
Universal Composition with Joint State

Ran Canetti and Tal Rabin

IBM T.J. Watson Research Center. {canetti,talr}@watson.ibm.com.

Abstract. Cryptographic systems often involve running multiple con-
current instances of some protocol, where the instances have some
amount of joint state and randomness. (Examples include systems where
multiple protocol instances use the same public-key infrastructure, or the
same common reference string.) Rather than attempting to analyze the
entire system as a single unit, we would like to be able to analyze each
such protocol instance as stand-alone, and then use a general composition
theorem to deduce the security of the entire system. However, no known
composition theorem applies in this setting, since they all assume that
the composed protocol instances have disjoint internal states, and that
the internal random choices in the various executions are independent.
We propose a new composition operation that can handle the case where
different components have some amount of joint state and randomness,
and demonstrate sufficient conditions for when the new operation
preserves security. The new operation, which is called universal compo-
sition with joint state (and is based on the recently proposed universal
composition operation), turns out to be very useful in a number of quite
different scenarios such as those mentioned above.

Keywords: Cryptographic protocols, protocol composition, security
analysis

1 Introduction

Cryptographic systems often involve multiple concurrent instances of a large
variety of different protocols, where different instances are being run by different
sets of mutually suspicious parties; furthermore, they are often deployed in ever-
changing and unpredictable environments that may involve additional unknown
protocols. Directly analyzing the security of such a system as a single unit is
often prohibitively complex. Instead, we would like to be able to de-compose a
complex cryptographic system to simpler components, prove the security of each
component in isolation, and then deduce the security of the re-composed system.

This “de-compositional approach” is indeed very attractive. However, its
soundness hinges on our ability to deduce the security of the entire system from
the security of the components. Here secure composition theorems come in handy.
Roughly speaking, such theorems assert that if a protocol is secure when con-
sidered in isolation, then it remains secure even when multiple instances of this
protocol are run in the same system, or (in some cases) even when the protocol
is used as a component of an arbitrary system.

D. Boneh (Ed.): CRYPTO 2003, LNCS 2729, pp. 265–281, 2003.
c© International Association for Cryptologic Research 2003



266 R. Canetti and T. Rabin

A number of composition operations (i.e., ways to put together protocols in
order to get a composite protocol) have been studied in the context of preserva-
tion of security. These include sequential, parallel, and concurrent composition,
when the composed instances are run either by the same sets of parties, or by
different sets of parties (e.g., [GK96,Bea91,DDN00,GO94,DNS98,Gol02]). They
also include the more general operations of modular and universal composition,
where protocols call other protocols as subroutines [MR91,Can00,DM00,PSW00,
Can01]. However, all known composition theorems have the following limitation.
They all assume, at least as far as the honest parties are concerned, that the
local state of each one of the composed protocol instances is disjoint from the
local states of all the other protocol instances run by the party. Furthermore, for
each protocol instance, the honest parties are required to use a “fresh” random
input that is independent of all the other random inputs. Thus, none of the
known composition theorems is applicable when trying to de-compose a system
into simpler components, while allowing the components to have some amount
of joint state.

In contrast, many cryptographic systems consist of multiple concurrent in-
stances of some (relatively simple) protocol, where all the instances have some
limited amount of joint state and joint randomness. Prevalent examples include
key-exchange and secure communication protocols, where multiple protocol in-
stances use the same instance of a public-key signature or encryption scheme.
Another set of examples include protocols in the common reference string model,
where multiple instances use the same short reference string. Indeed, when at-
tempting to analyze such systems, there was so far no alternative but to directly
analyze the entire multi-instance system as a single unit.

We formulate a new composition operation for cryptographic protocols, that
is applicable even in the case where multiple protocol instances have some
amount of joint state. We also demonstrate sufficient conditions for when this
operation preserves security. Our new operation, Universal Composition with joint
state (JUC, pronounced “juicy”), is formulated within the Universal Composition
(UC) framework [Can01], and extends its powers. The new operation drastically
simplifies the analysis of systems where multiple instances have joint state, by
allowing us to apply the de-composition methodology described above even to
such systems. In fact, recent works which originally analyzed their security ex-
amining the entire protocol as a single unit have updated and simplified their
proofs by utilizing the techniques presented in this paper [CK02,CLOS02].

1.1 The New Composition Theorem

We provide a very informal overview of the new composition theorem and its
usage. Our system consists of a “high-level protocol”, π, that uses multiple in-
stances of a sub-protocol ρ, where the various instances of ρ have some joint
state.

To be able to use the JUC theorem, we need to have in hand a protocol, ρ̂,
where a single instance of ρ̂ has essentially the same functionality as multiple
independent copies of ρ. We then proceed as follows. We first analyze the overall



Universal Composition with Joint State 267

protocol π under the assumption that the copies of ρ are independent. (This can
be done using known composition theorems, such as the UC theorem.) We then
replace all instances of ρ within π with a single instance of ρ̂. The JUC Theorem
essentially states that protocol π behaves the same regardless of whether it is
using multiple independent copies of ρ, or alternatively a single copy of ρ̂.

The JUC theorem proves to be instrumental in de-composing complex sys-
tems. Using the terminology of the previous paragraph, it allows us to de-
compose our system into a “π part” plus a “ρ̂ part,” analyze each part in iso-
lation, and then deduce the security of the re-composed system. The important
thing to notice is that the “π part” treats all the copies of ρ as if they were in-
dependent copies without any joint state. This proves to be very useful in cases
where the “π part” by itself consists of multiple copies of some other, simpler
protocol φ, where different copies of φ call different copies of ρ. We can now
analyze each copy of φ as stand-alone, then compose all copies of φ into a single
protocol π (say, using the UC Theorem), and then use the JUC Theorem to
compose π with all the copies of ρ as described above, in spite of the fact that
the copies of ρ (and consequently the copies of φ) have joint state (see Figure 1).

