
Cryptanalysis of SAFER++�

Alex Biryukov1��, Christophe De Cannière1� � �, and Gustaf Dellkrantz1,2

1 Katholieke Universiteit Leuven, Dept. ESAT/SCD-COSIC,
Kasteelpark Arenberg 10,
B–3001 Heverlee, Belgium

{alex.biryukov, christophe.decanniere}@esat.kuleuven.ac.be
2 Royal Institute of Technology,

Stockholm, Sweden
d98-gde@nada.kth.se

Abstract. This paper presents several multiset and boomerang attacks
on Safer++ up to 5.5 out of its 7 rounds. These are the best known
attacks for this cipher and significantly improve the previously known
results. The attacks in the paper are practical up to 4 rounds. The meth-
ods developed to attack Safer++ can be applied to other substitution-
permutation networks with incomplete diffusion.

1 Introduction

The 128-bit block cipher Safer++ [9] is a 7-round substitution-permutation
network (SPN), with a 128-bit key (the 256-bit key version1 has 10 rounds).
Safer++ was submitted to the European pre-standardization project NESSIE
[14] and was among the primitives selected for the second phase of this project.

Safer [7] was introduced by Massey in 1993, and was intensively analyzed
since then [4,6,8,11,13]. This resulted in a series of tweaks which lead to several
ciphers in the family: Safer-K (the original cipher), Safer-SK (key schedule
tweak), Safer+ (key schedule and mixing transform tweak, increased number
of rounds, AES candidate), Safer++ (faster mixing tweak, key schedule tweak,
fewer rounds due to more complex mixing). All these ciphers have common S-
boxes derived from exponentiation and discrete logarithm functions. They share
the Pseudo-Hadamard-like mixing transforms (PHT), although these are con-
structed in different ways in the different versions. The ciphers in the family also
share the idea of performing key-mixing with two non-commutative operations.

The inventors claim that Safer++ offers “further substantial improvement
over Safer+” [9]. The main feature is a new 4-point PHT transform in place
� The work described in this paper has been supported in part by the Commission of

the European Communities through the IST Programme under Contract IST-1999-
12324 and by the Concerted Research Action (GOA) Mefisto-666.

�� F.W.O. Researcher, sponsored by the Fund for Scientific Research – Flanders.
� � � F.W.O. Research Assistant, sponsored by the Fund for Scientific Research – Flanders

1 A legacy 64-bit block version was also proposed by the designers but is not studied
in this paper.

D. Boneh (Ed.): CRYPTO 2003, LNCS 2729, pp. 195–211, 2003.
c© International Association for Cryptologic Research 2003



196 A. Biryukov, C. De Cannière, and G. Dellkrantz

of the 2-point PHT transform that was used previously in the Safer family.
The authors claim that “all 5-round characteristics have probabilities that are
significantly smaller than 2−128” and that Safer++ is secure against differential
cryptanalysis [1] after 5 rounds and against linear cryptanalysis [10] after 2.5
rounds.

The best previous attack on Safer++ is linear cryptanalysis [12], which can
break 3 rounds of Safer++ (with 128-bit keys) with 281 known plaintexts and
2101 steps for a fraction 2−13 of keys. For 256-bit keys the attack can break the
3.5-round cipher with 281 known plaintexts and 2176 steps for a fraction 2−13 of
keys.

In this paper we study only the 128-bit key version of Safer++, since we
would like to make our attacks as practical as possible. We design several very
efficient multiset attacks on Safer++ following the methodology of the struc-
tural attack on SASAS [2] and inspired by the collision attacks on Rijndael [3].
These multiset attacks can break up to 4.5 rounds of Safer++ with 248 chosen
plaintexts and 294 steps, which is much faster than exhaustive search. Attacking
3 rounds is practical and was tested with an actual implementation running in
milliseconds on a PC.

In the second half of the paper we show how to apply a cryptanalytic tech-
nique called the boomerang attack [15] to Safer++. We start from ideas which
are applicable to arbitrary SPNs with incomplete diffusion (such as Rijndael,
Safer++ or Serpent) and then extend our results using special properties
of the Safer S-boxes. The attacks thus obtained are more efficient then those
we found via the multiset techniques, are practical up to 4 rounds and were
confirmed experimentally on a mini-version of the cipher.

