to a bit value b if one of
vi1,j , vi2,j is b and the other is $, and to b1 ∗ b2 if vi1,j = b1 and vi2,j = b2.

Private Circuits: Securing Hardware against Probing Attacks 475

Sorting. A sorting network is applied to the above �-tuple of pairs using key as the
sorting key. Let (u1, . . . , u�) denote the �-tuple of symbols valj sorted according to the
keys keyj .

Postprocessing. The jth output vi,j is obtained by looking at uj , uj+1, uj+2: if
uj , uj+1 �= $ then vi,j = uj ∗ uj+1, if uj = uj+2 = $ and uj+1 �= $ then vi,j = uj+1,
and otherwise vi,j = $.

Note that each such gadget can be implemented by a circuit of size Õ(�k) and depth
poly(log � + log k).

To complete the description of C̃ ′, we describe a (simpler) gadget replacing each
random bit gate z in C ′. As in the gate gadget, the random bit gadget has � inputs
and � outputs. The jth input is a random bit zj . A random selector r ∈ [�] is used for
determining which zj will appear in the output. Specifically, the jth output is set to zj

if r = j and to $ otherwise. The cost of implementing this gadget is smaller than that of
the gate gadget. Hence, the entire circuit C̃ ′ has size Õ(�kn) and depth comparable to
that of C ′ (up to polylog factors).

We now establish the relation between the worst-case privacy of C̃ ′ and the average-
case privacy of C ′.

Lemma 2. Suppose that C ′ is p-private in the average case. Then the circuit C̃ ′, con-
structed with � = O(t/p4), is statistically t-private in the worst case.

Proof sketch: It is convenient to make the adversary slightly stronger by assuming
that it may actually probe t logical, rather than boolean, wires (i.e., each such wire may
contain an integer, a ternary symbol, or a bit). For each compromised wire of C̃ ′, the
adversary can either see some random integer ri, a $ symbol, or an actual value vi of the
ith wire of C ′.11 In the latter case, we say that vi has been observed. Let S denote the
set of indices i such that vi has been observed. Note that S is a random variable, where
the probability is over the execution of C̃ ′.

We will argue that for any fixed index set S0, and for � chosen as in the lemma,
we have Pr[S0 ⊆ S] ≤ p|S0|. Thus, an adversary attacking any fixed set of t wires in
C̃ ′ is not better off than an adversary corrupting each wire of C ′ independently with
probability p.

To make this argument, we pick a subset S1 ⊆ S0 such that: (1) |S1| ≥ |S0|/4; (2)
each value in S1 is observed with probability (at most) p4; and (3) the events of observing
different values in S1 are independent. This will make the probability of observing all
values in S1 at most (p4)|S0|/4 = p|S0| as required.

We pick S1 to be a maximal matching in the subgraph of C ′ induced by the wires in
S0. Since the degree of each vertex in this graph is at most 4, we have |S1| ≥ |S0|/4. It
remains to show that S1 satisfies properties (2) and (3) above.

To prove (2) it suffices to show that for any fixed wire of C̃ ′, the probability that this
wire contains a useful value (i.e., contributes to S) is O(1/�). (Property (2) would then
follow, since by taking the union over all t compromised wires of C̃ ′, the probability of

11 In fact, depending on the exact implementation there may be wires of C̃′ containing information
on two values vi. We ignore this technicality as it does not change the analysis in any substantial
way.

476 Y. Ishai, A. Sahai, and D. Wagner

observing a value of C ′ is O(t/�) ≤ p4.) This clearly holds for input wires, by definition
of the input encoder, and is maintained through all internal wires in the circuit by a
symmetry argument. (In the case of gate gadgets, the argument relies on the fact that
each val entry inside a sorting network contains one of the gadget’s inputs, rather than
some arbitrary combination of these inputs; due to the randomness of the sorting keys,
the randomness of the positions of the useful entries is maintained).

It remains to argue that the independence property (3) holds. This follows from the
fact that no two wires in S1 are adjacent to a common gate in C ′ and from the fact that
each gadget in C̃ ′ uses fresh randomness to shuffle its entries. �

Combining Lemma 2 with Lemma 1, we have:

Theorem 3. There exists a statistically t-private stateless transformer (T̃ , Ĩ, Õ), such
that T̃ (C, k) transforms a circuit C of size n to a circuit C̃ ′ of size n ·Õ(t) ·kO(1) (where
k is a statistical security parameter). The depth of C̃ ′ is the same as that of C, up to
polylog factors.