Π

ρ ρ ρ ρ

Φ,Φ,...,ΦΦ,Φ,...,Φ
Π

Fig. 1. Universal Composition with Joint State: Protocol π is analyzed under the
assumption that the copies of ρ are independent (left). This is in spite of the fact that
all copies of ρ are replaced by a single copy of ρ̂ (right).

As said above, in order for the JUC Theorem to hold, protocol ρ̂ must exhibit
the same behavior as multiple “independent” instances of ρ. (A formalization of
this intuitive requirement appears within.) Clearly, the protocol ρ̂ that simply
runs multiple independent copies of ρ would guarantee this “independence”.
However, such a protocol ρ̂ would not be very interesting. The power of the JUC
theorem is in the cases where protocol ρ̂ is more efficient, and in particular makes
meaningful use of joint state between copies of ρ. The rest of the introduction is
dedicated to providing examples for the use of the JUC theorem.

1.2 Application to Protocols Using Digital Signatures

We exemplify the use of the JUC Theorem for de-composing systems where
multiple protocol instances use the same instance of a signature scheme. Specifi-
cally, we concentrate on the prevalent example of key-exchange and secure chan-
nel protocols authenticated via digital signatures. Here, multiple parties run



268 R. Canetti and T. Rabin

multiple instance of the key-exchange protocol in order to exchange multiple
keys, while using the same public-key infrastructure which is the joint state.
The exchanged keys are then used to establish secure communication channels.
Previous analytical works of key-exchange and secure channel protocols treats
the entire multi-party, multi-execution system as a single unit (see, e.g., [BR93,
Sho99,CK01]).

Here we show how, using the JUC Theorem, one can de-compose the sys-
tem to individual sessions, analyze each session independently of all others, and
deduce the security of the entire multi-session system. We proceed as follows.
Using the terminology of the previous subsection, the key-exchange protocol (for
exchanging a single key) is denoted φ, and the multi-instance composition of φ
is denoted π. We are given a protocol ρ which satisfies the security requirements
from a digital signature scheme. The protocol π uses multiple calls to ρ, where
different calls are made by different copies of φ within ρ. (We assume that each
of these independent calls is assigned a unique identifier i. This assumption is
central in our solution. See discussion about the identifiers in Section 2).

In order to be able to apply the JUC Theorem, we show how to construct
a protocol ρ̂ that behaves, within a single instance, like multiple independent
copies of ρ. In fact, this can be done with essentially the complexity of a single
instance of ρ. Protocol ρ̂ runs a single copy of ρ. When the ith instance of φ
invokes its instance of ρ to generate a signature on message m, protocol ρ̂ uses
its single instance of ρ to sign the message (i, m). Similarly, whenever asked to
verify whether s is a signature of instance i on a message m, ρ̂ uses its single
instance of ρ to verify whether s is a signature on (i, m). We show that if ρ
is a secure signature protocol then ρ̂ satisfies the conditions required by the
JUC Theorem (i.e., ρ̂ behaves essentially like multiple independent copies of a
signature scheme). This allows us to deduce the security of the entire, multi-
session key exchange protocol even though we only analyzed the security of the
single session protocol φ and the signature protocol ρ̂.

The same methodology applies also to the treatment of secure session pro-
tocols. That is, it is possible to analyze the security of a single session protocol
as stand alone, and then use the JUC theorem to deduce the security of the
composite multi-session system — in spite of the fact that all sessions use the
same instance of the signature scheme. Indeed, the updated version of [CK02]
on key-exchange and secure session protocols has modified its presentation and
analysis to utilize the JUC Theorem as proven here.

1.3 Application to Protocols in the Common Reference String
Model

A similar phenomenon happens in the case of protocols in the common refer-
ence string (CRS) model, where all parties have access to a reference string taken
from a predefined distribution. We often have protocols where multiple instances
use the same short reference string. These instances may be run either by the
same set of parties or by different sets. So far, the only known way to analyze



Universal Composition with Joint State 269

such multi-instance systems was to directly analyze them as a single unit. Us-
ing universal composition with joint state, we show how one can de-compose
a multi-instance system to individual instances, analyze each instance in isola-
tion, and then deduce security of the entire multi-instance system — in spite of
the fact that all the protocol instances use the same short reference string. We
demonstrate several alternative ways to go about this de-composition.

The first and most general way to de-compose multi-instance systems in
the CRS model proceeds as follows. We first recall that the CRS model can
be captured as the model that provide the parties with access to an “idealized
protocol” ρ that returns the same string to all parties, where the string is chosen
from a predefined distribution. Let φ be a protocol that uses the CRS (i.e., φ
invokes protocol ρ) and let π be some protocol that runs multiple instances of
protocol φ. In order to prove the security of π, we proceed in four steps: (a)
We prove the security of a single instance of φ using a single instance of ρ, in a
stand-alone setting where no other protocol executions exist. (b) Using known
composition theorems (e.g., the universal composition theorem of [Can01]), we
deduce that the multi-instance protocol π is also secure. Here, however, protocol
π uses multiple independent instances of ρ, which corresponds to having multiple
independent copies of the reference string. (c) We construct a protocol, ρ̂, that
mimics the behavior of multiple independent copies of ρ, using only a single copy
of ρ. In other words, ρ̂ generates multiple “independent” copies of the reference
string, given only a single copy of the string. (d) Using the JUC Theorem,
we deduce that the entire composed protocol (consisting of the multi-instance
protocol π, where all calls to all copies of ρ are replaced with calls to a single
instance of protocol ρ̂) is secure. We stress that here all the copies of φ within π
use the same copy of protocol ρ, namely only a single instance of the reference
string.

In order to complete the de-composition process, we need to come up with
a protocol ρ̂ that realizes multiple instances of ρ, given only a single instance of
ρ. Our construction of protocol ρ̂ is essentially the three-message coin-tossing-
into-the-well protocol of Blum [Blu82], where the commitments are taken to be
universally composable commitments e.g., those of [CF01,CLOS02,DN02].