The average data complexity of the 5 round attack is 278 chosen plain-
texts/adaptive chosen ciphertexts with the same time complexity, most of which
is spent encrypting the data. The attack completely recovers the 128-bit secret
key of the cipher and can be extended to 5.5 rounds by guessing 30 bits of the
secret key. See Table 1 for a summary of results presented in this paper and their
comparison with the best previous attack.

This paper is organized as follows: Section 2 provides a short description of
Safer++ and Section 3 shows some interesting properties of the components.
In Sections 4 and 5 we design our multiset attacks on Safer++. Section 6
describes our application of boomerang techniques to Safer++ reduced to 5
rounds and shows how to use the middle-round S-box trick to obtain even better
results. Finally, Section 7 concludes the paper.

2 Description of Safer++

This section contains a short description of Safer++. For more details, see [9].
In this paper, eXclusive OR (XOR) will be denoted by ⊕, addition modulo 256 by
� and subtraction modulo 256 by �. The notion of difference used is subtraction
modulo 256. Throughout this paper we will number bytes and S-boxes from left
to right, starting from 0.



Cryptanalysis of Safer++ 197

Table 1. Comparison of our results with the best previous attack on Safer++.

Attack Key size Rounds Dataa Typeb Workloadc Memorya

Our Multiset attack 128 3 of 7 216 CC 216 24

Our Multiset attack 128 4 of 7 248 CP 270 248

Our Multiset attack 128 4.5 of 7 248 CP 294 248

Our Boomerang attack 128 4 of 7 241 CP/ACC 241 240

Our Boomerang attack 128 5 of 7 278 CP/ACC 278 248

Our Boomerang attack 128 5.5 of 7 2108 CP/ACC 2108 248

Linear attackd [12] 128 3 of 7 281 KP 2101 281

a Expressed in number of blocks.
b KP – Known Plaintext, CP – Chosen Plaintext, ACC – Adaptive Chosen Ciphertext.
c Expressed in equivalent number of encryptions.
d Works for one in 213 keys.

Safer++ is an iterated product cipher in which every round consists of an
upper key layer, a nonlinear layer, a lower key layer and a linear transformation.
Fig. 1 shows the structure of one Safer++ round. After the final round there is
an output transformation that is similar to the upper key layer. The upper and
lower key layers together with the nonlinear layer make up the keyed nonlinear
layer, denoted by S. The linear layer is denoted by A.

2.1 The Keyed Nonlinear Layer

The upper key layer combines a 16 byte subkey with the 16 byte block. Bytes
0, 3, 4, 7, 8, 11, 12 and 15 of the subkey are XORed to the corresponding bytes
of the block and bytes 1, 2, 5, 6, 9, 10, 13 and 14 are combined using addition
modulo 256.

The nonlinear layer is based on two 8-to-8-bit functions, X and L defined as

X (a) = (45a mod 257) mod 256 ,

L (a) = log45 (a) mod 257 ,

with the special case that L (0) = 128, making X and L mutually inverse. In the
nonlinear layer, bytes 0, 3, 4, 7, 8, 11, 12 and 15 are sent through the function
X, and L is applied to bytes 1, 2, 5, 6, 9, 10, 13 and 14.

The lower key layer applies a 16 byte subkey to the 16 byte block using
addition modulo 256 for bytes 0, 3, 4, 7, 8, 11, 12 and 15 and XOR for bytes
1, 2, 5, 6, 9, 10, 13 and 14.

2.2 The Linear Layer

The linear transformation of Safer++ is built from a 4-point Pseudo Hadamard
Transform (4-PHT) and a coordinate permutation. The 4-PHT can be imple-
mented with six modular additions.



198 A. Biryukov, C. De Cannière, and G. Dellkrantz

X L L X X L L X X L L X X L L X

K0
0 K1

0 K2
0 K3

0 K4
0 K5

0 K6
0 K7

0 K8
0 K9

0 K10
0 K11

0 K12
0 K13

0 K14
0 K15

0

K1
0′ K2

0′ K3
0′ K4

0′ K5
0′ K6

0′ K7
0′ K8

0′ K9
0′ K10

0′ K11
0′ K12

0′ K13
0′ K14

0′ K15
0′ K16

0′

Fig. 1. One round of Safer++.

The linear layer first reorders the input bytes and then applies the 4-PHT to
groups of four bytes. The output of the linear layer is obtained after iterating
this operation twice.