Remark 1. Throughout this section, we view kO(1) and polylog(t) as being small in
comparison to t, and therefore do not attempt to optimize the exact dependence on such
factors. We note that all occurrences of kO(1) in the complexity of our constructions
(e.g., in Theorem 3) can be replaced by polylog(k) while still satisfying our asymptotic
notion of statistical security.

The above construction (and in particular the analysis of Lemma 2) crucially relies on
the assumption that the adversary chooses in advance which t wires to corrupt, indepen-
dently of the values it observes while invoking C̃ ′. However, for using this construction
in the stateful case we need a somewhat stronger security guarantee. Indeed, since the
adversary is allowed to move its t probes before each invocation based on the values
it observes in previous invocations, it may gradually build more and more knowledge
about the locations of useful values in C̃ ′. To get around this problem and guarantee
sufficient independence between different invocations, it suffices to re-randomize each
�-tuple of wires representing the new content of a memory cell by applying a perfectly
t-private computation of a random cyclic shift. Using our basic construction, this can be
done using Õ(�t2) additional gates. When the size of the circuit is much larger than the
number of states and t, the amortized cost per gate of this randomization step is small.

The above discussion is captured by the following theorem.

Theorem 4. There exists a statistically t-private stateful transformer T̃ , such that
T̃ (C, k) maps a circuit C of size n with s memory cells to a circuit C̃ ′ of size
Õ(nt + st3) · kO(1). The depth of C̃ ′ is the same as that of C, up to polylog factors.

Amortizing the cost over multiple gates. The previous construction is redundant in
the sense that it uses a separate gadget, of size Ω(t), for each gate in the circuit. We
briefly sketch a modification of this construction which amortizes the additional cost
over multiple gates, effectively eliminating the dependence on t. For the description
and analysis of this construction, it is convenient to assume that the circuit is layered
(see Section 2), and use the following modified notion of average-case security for the
layered case.

Private Circuits: Securing Hardware against Probing Attacks 477

Definition 2. Let T = T (C, k) be a layered circuit transformer producing a layered
circuit C ′ of width w. Then, T is said to be (statistically) p-secure in the average case
if C ′ = T (C, k) is statistically secure against an adversary which corrupts a random
subset of pw wires in each layer of C ′.

As before, we will use an average-case p-secure C ′ to build a worst-case t-secure
C̃ ′. However, instead of representing each wire of C ′ by an �-tuple of wires, we will
now represent an entire layer of C ′ by a corresponding layer in C̃ ′ consisting of � =
max(w, t/p) wires. These wires will contain a random permutation of the w values of
C ′ in � random positions and the symbol $ in all other positions. Note that typically
w > t/p, in which case there are no useless $ entries in this list. However, the above
choice of � guarantees that by looking at any fixed set of t positions in the list the
adversary will observe a random subset containing at most a p-fraction of the values.

Each value of C ′ is represented by a pair containing its index and its value. This
representation naturally defines the input encoder and output decoder. It remains to
show how the above representation can be maintained between subsequent layers. As
before, we also need to ensure that each intermediate level in the computation of C̃ ′

contains a random permutation of the useful values, where the randomness of these
permutations is independent for levels that are sufficiently far apart. To achieve this,
we use an �-input, �-output gadget whose inputs represent the jth level wires in C ′ and
whose outputs represent the (j+1)th level wires. The high-level idea is as before, except
that we now need to jointly route w/2 pairs of wires to random adjacent positions, and
then combine each pair in the right way.

Using this approach, we can obtain the following theorem:

Theorem 5. There exists a statistically t-secure stateless transformer (T̃ , Ĩ, Õ), such
that T̃ (C, k) transforms a layered circuit C of width w and depth d to a circuit C̃ ′ of
width Õ(max w, t) · kO(1) and depth d · polylog(w, t, k).

An analogous theorem for the stateful model can be derived similarly to Theorem 4.

6 A PRG Secure against Probing Attacks

Next, we will show how to build a deterministic, stateful circuit that will produce pseu-
dorandom output and remain secure even in the presence of probing attacks. In essence,
we will be building a PRG that resists probing attacks. Because the resulting circuit is
deterministic, this is helpful if true randomness is expensive.