However, while the above de-composition method is quite general, it is not
completely satisfactory because of the need to run the additional interactive
protocol ρ̂. In particular, in the composed protocol each copy of φ is interactive
— even if the original construction of φ is non-interactive. We would like to
be able to carry out the de-composition paradigm without paying the price in
communication rounds.

At a first glance, it may appear that the way to avoid adding rounds is to
come up with better constructions of protocol ρ̂, which would be non-interactive.
However, we show that this is not possible. That is, we show that any protocol
which realizes multiple “independent” copies of the CRS, given only a single
copy of the CRS, must be interactive. Essentially, each party must send at least
one message per each new instance of the reference string. Furthermore, this
message must be essentially at least as long as the generated string.



270 R. Canetti and T. Rabin

Given the impossibility of a non-interactive solution for the general problem
of generating multiple CRSs given a single short CRS, we turn to other, less gen-
eral ways to de-compose multi-instance systems in the CRS model. Specifically,
we describe how our methodology can be applied to Zero-Knowledge (ZK) pro-
tocols and commitment protocols in the CRS model. Let us first sketch how this
works for ZK protocols. Here we let protocol ρ be a single-instance ZK protocol.
That is, protocol ρ carries out a single ZK proof. Assume we have a protocol π
that consists of multiple copies of some protocol φ, where each instance of φ uses
(perhaps multiple) copies of ρ. We can now use the JUC theorem to replace all
instances of ρ with a single instance of protocol ρ̂ that realizes multiple ZK proofs
within a single instance. Luckily, such protocols ρ̂ exist, and use only a single
short instance of the CRS for all instances of the ZK proof [CF01,DCO+01]. In
particular, the protocol of [DCO+01] is non-interactive.

In the case of commitment protocols we follow the same steps, with the
exception that protocol ρ is a commitment protocol for a single commitment-
decommitment process. The “composite protocol” ρ̂ now provides the function-
ality of multiple commitments and decommitments, while using only a single
short instance of the CRS. Such protocols exist, e.g., those of [CF01,CLOS02,
DN02].

We remark that our formalization and results for the CRS model play a
central role in the updated proofs for the general construction in [CLOS02].
Earlier versions of the paper analyzed these constructions directly as multi-
instance protocols and were considerably more cumbersome.

Organization. Section 2 reviews the notion of UC security and the UC theorem
of [Can01]. Section 3 presents and proves the JUC Theorem. For lack of space,
the paper contains only the application to protocols in the CRS model in Section
4. The application to protocols that use signature schemes appears in [CR03].

2 Review of the Universal Composition Theorem

We provide a brief review of the universally composable security framework
[Can01]. The framework allows for defining the security properties of crypto-
graphic tasks so that the security of protocols is maintained under a general
composition operation with an unbounded number of instances of arbitrary
protocols running concurrently in the system. This composition operation is
called universal composition. Similarly, definitions of security in this framework
are called universally composable (UC).

As in other general definitions (e.g., [GL90,MR91,Bea91,Can00,PSW00]), the
security requirements of a given task (i.e., the functionality expected from a
protocol that carries out the task) are captured via a set of instructions for a
“trusted party” that obtains the inputs of the participants and provides them
with the desired outputs (in one or more iterations). Informally, a protocol se-
curely carries out a given task if running the protocol with a realistic adversary
amounts to “emulating” an ideal process where the parties hand their inputs
to a trusted party with the appropriate functionality and obtain their outputs



Universal Composition with Joint State 271

from it, without any other interaction. We call the algorithm run by the trusted
party an ideal functionality.

In order to allow proving the universal composition theorem, the notion of
emulation in this framework is considerably stronger than previous ones. Tra-
ditionally, the model of computation includes the parties running the protocol
and an adversary, A, that controls the communication channels and potentially
corrupts parties. “Emulating an ideal process” means that for any adversary A
there should exist an “ideal process adversary” (or, simulator) S that causes
the outputs of the parties in the ideal process to have similar distribution to
the outputs of the parties in an execution of the protocol. In the UC framework
the requirement on S is more stringent. Specifically, an additional entity, called
the environment Z, is introduced. The environment generates the inputs to all
parties, reads all outputs, and in addition interacts with the adversary in an
arbitrary way throughout the computation. A protocol is said to securely realize
a given ideal functionality F if for any “real-life” adversary A that interacts
with the protocol and the environment there exists an “ideal-process adversary”
S, such that no environment Z can tell whether it is interacting with A and
parties running the protocol, or with S and parties that interact with F in the
ideal process. In a sense, here Z serves as an “interactive distinguisher” between
a run of the protocol and the ideal process with access to F .

The following universal composition theorem is proven in [Can01]. Consider a
protocol π that operates in the F-hybrid model, where parties can communicate
as usual, and in addition have ideal access to an unbounded number of copies of
an ideal functionality F . Let ρ be a protocol that securely realizes F as sketched
above, and let πρ be identical to π with the exception that the interaction with
each copy of F is replaced with an interaction with a separate instance of ρ.
Then, π and πρ have essentially the same input/output behavior. In particular,
if π securely realizes some ideal functionality I in the F-hybrid model then πρ

securely realizes I in the standard model (i.e. without ideal functionality).
On the Session Identifiers (SID’s). Let us highlight one detail regarding
the hybrid model that will become important in subsequent sections. Each copy
of the ideal functionality F is assumed to have a unique identifier, called the
session identifier (SID) of that copy. Each message sent to F in the hybrid model
should contain a SID, and is then forwarded to the corresponding copy of F . (If
there is no such copy then a new one is invoked and given this SID.) Similarly,
each message from a copy of F to a party contains the SID of that copy. The
SIDs are determined by the protocol running in the hybrid model. Notice that
this formalization allows each copy of F , and each instance of the protocol that
later replaces this copy, to know its own SID. It also guarantees that no two
copies of F can ever have the same SID. This is essential for the composition
theorem to hold. (See discussion in the Introduction.) Let F(sid)denote the copy
of functionality F with SID =(sid).