The linear layer and its inverse can be represented by the matrices A and
A−1. Since the linear layer consists of two iterations of one linear function the
matrix A can be written as the square of a matrix

√
A. The matrices A and A−1

are shown in Appendix A.

2.3 The Key Schedule

The key schedule expands the 128 or 256-bit master key into the required number
of subkeys. It consists of two similar parts differing only in the way the master
key is used to fill the registers. The first part generates the subkeys for the upper
key layer and the output transform and the second part generates subkeys for
the lower key layer.

It can be noted that the key schedule provides no interaction between bytes
of the key and furthermore, there is a big overlap between the key bytes used
in different rounds. Therefore, we will not number the bytes of the subkeys
according to the order in the subkeys, but according to which master key byte
they depend on.



Cryptanalysis of Safer++ 199

3 Properties of the Components

In this section we show some interesting properties of the components of
Safer++ which will be used later in our analysis.

3.1 Diffusion in the Linear Layer

In [8], the designers show that the choice of the components used in the linear
layer provides “optimum transform diffusion” without sacrificing efficiency. In
order to measure this diffusion, the authors compute the minimal number of
output bytes that are affected by a change in a single input byte. In the case of
Safer++, for example, the linear layer guarantees that a single byte difference
at the input of the layer will cause at least ten output bytes to be different.

While the “optimum transform diffusion” defined in this way is certainly a
desirable property, it potentially allows some low-weight differentials that might
still be useful for an attacker. For example, if two input bytes are changed si-
multaneously in Safer++, the number of affected output bytes after the linear
layer can be reduced to only three. The adversary might also consider to attack
the layer in decryption direction, in which case single byte differences are only
guaranteed to propagate to at least five bytes. Neither of these cases is captured
by the diffusion criterion used in [8].

3.2 Symmetry of the Linear Layer

Due to the symmetry of the 4-PHT and the coordinate permutation used, there
is a four byte symmetry in the linear layer. If the input difference to the linear
layer is of the form

(a, b, c, d, a, b, c, d, a, b, c, d, a, b, c, d)

for any 8-bit values a, b, c, and d the output difference will be of the form

(x, y, z, t, x, y, z, t, x, y, z, t, x, y, z, t)

The nonlinear layer is symmetric in the same way and were it not for the sub-
keys, the property would hold for the whole Safer++ cipher, with an arbitrary
number of rounds.

A special illustration of this property are the two eigenvectors of the linear
transformation corresponding to the eigenvalue 1:

(0, 1,−1, 0, 0, 1,−1, 0, 0, 1,−1, 0, 0, 1,−1, 0)
(1, 0,−1, 0, 1, 0,−1, 0, 1, 0,−1, 0, 1, 0,−1, 0)

These vectors and all linear combinations of them are fixed points of the linear
transform.



200 A. Biryukov, C. De Cannière, and G. Dellkrantz

3.3 Properties of the S-Boxes

The S-boxes of Safer++ are constructed using exponentiations and logarithms
as described previously. This provides us with some interesting mathematical
properties. The following expressions hold for X and L:

X (a) + X (a � 128) = (45a mod 257) + (45a+128 mod 257) = 257
≡ 1 mod 256 ,

L (a)− L (1� a) ≡ 128 mod 256 .

This is a very useful property that will be exploited in the boomerang attacks
in Section 6. Though we discovered this property independently, it was known
to Knudsen [6].

4 Multiset Attack on 3 Rounds Using Collisions

Multiset attacks are attacks where the adversary studies the propagation of
multisets through the cipher, instead of actual values or differences as in other
attacks. By multisets we mean sets where values can appear more than once.
The multiplicity of each value is one important characteristic of a multiset.

In this and the following section we present two multiset attacks on 3 and
4 rounds of Safer++. Both attacks exploit the asymmetry of the linear layer,
but in different ways. The first attack considers the cipher in decryption direction
and relies on the fact that the weaker diffusion in backward direction allows a
stronger distinguisher. The second approach, described in Section 5, is built on a
distinguisher in forward direction which, though weaker than the previous one,
can more easily be extended with rounds at the top and the bottom. All multiset
attacks presented in this paper are independent of the choice of the S-boxes.

4.1 A Two-Round Distinguisher in Decryption Direction

As mentioned earlier, changes propagate relatively slowly through the linear
layer in decryption direction. Most byte positions at the input of a decryption
round affect only 6 bytes at the output, and conversely, most byte positions at
the output are affected by only 6 bytes at the input. After one more round, this
property is destroyed, i.e., a change in any input byte can induce changes in any
output byte after two rounds (complete diffusion on byte level). The number of
different paths through which the changes propagate is still small, however, and
this property allows us to build an efficient distinguisher.