The basic construction is as follows. Let G : {0, 1}σ → {0, 1}(2t+1)σ+λ be a PRG.
We will build a deterministic stateful circuit C ′[s′

0] with (2t+1)σ bits of internal memory,
no inputs, and λ bits of output. C ′[s′

0] will be understood as a secure translation of the
0-input λ-output stateless randomized circuit C whose outputs are each fed by a different
random-bit gate. The initial random seed s′

0 will be chosen uniformly at random, and
the behavior of the circuit C ′[s′

0] on any one invocation is defined as follows:

1. Let s = (s1, . . . , s2t+1) denote the current state of the memory cells.
2. Set u := G(s1) ⊕ · · · ⊕ G(s2t+1). Define s′, y by parsing u as u = (s′, y).
3. Replace the current state of the memory cells with s′, and output y.

478 Y. Ishai, A. Sahai, and D. Wagner

It is crucial that the circuit C ′[s′
0] contain 2t+1 disjoint copies of G, executing in parallel

and sharing no wires or gates. Our construction is related to the method for distributed
pseudorandomness generation with proactive security from [10]. For lack of space, the
proof of Theorem 6 is omitted here.

Theorem 6. If G is a secure PRG, then the stateful deterministic circuit C ′[s′
0] defined

above is a computationally t-private transformation of the circuit C defined above.

Application: eliminating randomness gates. One application for our PRG construction
is in eliminating randomness for the stateful circuit transformer of Section 4. Our basic
solution for the stateless model, as described earlier, relies on the use of random bit gates
within the transformed circuit T (C). An appealing consequence of our probe-resistant
PRG is that it allows to dispense with on-line randomness generation: an initial random
seed can be coded into the initial state by T and (deterministically) “refreshed” at each
invocation of the circuit.

Suppose our transformed circuit T (C) uses λ random-bit gates. Let Cr be a stateless
randomized circuit consisting of λ independent random-bit gates, each connected to
a different output of Cr. If C ′

r[s
′
0] is any deterministic stateful circuit that is a secure

translation of Cr, then we can replace the random-bit gates of T (C) with the probe-
resistant PRG C ′

r[s
′
0]. For instance, the deterministic, stateful PRG of Theorem 6 will

do the job nicely. In this way, we can derandomize C ′ and obtain an efficient stateful,
deterministic circuit that is computationally t-private and not too much larger than the
original circuit.

7 Concluding Remarks

We have developed theoretical foundations for the problem of securing hardware against
side channel attacks, and initiated a systematic study of this problem within our frame-
work. In this initial study we restricted our attention to side channels that can be modelled
by probing attacks, i.e. whose information leakage depends on a limited number of phys-
ical wires. It would be interesting to extend our framework and results to a wider class
of realistic attacks. A step in this direction is taken by Micali and Reyzin [28], who put
forward a very general model for side channel attacks.

Another natural extension of the problem studied in this work is to allowing additional
protection against fault attacks [7,26]. Similarly to our problem, solutions to this more
general problem can be based on existing protocols from the MPC literature. However,
even the most efficient of these (e.g., [22]) are still quite inefficient to implement on
hardware. Obtaining better solutions in this setting, possibly under relaxed notions of
security, remains an interesting challenge.

Acknowledgements. We wish to thank David Molnar and anonymous referees for
helpful comments. We also thank an anonymous referee for suggesting the use of the
brain metaphor. Amit Sahai acknowledges support from an Alfred P. Sloan Foundation
Research Fellowship.

Private Circuits: Securing Hardware against Probing Attacks 479

References

1. M. Ajtai , J. Komlos , E. Szemeredi. An O(n log n) sorting network. In Proceedings of the
15th STOC, pp. 1–9, 1983.

2. R. Anderson, M. Kuhn, “Tamper Resistance—A Cautionary Note,” USENIX E-Commerce
Workshop, USENIX Press, 1996, pp.1–11.

3. R. Anderson, M. Kuhn, “Soft Tempest: Hidden Data Transmission Using Electromagnetic
Emanations,” Proc. 2nd Workshop on Information Hiding, Springer, 1998.

4. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and K. Yang. On
the (im)possibility of obfuscating programs. CRYPTO 2001, 2001.

5. K. Batcher. Sorting Networks and theirApplications. In Proc. AFiPS Spring Joint Conference,
Vol. 32, 1988, pp. 307–314.

6. M. Ben-Or, S. Goldwasser, and A. Widgerson. Completeness theorems for non-cryptographic
fault-tolerant distributed computation. In Proc. of 20th STOC, 1988.

7. D. Boneh, R.A. Demillo, R.J. Lipton, “On the Importance of Checking Cryptographic Pro-
tocols for Faults,” EUROCRYPT’97, Springer-Verlag, 1997, pp.37–51.