We stress that the model does not specified how the parties learn, or “agree”
on the SID. While we cannot always assume that a set of uncoordinated parties
can agree on an SID, there are many interesting and important settings where



272 R. Canetti and T. Rabin

this assumption is reasonable. As an example consider a network in which two-
party protocols are being executed by a set of uncoordinated parties. In this
case a unique SID can be easily chosen by the two parties A and B themselves,
by choosing locally unique strings rA and rB , respectively, which they exchange.
The session id is defined to be A◦B ◦rA ◦rB . Here an honest party is guaranteed
to have a unique SID, even if the other party is cheating. Another example is
within a closed network of multiple users executing multiple protocols, where
the protocols have some ordering and thus can be allotted unique SIDs.

Nonetheless, it should be stressed that in some cases the requirement for
unique SIDs is imperative for providing security. For instance, in [LLR02] it is
shown that Byzantine Agreement can not be reached in some specific settings
unless unique identifiers are provided.

3 Universal Composition with Joint State (JUC)

Recall that the universal composition operation requires replacing each copy
of F with a different invocation of protocol ρ, where all the invocations of ρ
in πρ must have disjoint states and independent random inputs. However, in
our setting the copies of ρ have joint state. In fact, we wish to replace all the
invocations of F with a single instance of some “joint protocol” ρ̂. In order to do
that, we essentially require that ρ̂ has the same functionality as that of multiple
independent copies of ρ. To formalize this requirement we define the multi-session
extension of an ideal functionality. But first we define the composition operation.
The Composition Operation. The new composition operation, called uni-
versal composition with joint state (JUC), takes two protocols as arguments: a
protocol π in the F-hybrid model and a protocol ρ̂ realizing the multi-session
functionality. The result is a composed protocol, denoted π[ρ̂], and described as
follows. Essentially, universal composition with joint state is identical to univer-
sal composition, with two exception: First, each party Pi invokes only a single
copy of ρ̂ and replaces all calls to copies of F with activations of (the single copy
of) ρ̂. Second, now each activation of ρ̂ includes two ids, the SID of ρ̂ is set to
some fixed, predefined value sid0. The second id, SSID, is set to the original id
of the invocation of F . More specifically, protocol π[ρ̂] behaves like π with the
following changes.

1. Modifications to the communication between π[ρ̂] and ρ̂ relative to the com-
munication between π and F :
a) When activated for the first time within party Pi, π[ρ̂] initiates a copy

of protocol ρ̂ with SID= sid0.
b) Whenever π instructs party Pi to send a message (sid, v) to F(sid),

protocol π[ρ̂] instructs Pi to call ρ̂ with input value (sid0, sid, v).
c) When (the single copy of) ρ̂ generates an output value (sid0, sid, v)

within π[ρ̂], then π[ρ̂] proceeds just as π proceeds upon receiving out-
put message (sid, v) from F(sid).

2. Operations required for communications between two parties in the system:



Universal Composition with Joint State 273

a) Whenever protocol ρ̂ wishes to send a message m, generated by the
computation relating to (sid0, sid), to some party Pj , then Pi writes the
message (sid0, sid, m) on its outgoing communication tape.

b) Upon delivery of a message (sid0, sid, m) from Pj , party Pi activates ρ̂
with incoming message (sid0, sid, m).

The Multi-session Extension of an Ideal Functionality. We formalize the
security requirements from the “joint protocol” ρ̂. Intuitively, the requirement
is that it should have essentially the same functionality as multiple independent
invocations of ρ. More formally, we define the following ideal functionality, F̂ ,
which we want ρ̂ to realize. Let F be an ideal functionality. (Intuitively, F is the
functionality realized by a single instance of ρ.) According to the UC formaliza-
tion, F expects each incoming message to contain a special field consisting of
its session identifier (SID). All messages received by F are expected to have the
same value of the SID. (Messages that have different session identifier than that
of the first message are ignored.) Similarly, all outgoing messages generated by
F carry the same SID.

The multi-session extension of F , denoted F̂ , is defined as follows. F̂ expects
each incoming message to contain two special fields. The first is the usual session
identifier field as in any ideal functionality. The second field is called the sub-
session identifier (SSID) field. Upon receiving a message (sid, ssid, v) (where sid
is the SID, ssid is the SSID, and v is an arbitrary value or list of values), F̂
first checks if there is a running copy of F whose (single) session identifier is
ssid. If so, then F̂ activates that copy of F with incoming message (ssid, v),
and follows the instructions of this copy. Otherwise, a new copy of F is invoked
(within F̂) and immediately activated with input (ssid, v). From now on, this
copy is associated with sub-session identifier ssid. (That is, ssid is the session
identifier of this copy of F .) Whenever a copy of F sends a message (ssid, v)
to some party Pi, F̂ sends (sid, ssid, v) to Pi, and sends ssid to the adversary.
Sending ssid to the adversary implies that F̂ does not hide which copy of F is
being activated within F̂ .

It is stressed that F̂ is not explicitly used by π. It only serves as a criterion
for the security of ρ̂. Furthermore, while F̂ consists of several copies of F with
disjoint states, there is no requirement that the protocol ρ̂ that realizes F̂ would
have such structure. Indeed, ρ̂ may use some joint state for realizing all the
copies of F within F̂ . Clearly, the case where ρ̂ uses some joint state is the case
of interest for this work, as the other instance falls under the regular universal
composition.

Theorem 1 (Universal Composition with Joint State). Let F be an ideal
functionality. Let π be a protocol in the F-hybrid model, and let ρ̂ be a protocol
that securely realizes F̂ , the multi-session extension of F , in the real-life model.
Then the composed protocol π[ρ̂] in the real-life model emulates protocol π in the
F-hybrid model. That is, for any adversary A that interacts with parties running
π[ρ̂] in the real-life model, there exists an adversary A′ that interacts with parties
running π in the F-hybrid model, such that no environment machine Z can tell
whether it is interacting with π[ρ̂] and A, or alternatively with π and A′.