The structure of a 2-round distinguisher is shown in Fig. 2. First, a multiset
of 216 texts is constructed, constant in all bytes except in byte 4 and 6, in which
it takes all possible values. After one decryption round, these texts are still
constant in 8 positions, due to the weak diffusion properties of the linear layer.
We now focus on byte 13 at the top of the distinguisher. This byte is affected
by 6 bytes of the preceding round, 5 of which are constant. This implies that



Cryptanalysis of Safer++ 201

L X X L L X X L L X X L L X X L

Linear layer (Round 1)

L X X L L X X L L X X L L X X L

Linear layer (Round 2)

L X X L L X X L L X X L L X X L

Linear layer (Round 3)

K6
3 K9

3 K10
3 K13

3 K14
3 K0

3 K1
3 K4

3

48

64

256 256




2-
ro

un
d

di
st

in
gu

is
he

r

Fig. 2. A 3-round attack.

the changes in the two bytes at the input essentially propagate through a single
path.

As a closer look reveals, this path has some additional properties: in Round 2,
the two input bytes are first summed and then multiplied by 4 before they reach
S-box 7. The byte at this position is then again multiplied by 4 in Round 1.
The effect of these multiplications (modulo 256) is that the two most significant
bits are lost, reducing the number of different values that can be observed at
the top to 64. This is extremely unlikely to happen if the cipher were a random
permutation, in which case all 256 possible values would almost certainly be ob-
served. Moreover, due to the interaction with the special S-boxes of Safer++,
the number of different values is exactly 48.

4.2 Adding a Round at the Bottom

The distinguisher above is very strong, but it is hard to use it as such when a
round is added at the bottom. Causing the multiset described above at the input
of the distinguisher (see Fig. 2) would require half of the key bytes (those that
are XORed) to be guessed in the final key addition layer.

In this paper we use a better approach and consider small multisets of 24

texts that are constant except in the two most significant bits of the fifth and
the seventh byte. In order to cause such multisets from the bottom, we only need



202 A. Biryukov, C. De Cannière, and G. Dellkrantz

to guess the second most significant bit of the 8 key bytes that are XORed in
the final key addition layer and generate sets of 24 ciphertexts of the form

(x · A � y · B � C)⊕ K (1)

with (x, y) ∈ {0, 64, 128, 192}2, C any fixed 128-bit word, and

A = (4, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1) ,

B = (1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 4, 2, 2, 1, 1, 1) ,

K = (K6
3 , 0, 0, K9

3 , K10
3 , 0, 0, K13

3 , K14
3 , 0, 0, K0

3 , K1
3 , 0, 0, K4

3 ) .

Note that only the second most significant bits of the Ki
3 are relevant (because of

carries) and that the effect of the other bits can be absorbed in the constant C.
Now the question arises whether we can still distinguish the set of 16 values

obtained in byte 13 of the plaintexts from a random set. An interesting charac-
teristic that can be measured is the number of collisions in the sets, should they
appear at all. If this number depends in a significant way on whether the key
bits were correctly guessed or not, then this would allow us to recover the key.
This question is easily answered by deriving a rough estimation of the number
of collisions.

First, we deduce the expected number of collisions µ0 in case the guess was
correct. Assuming that all 48 possible values are equally likely, we obtain

µ0 =
(
16
2

)
· 1
48

≈ 2.50 and σ0 =

√(
16
2

)
· 1
48

(
1− 1

48

)
≈ 1.56 ,

with σ0 the expected deviation. In order to estimate the number of collisions
given a wrong guess, one could be tempted to assume that the sets at the output
of the distinguisher are random. This is not the case however.2 One can easily
see, for example, that whether K6

3 is correctly guessed or not matters only for
half of the (x, y) pairs, i.e., when the second most significant bit of 4 · x � y is
set. In all these (and only these) cases an incorrect carry bit will appear in the
most significant bit. If we absorb this wrong bit in a new constant C ′, we obtain
two subsets of 8 texts, both of which still satisfy (1), but with two different fixed
values C and C ′. Hence we find

µ1 = 2 ·
(
8
2

)
· 1
48

+ 82 · 1
256

≈ 1.42 ,

σ1 =

√
2 ·
(
8
2

)
· 1
48

(
1− 1

48

)
+ 82 · 1

256

(
1− 1

256

)
≈ 1.19 .