8. R. Canetti. Security and composition of multiparty cryptographic protocols. In J. of Cryp-
tology, 13(1), 2000.

9. R. Canetti, Y. Dodis, S. Halevi, E. Kushilevitz and A. Sahai. Exposure-Resilient Functions
and All-or-Nothing Transforms. In EUROCRYPT 2000, pages 453–469.

10. R. Canetti and A. Herzberg. Maintaining Security in the Presence of Transient Faults. In
CRYPTO 1994, pages 425–438.

11. S. Chari, C.S. Jutla, J.R. Rao, P. Rohatgi, “Towards Sound Approaches to Counteract Power-
Analysis Attacks,” CRYPTO’99, Springer-Verlag, 1999, pp.398–412.

12. D. Chaum, C. Crepeau, and I. Damgård. Multiparty unconditional secure protocols. In Proc.
of 20th STOC, 1988.

13. R. Cramer, I. Damgård, and U. Maurer. General secure multi-party computation from any
linear secret-sharing scheme. In Proc. of EUROCRYPT ’00.

14. J.-S. Coron, L. Goubin, “On Boolean and Arithmetic Masking against Differential Power
Analysis,” CHES’00, Springer-Verlag, pp.231–237.

15. J. Daemen, V. Rijmen, “Resistance Against Implementation Attacks: A Comparative Study
of the AES Proposals,” AES’99, Mar. 1999.

16. K. Gandolfi, C. Mourtel, F. Olivier, “Electromagnetic Analysis: Concrete Results,” CHES’01,
LNCS 2162, Springer-Verlag, 2001.

17. R. Gennaro, M. O. Rabin, and T. Rabin. Simplified VSS and fast-track multiparty computa-
tions with applications to threshold cryptography. In Proc. of 17th PODC, 1998.

18. O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. JACM,
33(4):792–807, October 1986.

19. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game (extended abstract).
In Proc. of 19th STOC, 1987.

20. O. Goldreich and R. Ostrovsky. Software Protection and Simulation on Oblivious RAMs.
JACM 43(3): 431–473, 1996.

21. L. Goubin, J. Patarin, “DES and Differential Power Analysis—The Duplication Method,”
CHES’99, Springer-Verlag, 1999, pp.158–172.

22. M. Hirt and U. Maurer. Robustness for free in unconditional multi-party computation. In
Proc. of CRYPTO ’01.

23. D. Kahn, The Codebreakers, The MacMillan Company, 1967.
24. J. Kelsey, B. Schneier, D. Wagner, “Side Channel Cryptanalysis of Product Ciphers,” ES-

ORICS’98, LNCS 1485, Springer-Verlag, 1998.

480 Y. Ishai, A. Sahai, and D. Wagner

25. P. Kocher, “Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other
Systems,” CRYPTO’96, Springer-Verlag, 1996, pp.104–113.

26. P. Kocher, J. Jaffe, B. Jun, “Differential PowerAnalysis,” CRYPTO’99, Springer-Verlag, 1999,
pp.388–397.

27. T.S. Messerges, “Securing the AES Finalists Against Power Analysis Attacks,” FSE’00,
Springer-Verlag, 2000.

28. S. Micali and L. Reyzin. A model for physically observable cryptography. Manuscript, 2003.
29. R. Ostrovsky and M. Yung. How to withstand mobile virus attacks. In Proc. of 10th PODC,

1991.
30. D. Page, “Theoretical Use of Cache Memory as a Cryptanalytic Side-Channel,” Tech. report

CSTR-02-003, Computer Science Dept., Univ. of Bristol, June 2002.
31. B. Pfitzmann, M. Schunter and M. Waidner, “Secure Reactive Systems”, IBM Technical report

RZ 3206 (93252), May 2000.
32. J.-J. Quisquater, D. Samyde, “Eddy current for MagneticAnalysis withActive Sensor,” Esmart

2002, Sept. 2002.
33. J.-J. Quisquater, D. Samyde, “ElectroMagnetic Analysis (EMA): Measures and Counter-

Measures for Smart Cards,” Esmart 2001, LNCS 2140, Springer-Verlag, 2001.
34. J.R. Rao, P. Rohatgi, “EMpowering Side-Channel Attacks,” IACR ePrint 2001/037.
35. US Air Force, Air Force Systems Security Memorandum 7011—Emission Security Counter-

measures Review, May 1, 1998.
36. W. van Eck, “Electromagnetic Radiation from Video Display Units: An Eavesdropping Risk,”

Computers & Security, v.4, 1985, pp.269–286.
37. D. Wright, Spycatcher, Viking Penguin Inc., 1987.
38. A. C. Yao. How to generate and exchange secrets. In Proc. of 27th FOCS, 1986.