274 R. Canetti and T. Rabin

Proof. Let F , π, ρ̂ be as in the theorem statement. We show that π[ρ̂] in the real-
life model emulates protocol π in the F-hybrid model. This is done in two steps:
first we define a protocol π̃ and show that π[ρ̂] in the real-life model emulates
protocol π̃ in the F̂-hybrid model. Next we show that protocol π̃ in the F̂-hybrid
model emulates protocol π in the F-hybrid model.

Protocol π̃ is a slight variation of protocol π, operating in the F̂-hybrid
model. Specifically, π̃ is identical to π, with the following exceptions. (Note that
π̃ invokes only a single copy of F̂ throughout the computation.)

1. Whenever π instructs Pi to send a message (sid, v) to some copy F(sid) of
F , π̃ instructs Pi to send (sid0, sid, v) to F̂ .

2. Whenever some party Pi, running π̃, receives a message (sid0, sid, v) from
F̂ , it follows the instructions of π upon receipt of the message (sid, v) from
F(sid).

Recall that π̃ρ̂ is the protocol obtained by applying the universal composition
operation of [Can01] to protocols π̃ and ρ̂. Since protocol ρ̂ securely realizes F̂ , it
follows from the universal composition theorem that protocol π̃ρ̂ in the real-life
model emulates protocol π̃ in the F̂-hybrid model. Furthermore, it is easy to see
that protocol π̃ρ̂ is identical to protocol π[ρ̂]. (These are two different descriptions
of exactly the same protocol.) We thus have that protocol π[ρ̂] in the real-life
model emulates protocol π̃ in the F̂-hybrid model.

It remains to show that protocol π̃ in the F̂-hybrid model emulates protocol
π in the F-hybrid model. This is done as follows. Let Â be an adversary that
interacts with parties running π̃ in the F̂-hybrid model. We construct an adver-
sary A such that no environment will be able to tell whether it is interacting
with A and π in the F-hybrid model or with Â and π̃ in the F̂-hybrid model.
Adversary A follows the instructions of Â, with the following exceptions:

1. Whenever A is notified that some copy F(sid) of F has sent a message with
identifier id to some party Pi, A records the pair (sid, id) and notifies Â
that F̂(sid0) has sent a message with identifier id to Pi. Note that A does
not see the actual content of the message, but is only aware of the fact that
a message has been sent.

2. Whenever Â delivers a message with identifier id from F̂ to Pi (in the F̂-
hybrid model), A looks up the pair (sid, id) and delivers the message with
identifier id from F(sid) to Pi.

3. When Â corrupts a party Pi (running π̃ in the F̂-hybrid model), A corrupts
Pi (running π in the F-hybrid model) and obtains the internal state of
Pi for protocol π. It then ‘translates’ the internal state of Pi for protocol
π to be consistent with an internal state of Pi for protocol π̃, and hand
this information to Â. (The translation is straightforward: calls to multiple
copies of F are translated into calls to a single copy of F̂ , with a fixed session
identifier sid0, and the corresponding SSIDs.)

It is straightforward to verify that the view of Z in an interaction with A
and π in the F-hybrid model is distributed identically to the view of Z in an
interaction with Â and π̃ in the F̂-hybrid model.



Universal Composition with Joint State 275

We remark that if ρ̂ operates in the G-hybrid model for some ideal function-
ality G, rather than in the real-life model, then π[ρ̂] also operated in the G-hybrid
model. In this case, we have that π[ρ̂] in the G-hybrid model emulates protocol
π in the F-hybrid model.

4 Application to Protocols in the CRS Model

This section exemplifies the use of the JUC theorem for protocols in the common
reference string model. There are two ways to approach this issue, the first is
to take a single CRS and “stretch” it into multiple independent CRSs, which
will later be utilized by protocols which require independent CRS’s. The second
is to examine a specific multi-session functionality which employs a CRS and
to directly generate the multi-session functionality from the single CRS, and
prove its security directly. While the first approach is more general, the second
approach will result in more efficient protocols for specific functionalities.

Though the introduction starts with the first method, here we start with a
specific example of commitments in the CRS model. This order of presentation
is motivated by the fact that our protocol for stretching the CRS will need to
employ a multi-session commitment functionality.

4.1 Commitment in the CRS Model

Let us first recall the ideal commitment functionality, Fcom, as defined in [CF01]
(see Figure 2). Each copy of Fcom handles the process of a single commitment
followed by its single decommitment.

Functionality Fcom

Fcom proceeds as follows, running with parties P1, ..., Pn and an adversary S.

1. Upon receiving a value (Commit, sid, Pi, Pj , x) from Pi, record the value
x and send the message (Receipt, sid, Pi, Pj) to Pj and S. Ignore any
subsequent Commit messages.

2. Upon receiving a value (Open, sid, Pi, Pj) from Pi, proceed as fol-
lows: If some value x was previously recoded, then send the message
(Open, sid, Pi, Pj , x) to Pj and S and halt. Otherwise halt.

Fig. 2. The Ideal Commitment functionality

The universal composition theorem allows us to write a protocol π in the
Fcom-hybrid model, and then replace each copy of Fcom with an instance of a
protocol ρ that securely realizes Fcom. However, we only know how to realize
Fcom in the common reference string model, or in other words in the Fcrs-
hybrid model, where Fcrs is the ideal functionality that provides all parties with
a common string taken from some pre-specified distribution. Consequently, if



276 R. Canetti and T. Rabin

the universal composition theorem is used as is, then each instance of ρ in the
composed protocol πρ would use a different copy of Fcrs (i.e., an independent
copy of the reference string).