The value of µ1 is indeed considerably higher than what we would expect for
a random set (about 0.47 collisions). Exactly the same situation occurs for 17
2 Note that this property is useful if one does not care about recovering the key, but

just needs a 3-round distinguisher.



Cryptanalysis of Safer++ 203

other combinations of wrong key bits, and similar, but less pronounced effects
can be expected for other guesses.

The result above can now be used to predict the complexity and success
probability of our 3-round attack. The attack consists in running through all
28 possible partial key guesses and accumulating the total number of collisions
observed after decrypting α sets of 16 texts. The maximum number of collisions
is then assumed to correspond to the correct key. Taking this into consideration,
we obtain the estimations below:

Time and data complexity ≈ 28 · 16 · α ,

Success probability ≈ 1− 17 · Φ

(
√

α · µ0 − µ1√
σ2
0 + σ2

1

)
.

Evaluating these expressions for α = 16, we find a complexity of 216 and a corre-
sponding success probability of 77%. Similarly, for α = 32 we get a complexity of
217 and an expected probability as high as 98%. In order to verify these results,
we performed a series of simulations and found slightly lower success probabil-
ities: 70% and 89% for α = 16 and α = 32 respectively. This difference is due
to the fact that our estimation only considers wrong guesses that have a high
probability of producing many collisions.

5 Multiset Attack on 4 Rounds Using Structural
Approach

The chosen ciphertext attack presented in the previous section is particularly
efficient on 3 rounds, but extending it to 4 rounds turns out to be rather difficult.
Either we could try to add a round at the bottom, which would require us to cause
small bit changes after crossing a decryption round, or we could add a round at
the top and try to recover the value of a particular byte from the output of this
round. Both cases, however, are hindered by the asymmetry of the linear layer
and this motivates the search for a distinguisher in forward direction.

Before describing the distinguisher we introduce some convenient notations
to represent different types of multisets:

C – Constant multiset. A set containing a single value, repeated multiple
times.

P – Permutation multiset. A set containing all possible values once, in an
arbitrary order.

E – Even multiset. A set containing different values, each occurring an even
number of times.

B – Balanced multiset. A set containing elements with arbitrary values, but
such that their sum (modulo 256) is zero. We will write “B0”, if this property
only holds for the least significant bit. Note that multisets satisfying the
conditions C, P or E satisfy condition B0 as well.



204 A. Biryukov, C. De Cannière, and G. Dellkrantz

5.1 A Two-Round Distinguisher in Encryption Direction

The input to the 2-round distinguisher consists of a permutation multiset (P ) at
position 12, and constant multisets (C) elsewhere. This pattern is preserved after
the first layer of S-boxes. It then crosses the linear layer, where it is transformed
into a series of P and E multisets. Again, these properties remain unchanged
after applying the second layer of S-boxes. Finally, we note that all multisets
at this point satisfy condition B0, and this property is preserved both by the
second linear layer and the final key addition. The sixteen B0-multisets at the
output provide us with a 16-bit condition and allows the two round cipher to be
distinguished from a random permutation.

5.2 Adding a Round at the Top

In order to add a round at the top, we must be capable of keeping all bytes
constant after one encryption round, except for byte 12. This would have been
very hard in decryption direction, but is fortunately relatively easy in this case.
Due to the fact that the diffusion is incomplete in backward direction, we only
need to cross the nonlinear layer in 6 active bytes. Moreover, we do not care
about constants added to byte 12. This implies that 6 key bytes in the upper
key layer (K2

0 , K3
0 , K5

0 , K8
0 , K12

0 , and K15
0 ) and 2 XORed key bytes in the lower

key layer (K3
0′ and K6

0′) need to be guessed. As K3
0 and K3

0′ are easily derived
from each other, guessing 7 bytes will suffice.

In order to distinguish the wrong guesses from the correct one, 4 different
multisets need to be examined for each key (yielding a 8-byte condition). Since
only six bytes are active at the top, all multisets can be constructed from a pool
of 248 plaintexts. The time complexity of this 3-round attack is about 4·27·8 = 258

steps.