A Relation with Secure Multi-party Computation

The problem studied in this paper is closely related to the problem of secure multi-party
computation (MPC), introduced and first studied in [38,19,6,12] and extensively studied
thereafter. We begin by explaining the relation between the problems, and then highlight
some important differences.

The MPC model. In the most basic setting for secure MPC, n parties are connected
by a complete network of point-to-point channels. Initially, each party holds a local
input and an independent random input. The parties’ goal is to evaluate some publicly
known function f of their inputs while hiding their inputs from each other. To this
end, they interact via a prescribed protocol. The protocol proceeds in round, where at
each round each party may send a message to every other party based on its input, its
random input, and messages received in previous rounds. The protocol terminates at
some predetermined round, in which all parties should output the correct value of f . A
protocol as above is said to be t-private if for any set T of at most t parties, the entire view
of T (consisting of their inputs, random inputs, and received messages) reveals no more
information about the other parties’ inputs than what follows from their own inputs and
the value of f . Note that the latter information captures what must inevitably be learned.
To better correspond to our circuit model, it is convenient to consider a slightly modified
MPC model in which each of the n inputs is initially secret-shared among the parties
(say, using n out of n additive sharing), and the output produced by the protocol is also
secret-shared in a similar fashion. This allows to realize a stronger and simpler privacy

Private Circuits: Securing Hardware against Probing Attacks 481

requirement: every collusion of t players learns nothing from their interaction with the
remaining players.

Relation to private circuits. To illustrate the relation between the MPC model and
our circuit model, we focus on the stateless case and ignore some unimportant techni-
calities. First, we show that any t-private protocol corresponds to some t-private circuit
computing the same function. Consider the following “hardware implementation” of an
n-party protocol as above. In each round of interaction, each player’s local computation
is implemented by a separate sub-circuit. When the players interact, each message bit is
translated into a wire connecting the corresponding sub-circuits. Note that the t-privacy
of the protocol guarantees t-privacy also in the circuit model. Indeed, if an adversary
can violate the circuit’s privacy by probing t wires, then it could have also violated the
protocol’s privacy by corrupting some t players who “own” these wires.12 The converse
relation also holds. Suppose that we are given a t-private circuit computing the function
f where the fan-in of each gate is at most 2. We use the circuit to define a protocol, in
which each gate is owned by a distinct player. The circuit is evaluated by the players in a
bottom-up fashion, starting with the encoded inputs and ending with an encoded output,
where for each wire a message is sent from its source player to its destination players,
and for each gate a local computation is performed by the corresponding player. It is not
hard to see that if the circuit is 2t-private, then the corresponding protocol is t-private.
Indeed, a protocol-adversary corrupting t players learns content of at most 2t wires in
the circuit.

In light of the above, one might expect to obtain the best solutions to our problem via
efficient hardware implementations of state-of-the-art protocols from the MPC literature.
However, this is not really the case. For instance, the BGW protocol [6] (as well as
subsequent optimizations [17,13]) requires each player to evaluate a degree-t polynomial
on Θ(t) points for each gate of the circuit being evaluated. Consequently, the stateless
circuit transformer that can be derived from this protocol is significantly less efficient than
our transformer. This state of affairs stems from some major differences in the underlying
optimization goals. First, the MPC literature puts much emphasis on tolerating a constant
fraction of corrupted players, whereas in our setting the number of corruptions is viewed
as being independent of the number of “players” (in particular, we are willing to settle
for tolerating a miniscule fraction of corruptions). Second, the MPC setting typically
views the communication complexity and the round complexity as the most important
resources to optimize, placing the time complexity only as a third-order optimization
goal. In contrast, the main optimization criterion in our case is the size of a circuit,
which roughly (but not exactly) corresponds to the time complexity of the underlying
protocol. Finally, our main (stateful) model is quite nonstandard from the MPC point of
view, as it involves extra ingredients such as a one-time trusted precomputation (via the
circuit transformer), a mobile adversary (as in [29,10]), and on-line inputs and outputs
(as in [31,8]). To conclude, the problem we are posing is quite different from that of
implementing standard MPC protocols at the hardware level.

12 Note that a wire corresponding to a message bit is owned by more than one player.

	Introduction
	Background
	Our Contribution

	Definitions
	Perfect Privacy for Stateless Circuits
	Perfect Privacy for Stateful Circuits
	Statistically Private Transformers
	A PRG Secure against Probing Attacks
	Concluding Remarks
	Relation with Secure Multi-party Computation