Instead, we are looking for a protocol where all copies of the commitment
protocol use the same short reference string. In [CF01], this is solved as follows.
First, they define an additional ideal functionality, Fmcom, where a single copy
handles multiple commitments and decommitments by different parties and to
different messages. Next, they construct a protocol, UCCReUse, that securely re-
alizes Fmcom and uses a single copy of Fcrs for all the commitments. Thus, if
the high-level protocol π is written in the Fmcom-hybrid rather than the Fcom-
hybrid model, then the composed protocol, πUCCReUse , uses a single copy of the
reference string for multiple commitments.

However, having the high-level protocol π use Fmcom rather than Fcom comes
at a price in the analysis of the protocol. In order to guarantee that a single copy
of Fcrs is used throughout the computation, π has to use only a single copy of
Fmcom (since each copy of Fmcom uses a different copy of Fcrs). This puts a
considerable restriction on the analysis of π, as the security needs to be proven
for π as a single unit. This holds even if π consists of multiple instances of some
simpler protocol ρ. Thus, much of the advantage of using the UC theorem is
lost.

These restrictions can be avoided using universal composition with joint
state. We first observe that the functionality Fmcom is nothing but a refor-
mulation of F̂com. The JUC Theorem thus says that if π is a protocol in the
Fcom-hybrid model (and uses as many copies of Fcom as it wishes) then the
composed protocol π[UCCReUse] runs in the Fcrs-hybrid model, emulates π, and
uses only a single copy of Fcrs. In other words, we can allow protocol π (and
all the higher level protocols that may use π as a subroutine) to operate in an
idealized model where commitments are completely independent of each other,
and then use the JUC Theorem to implement all the commitments using a single
short common string.

4.2 Protocols for Stretching the Common Reference String

This section investigates the possibility of realizing F̂crs in the Fcrs-hybrid
model. More specifically, we present a protocol ρ that securely realizes F̂crs

in the Fcrs-hybrid model, and uses only a single copy of Fcrs. Protocol ρ allows
the parties to generate multiple, computationally independent copies of the ran-
dom string, using a single copy of the string. Then we can design protocols in
the Fcrs-hybrid model, where each protocol instance can assume that no other
instances have access to the reference string it is using, and then replace all
copies of Fcrs with a single copy of the reference string.

For simplicity we consider only the case where the reference string is taken
from the uniform distribution over {0, 1}t for some t. Also, we restrict attention
to protocols where only two parties need to have access to the reference string.
It seems that this special case captures much of the essence of the problem.



Universal Composition with Joint State 277

We first show a simple protocol that securely realizes F̂crs (for two parties
and with uniform distribution) using a single copy of Fcrs. The protocol requires
interaction between the two parties in order to generate each new copy of the
reference string. We then demonstrate that any protocol that realizes F̂crs must
involve sending at least one message by each of the participants. Furthermore, a
new message must be sent for obtaining essentially any new copy of the reference
string.

Let us first formulate functionality Fcrs for the restricted case described
above (Fig. 3). The functionality is parameterized by t, the length of the reference
string. Note that Fcrs does not limit the identities of the parties that may obtain
the common random value r. The number (and identities) or parties that actually
obtain the string is determined by the protocol that realizes Fcrs.

Functionality F t
crs

Fcrs proceeds as follows, running with parties P1, ..., Pn, and an adversary S,
parameterized by an integer t.

1. When receiving (CRS,sid, Pi, Pj) from Pi, choose a value r
R← {0, 1}t, send

(CRS,sid, r) to Pi, and send (sid, Pi, Pj , r) to S. Next, when receiving
(CRS,sid, Pi, Pj) from Pj (and only Pj), send (CRS,sid, r) to Pj and S,
and halt.

Fig. 3. The Common Random String functionality

Realizing F̂crs. We show how to realize F̂crs, using a single copy of Fcrs,
for the case where only two parties obtain each copy of the reference string.
The protocol is essentially the coin-tossing-into-the-well protocol (ct) of Blum
[Blu82], which employs a commitment scheme. We use a universally composable
commitment that utilize the single common random string. We first present the
protocol in the Fcom-hybrid model, and then use the JUC Theorem to compose
this protocol with protocol UCCReUse of [CF01] (as discussed in Section 4.1),
and obtain the desired protocol. This means that the distribution needed for
our protocol is the distribution needed for UCCReUse. The protocol in the Fcom-
hybrid model is denoted ctt. Whenever parties Pi and Pj are invoked to generate
a new copy of the reference string (say, with SID sid), they proceed as follows.
Message 1: When activated with input CRS,sid, Pi, Pj), Pi chooses a random

string ri
R← {0, 1}t and commits to ri for Pj , using a new copy of Fcom with

SID sid. (That is, Pi sends (Commit, sid, Pi, Pj , ri) to Fcom).
Message 2: When activated with input CRS,sid, Pi, Pj), Pj waits to receive

(Receipt, sid, Pi, Pj) from Fcom. Next, Pj chooses rj
R← {0, 1}t and sends

to Pi.
Message 3: Upon receiving rj , Pi decommits to ri. (That is, Pi sends

(Open, sid, Pi, Pj) to Fcom).
Output: Both parties output the string ri ⊕ rj .



278 R. Canetti and T. Rabin

Claim. Protocol ctt securely realizes F̂ t
crs in the Fcom-hybrid model.

Proof. Let A be an adversary that interacts with protocol ctt in the Fcom-hybrid
model. We construct an adversary S so that no environment can tell whether
it is interacting with S in the ideal process for F̂ t

crs or with A and ct in the
Fcom-hybrid model. Adversary S runs a simulated copy of A, and proceeds as
follows. (Without loss of generality we assume that A does not run the protocol
between two corrupted parties.)

1. Throughout, whenever S receives an input value from Z, it copies this value
to A’s input tape. Whenever A writes a value on its output tape, S copies
this value to its own output tape (to be read by Z).