5.3 Adding a Round at the Bottom

The complexity derived above is a bit disappointing compared to the results in
the previous section, but the good news is that adding an extra round at the
bottom comes almost for free. This time, we will test a single byte at the output
of the distinguisher (byte 8) and exploit the fact that this byte is only affected
by 6 bytes at the output of the fourth round. The additional obstacles are 7 key
bytes which need to be guessed. However, due to the key schedule and the special
choice for the position of the active byte at the input of the distinguisher (byte
12), 6 of these key bytes can directly be determined from the keys guessed at the
top. As a consequence, the total number of key bytes to guess is only increased
by 1. Taking into account that each multiset provides a 1-bit condition in this
case, we obtain a time complexity of 8 · 8 · 28·8 = 270 steps.

The 4-round attack described above can easily be extended by another half
round at the bottom (i.e., an S-box layer followed by a key addition). This would
in principle require 6 more key bytes to be guessed, but again, 3 of them depend
on previous guesses. Accordingly, the complexity increases to about 11·8·211·8 ≈
294.5 steps.



Cryptanalysis of Safer++ 205

6 Boomerang Attacks on Safer++

In this section we describe an attack on Safer++ reduced to 5 rounds and then
extend it to an attack on 5.5 rounds. The attack is a boomerang attack [15] using
a combination of truncated differentials [5] and conventional differentials [1].

Contrary to conventional differentials which require full knowledge of the
input difference and predict the full output difference, truncated (or wildcard)
differentials restrict only parts of the input difference and may predict only parts
of the output difference. It is thus natural to consider truncated differentials for
ciphers which use operations on small sub-blocks (for example, bytes or nibbles).

Two natural ways of placing partial restrictions on differences are: to fix the
difference in certain sub-blocks to constant values (a popular choice is zero) while
allowing arbitrary differences in the other sub-blocks; or to place constraints on
differences without restricting them to specific values. For example, one can
consider differences of the form (x, 0,−x, 2x, 0,−y, y, 4y), where the values x, y
are not restricted and thus give degrees of freedom.

Truncated differentials have several distinct properties which make them dif-
ferent from conventional differentials. First of all, the probability of truncated
differentials is usually not the same in forward and in backward direction. Sec-
ondly, due to the “wildcard” nature of truncated differentials plaintexts for trun-
cated differentials may be efficiently packed into pools in which a large fraction
of pairs satisfies the truncated difference. Such a pool effect often significantly
reduces the data requirements for detecting truncated differentials. The data re-
quirements of the truncated differential attack may be smaller than the inverse
of the differential probability (which is usually a good measure for the data
complexity of a conventional differential attack), and thus truncated differential
attacks may still work in cases where the probability is lower than 2−n where
n is the block size. Finally, due to the large number of pairs in the pools and
due to the partial prediction of the output difference for the right pair, filtration
of wrong pairs (those pairs that have the predicted partial output difference,
but do not follow the partial difference propagation expected by the truncated
differential) becomes a crucial issue for truncated differential attacks.

The idea of the boomerang attack is to find good conventional (or truncated)
differentials that cover half of the cipher but can not necessarily be concatenated
into a single differential covering the whole cipher. The attack starts with a
pair of plaintexts P and P ′ with a difference ∆ which goes to difference ∆∗

through the upper half of the cipher. The attacker obtains the corresponding
ciphertexts C and C ′, applies the difference ∇ to obtain ciphertexts D = C +∇
and D′ = C ′ + ∇ and decrypts them to plaintexts Q and Q′. The choice of
∇ is such that the difference propagates to the difference ∇∗ in the decryption
direction through the lower half of the cipher. For the right quartet of texts,
difference ∆∗ is created in the middle of the cipher between partial decryptions
of D and D′ which propagates to the difference ∆ in the plaintexts Q and Q′.
This can be detected by the attacker.

Moreover, working with quartets (pairs of pairs) provides boomerang attacks
with additional filtration power. If one partially guesses the keys of the top



206 A. Biryukov, C. De Cannière, and G. Dellkrantz

round one has two pairs of the quartet to check whether the uncovered partial
differences follow the propagation pattern, specified by the differential. This
effectively doubles the attacker’s filtration power.

6.1 A Boomerang Distinguisher for 4.5 Rounds

In this part we build a distinguisher for 4.5 rounds of Safer++. As mentioned
before, the affine layer is denoted by A and the keyed nonlinear layer by S. Using
this notation, the distinguisher will have the structure [ASA−S −ASASA] (see
Fig. 4, in which layers of rectangular boxes correspond to S-layers). The top
part [ASA−] will be covered top-down and the bottom part [−ASASA] in the
bottom-up direction. The part [−S−] in the middle will come for free using the
middle S-box trick.