2. Corrupted initiator: If the simulated A generates a message
(Commit, sid, Pi, Pj , ri) from a corrupted party Pi to Fcom, then S records ri,
and sends a message (CRS, 0, sid, Pi, Pj) from Pi to F̂crs in the ideal process.
(That is, the SID of this message is 0, and the SSID is sid.) Upon receiving
a value r from F̂crs, S waits to receive a message (CRS,(sid, Pj) from F̂crs.
This message will notify S that Pj was activated with input (CRS, 0, sid, r).
Upon receiving this message, S sets rj = r⊕ri and activates A to receive the
message rj from Pj . Next, when A generates the message (Open, sid, Pi, Pj)

from Pi to Fcom, S delivers the message that F̂crs sent to Pj . (This message
contains the value r.)

3. Corrupted responder: If S receives the message (0, sid, Pi, Pj , r) from F̂crs

in the ideal process where Pj is corrupted, then S activates the simulated
A to receive message (Receipt, sid,Pi, Pj) from Fcom. When A generates
a message rj from Pj , S delivers the message from F̂crs to Pi in the ideal
process, and activates A to receive the message (Open, sid, Pi, Pj , ri) from
Fcom, where ri = r ⊕ rj .

4. Both parties uncorrupted: If S receives the message (0, sid, Pi, Pj , r)
from F̂crs in the ideal process where both Pi and Pj are uncorrupted, then
it simulates for A the information it sees when two uncorrupted parties run
the protocol and obtain a common string r. This information consists of a
notice from Fcom that Pi committed to a value to Pj , the random value rj

sent by Pj , and the opening of the commitment to ri such that ri ⊕ rj = r.
5. Party corruption: If at any point the simulated A corrupts a party Pi

then S corrupts Pi in the ideal process, and provides A with the simulated
internal state of Pi. (It is easy to verify that this state is always implied by
the information already known to S at the time of corruption.)

Let Z be an environment machine. It is straightforward to verify that the view
of Z in the ideal process for F̂crs with S is distributed identically to its view of
an execution of ct in the Fcom-hybrid model. Note that this holds even if Z is
computationally unbounded.

Using the JUC Theorem, we have that protocol ct[UCCReUse] securely realizes
F̂crs and uses only a single copy of Fcrs.



Universal Composition with Joint State 279

Limits on Protocols for Realizing F̂crs. We show that any protocol that
realizes F̂crs in the Fcrs-hybrid model, and uses only a few copies of Fcrs, must
involve interaction. More specifically, we consider protocols that realize Fs

crs

using a single copy of F t
crs, where s > t. (This is a considerable restriction of the

original problem: Clearly, any protocol that securely realizes F̂crs realizes also
Fs

crs for any s that is polynomial in t.) We show that any such protocol must
require that each of the parties send at least s− t bits of information. Translated
back to the task of realizing F̂ t

crs using a single copy of F t
crs, this bound implies

that each party must send at least t bits in order to generate each new copy
of the string. (Note that the bound holds also for protocols generating a string
among more than two parties.) That is:

Claim. Let π be a protocol that securely realizes Fs
crs using a single copy of

F t
crs, and assume that π requires one of the parties to send no more than u bits

of information. Then s ≤ t + u.

Proof. Let π, s, t, u be as in the premise of the claim. It follows that for any
adversary A there exists a simulator S such that no environment Z can distin-
guish between an interaction with π and A in the F t

crs-hybrid model and an
interaction with S in the ideal process for Fs

crs. Let Pi be the party that sends
at most u bits.

Consider the following adversary A and environment Z. Z instructs A to
corrupt all parties except for Pi, uniformly chooses random inputs α1, ..., αn for
the corrupted parties, and instructs A to have each corrupted party Pj run π
with random input αj . A follows the instructions of Z and reports the gathered
information to Z. This information consists of the t-bit value rt obtained from
F t

crs, and the u-bit concatenation, m, of all messages received from Pi. Next, Z
obtains the s-bit output of Pi, rs, picks a corrupted party Pj , and outputs 1 iff
Pj outputs rs after running π on random input αj , and having received rt from
F t

crs and messages m from Pi.
Clearly, if Z interacts with parties running π in the F t

crs-hybrid model, then
it always outputs 1. On the other hand, let S be an ideal-process adversary. We
claim that if Z interacts with S in the ideal process for Fs

crs then Z outputs 1
with probability at most 2t+u−s. To see this, fix a value of α, and recall that
rs

R← {0, 1}s is chosen by Fs
crs, and that the output of Pj is uniquely determined

by rt, α, and m. Then, the probability over the choice of rs that there exist a
u-bit value m and a t-bit value rt such that the output of Pj is rs is at most
2t+u−s. Note that the claim holds even if Z and A are restricted to polynomial
time and even if Pi and S are unbounded.

4.3 Zero-Knowledge in the CRS Model

We describe the use of the JUC theorem to Zero-Knowledge protocols in the
CRS model. The use is very similar to the case of commitment. Let us first
recall the zero-knowledge functionality, Fzk, as defined in [Can01], (see Fig. 4).



280 R. Canetti and T. Rabin

Functionality FR
zk

Fzk proceeds as follows, running with parties P1, ..., Pn and an adversary S,
given a binary relation R.

1. Upon receipt of a value (prover, sid, Pi, Pj , x, w) from some party Pi,
Send (sid, Pi, x, R(x, w)) to Pj and S, and halt.

Fig. 4. The Zero-Knowledge functionality, Fzk

As in the case of Fcom, we only know how to realize functionality Fzk in the
CRS model (i.e., in the Fcrs-hybrid model). Also here, straightforward compo-
sition of a protocol π in the Fzk-hybrid model with a protocol ρ that securely
realizes Fzk in the Fcrs-hybrid model would result in a composed protocol πρ

that is highly wasteful of the reference string. We solve the problem by using
universal composition with joint state. That is, given a protocol ρ̂ that securely
realizes F̂zk, the multi-session extension of Fzk, we conclude that the composed
protocol π[ρ̂] runs in the Fcrs-hybrid model and emulates π. Furthermore, if ρ̂
uses only few copies of Fcrs then so does π[ρ̂].

We complete the discussion by pointing to two protocols that securely realize
F̂zk in the Fcrs-hybrid model, and use only a single copy of Fcrs. First, recall
protocol hc in [CF01] that securely realizes Fzk in the Fcom-hybrid model. (We
remark that the formalization of Fzk in [CF01] is slightly different than the one
here. Nonetheless, it is easy to see that the two formalizations are equivalent.)
We claim that this protocol in effect realizes also F̂zk. (Simply run the protocol
separately for each interaction.) Thus, using the JUC Theorem, we obtain that
the composed protocol, hc[UCCReUse], securely realizes F̂zk in the Fcrs-hybrid
model. That is, we have:

Claim. Protocol hc[UCCReUse] securely realizes F̂zk in the Fcrs-hybrid model.
Furthermore, it uses only a single copy of Fcrs.

Next, we note that the simulation-sound non-interactive zero-knowledge
proof of knowledge protocol of De-Santis et al. [DCO+01] can be written as
a protocol that securely realizes F̂zk in the Fcrs-hybrid model, with respect to
non-adaptive adversaries:

Claim. The protocol of [DCO+01]securely realizes F̂zk in the Fcrs-hybrid model,
with respect to non-adaptive adversaries. Furthermore, it uses only a single copy
of Fcrs.

References

[Bea91] D. Beaver. Secure Multiparty Protocols and Zero-Knowledge Proof Sys-
tems Tolerating a Faulty Minority. Journal of Cryptology, 4:75–122, 1991.

[BGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness Theorems
for Noncryptographic Fault-Tolerant Distributed Computations. In Proc.
20th STOC, pages 1–10. ACM, 1988.



Universal Composition with Joint State 281

[Blu82] M. Blum. Coin Flipping by Telephone . In IEEE Spring COMPCOM,
pages 133–137, 1982.

[BR93] M. Bellare and P. Rogaway. Entity Authentication and Key Distribution.
In Crypto ’93, pages 232–249, 1993. LNCS No. 773.

[Can00] R. Canetti. Security and Composition of Multiparty Cryptographic Pro-
tocols. Journal of Cryptology, 13(1):143–202, 2000.

[Can01] R. Canetti. Universally Composable Security: A New Paradigm for Cryp-
tographic Protocols. In Proc. 42st FOCS, pages 136–145. IEEE, 2001.
http://eprint.iacr.org/2000/067.

[CF01] R. Canetti and M. Fischlin. Universally Composable Commitments. In
Crypto ’01 , pages 19–40. LNCS No. 2139.

[CK01] R. Canetti and H. Krawczyk. Analysis of Key-Exchange Protocols and
Their Use for Building Secure Channels . In Eurocrypt ’01, pages 453–474,
2001. LNCS No. 2045.

[CK02] R. Canetti and H. Krawczyk. Universally Composable Key Exchange and
Secure Channels . In Eurocrypt ’02, pages 337–351, 2002. LNCS No. 2332.

[CLOS02] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally Com-
posable Two-Party and Multi-Party Secure Computation. In Proc. 34th
STOC , pages 494–503.

[CR03] R. Canetti and T. Rabin. Universal Composition with Joint State. Avail-
able online, http://eprint.iacr.org.

[DCO+01] A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai.
Robust Non-interactive Zero-Knowledge. In Crypto ’01 LNCS No. 2139.

[DDN00] D. Dolev, C. Dwork, and M. Naor. Non-malleable Cryptography. SIAM
J. Comput., 30(2):391–437, 2000.

[DM00] Y. Dodis and S. Micali. Parallel Reducibility for Information-Theoretically
Secure Computation. In Crypto ’00, pages 74–92, 2000. LNCS No. 1880.

[DN02] I. Damgard and J. Nielsen. Universally Composable Commitment
Schemes with Constant Expansion Factor. In Crypto ’02 LNCS No. 2442.

[DNS98] C. Dwork, M. Naor, and A. Sahai. Concurrent zero-knowledge. In Proc.
30th STOC , pages 409–418.

[GK96] O. Goldreich and H. Krawczyk. On the composition of zero-knowledge
proof systems. SIAM. J. Computing, 25(1):169–192, 1996.

[GL90] S. Goldwasser and L. Levin. Fair computation of general functions in
presence of immoral majority. In Crypto ’90, 1990. LNCS No. 537.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to Play Any Mental
Game. In Proc. 19th STOC, pages 218–229. ACM, 1987.

[GO94] O. Goldreich and Y. Oren. Definitions and Properties of Zero-Knowledge
Proof Systems. Journal of Cryptology, 7(1):1–32, 1994. Preliminary version
by Y. Oren in FOCS87.

[Gol02] O. Goldreich. Concurrent Zero-Knowledge With Timing Revisited. In
Proc. 34th STOC .

[LLR02] Y. Lindell, A. Lysyanskya, and T. Rabin. On the Composition of Au-
thenticated Byzantine Agreement. In Proc. 34th STOC , pages 514–523.

[MR91] S. Micali and P. Rogaway. Secure Computation. In Crypto ’91, pages
392–404, 1991. Manuscript available.

[PSW00] B. Pfitzmann, M. Schunter, and M. Waidner. Secure Reactive Systems.
IBM Research Report RZ 3206 (#93252), IBM Research, Zurich, May
2000.

[Sho99] V. Shoup. On Formal Models for Secure Key Exchange. Available at:
http://www.shoup.org, 1999.


	Introduction
	The New Composition Theorem
	Application to Protocols Using Digital Signatures
	Application to Protocols in the Common Reference String Model

	Review of the Universal Composition Theorem
	Universal Composition with Joint State ({sf JUC}) 
	Application to Protocols in the CRS Model
	Commitment in the CRS Model
	Protocols for Stretching the Common Reference String
	Zero-Knowledge in the CRS Model