Pairs of plaintexts (P, P ′), that have difference (0, x, 0, 0, x, x, 0, 0, 0, 0, 0,−4x,
0, 0, x,−x) are used from the top. This difference propagates to a single active
S-box after one linear layer and is then diffused to up to 16 active bytes by the
next linear layer.

We obtain the two ciphertexts C, C ′, modify them into D = C � ∇,
D′ = C ′ � ∇ and decrypt them to two new plaintexts Q and Q′. The differ-
ence ∇ is (0, 0, 80x, 0, 80x, 80x, 0, 0, 0, 0, 0, 0, 80x, 0, 0, 0) which causes difference
(0, 0, 0, 0, 0, x,−x, 0, 0, 0, 0, 0, 0, 0, 0, 0) with approximate probability 2−7 after
one decryption round. The probability is 2−7 since the input difference 80x can
only cause odd output differences through X. The two active bytes then cause
bytes 3, 9, 11 and 14 to be active after the next linear layer.

In a standard boomerang attack, we would now hope that the pairs (C, D)
and (C ′, D′) both have the same difference in the middle round, which would
cause the difference of the pair (D, D′) in the middle round to be the same as
that for (P, P ′). For the right quartet we would then have the same difference
going back in the pair (D, D′) as going forward in (P, P ′), thus making (Q, Q′)
active in the same bytes as (P, P ′). This can be detected by the attacker and
used to recover parts of the key.

This version of the attack is reasonably efficient against four rounds of
Safer++ and can be applied to any substitution-permutation network with
incomplete diffusion. However, the probability of the event used in the middle,
where the parts of the boomerang meet, depends heavily on the number of ac-
tive bytes and is often low. For the Safer-family of ciphers we can do better by
using special properties of the S-boxes.

6.2 The Middle Round S-Box Trick

Using the relation X(a) � X(a � 80x) = 1, which holds with probability 1 for
the exponentiation-based S-boxes (see Section 3.3), we can make the boomerang
travel for free through the middle S-box layer.

Consider the middle S-box layer where the top and bottom part of the
boomerang meet. Suppose that the difference coming from above and enter-
ing an X-box, is 80x, i.e., a pair of values a and a � 80x. After the X-box the



Cryptanalysis of Safer++ 207

values will always be of the form b and 1�b. Assume that on the two other faces
of the boomerang we also have difference 80x coming from below (see Fig. 3).
Then the fourth face must have values b � 80x and 1 � b � 80x on the lower
side of the X-box. However, these values again sum to 1, since 80x � 80x = 0
(actually, any pair of values that sum to 0 would work instead of 80x here). As a
consequence, we will observe values of the form c and c� 80x at the input of the
X-box on the fourth face. See Fig. 3 for an illustration of this effect. The same

X

X

X

X

a

a+80

b

1−b

b+80

c

c+80

x

x

x

1−b+80x

Fig. 3. The free pass of the boomerang through the middle Safer++ S-boxes.

reasoning holds for the L-box since it is the inverse of X and the same differences
are coming from the top and the bottom.

This shows that if we manage to produce texts with difference 80x coming
from both the top and the bottom in the boomerang, the boomerang travels
through the middle S-box layer for free due to the special properties of the
S-boxes.

6.3 Breaking 5 and 5.5 Rounds

We can break 5 rounds of Safer++ with the distinguisher described in the
previous sections. The truncated differentials used are shown in Fig. 4. From the
top we use a difference with six active bytes that propagates to one active byte
after one round with probability 2−40. This one-byte difference then causes a
difference of 80x in bytes 0, 1, 2, 3, 8, 9, 11, 13, 14 and 15 after an additional
round with probability 2−8. All other bytes have zero-difference. This completes
the upper part of the boomerang.

From the bottom we start with changes in the most significant bits of four
bytes, which cause two active bytes after one decryption round. This then prop-



208 A. Biryukov, C. De Cannière, and G. Dellkrantz

agates to four active bytes with probability 2−7 and further to difference 80x in
all bytes except bytes 2, 4, 9 and 12 with probability 2−30.4. The total probabil-
ity of the lower part of the boomerang is thus

(
2−7 · 2−30.4

)2, since we need the
differential to hold in two pairs.

The top part of the boomerang in the decryption direction propagates with
probability 1, due to the middle S-box trick. The total probability of the
boomerang is thus 2−40 · 2−8 · (2−7 · 2−30.4

)2 = 2−122.8

2−40

2−8

1

(
2−7)2

(
2−30.4)2

1

248 texts/295 pairs 248 texts/295 pairs

Fig. 4. The boomerang quartet for Safer++ reduced to 5.5 rounds.

The procedure for attacking 5 rounds is as follows:

1. Prepare a pool of 248 plaintexts Pi, i = 0, . . . , 248 − 1 that have all possible
values in bytes 1, 4, 5, 11, 14 and 15 and are constant in the other bytes.
Encrypt the pool to get a pool of 248 ciphertexts Ci.

2. Create a new pool of ciphertexts Di from the pool Ci by changing the most
significant bits in bytes 2, 4, 5 and 12. Decrypt the pool Di to obtain a pool
Qi of 248 plaintexts.

3. Sort the pool Qi on the bytes that correspond to the constant bytes in the
pool Pi and pick the pairs Qj , Qk that have zero difference in those ten
bytes.

4. For each of the possibly good quartets Pj ,Pk,Qj ,Qk, guess the 3 key bytes
K4

0 , K11
0 and K15

0 , do a partial encryption and check that the difference in
the 3 bytes after the first nonlinear layer is of the form (x,−4x,−x) with x
odd, both in the P -pair and in the Q-pair. Note that we do not need to guess



Cryptanalysis of Safer++ 209

the key bytes added at the bottom of this layer, as they do not influence the
subtractive difference here. Keep the quartets that have the right difference,
together with the key bytes that they suggest.

5. Guess the key byte K14
0 , do a partial encryption and check that the difference

after XORing the key K15
0′ (which we know from the previous step) at the

bottom of the nonlinear layer is consistent with the difference found in Step 4.
If no quartets survived, go to Step 1.

6. Guess the key bytes K1
0 and K2

0′ , do a partial encryption and check that the
difference after the first keyed nonlinear layer is the right one. Repeat this
for the key bytes K5

0 and K6
0′ .

7. Keep collecting suggestions for the 8 key bytes until one appears twice. For
this suggestion, do an exhaustive search for the 8 remaining key bytes using
trial encryption. If no consistent key is found, go to Step 1.

We now analyze the complexity of this attack. From the pool of 248 plain-
texts created in Step 1 we get approximately 295 pairs. Since the probability of
the boomerang is 2−122.8, the probability is approximately 2−27.8 that a pool
contains a boomerang.

After Step 3 we expect to have about 215 wrong quartets left since we have
an 80-bit condition on 295 pairs. Step 4 reduces the number of wrong quartets
to 25, because after guessing 3 bytes of the key, we obtain a 17-bit restriction
on each side of the boomerang, resulting in a 34-bit condition. Similarly, after
Step 5, only about 2−3 quartets remain per pool. On the average, Step 6 will
suggest 1 value for the 4 guessed key bytes per remaining quartet.

In order for the right key to be suggested twice, we need two boomerangs
in Step 7. This will occur after having analyzed about 229 pools on average.
During this process, 226 wrong keys will be suggested as well, but the chance
that one of these 64-bit values is suggested twice is small (the probability is
about 251/264 = 2−13). This implies that the exhaustive search in Step 7 only
needs to be performed for a single suggestion on average.

Since each of the 229 pools required by the attack consist of 248 chosen
plaintexts and 248 adaptively chosen ciphertexts, we obtain a data complexity
of 278. Just collecting these texts will be the most time-consuming part of the
attack, and the time complexity of the attack is therefore expected to be 278.
These figures reflect the average case, but the complexities will exceed 279 in
only 5% of the cases.

The attack on 5 rounds can be extended to 5.5 rounds by guessing 30 bits
of the key in positions 2, 4, 5 and 12 at the end of the added half round. This
increases the data and time complexities to 2108. Note that 2 key bits have been
saved by using the special properties of the L-box.

7 Conclusions

In this paper we have applied novel multiset attack techniques to round-reduced
Safer++ inspired by the recent structural analysis of the SASAS scheme and
partial-function collision techniques. These multiset attacks are very efficient



210 A. Biryukov, C. De Cannière, and G. Dellkrantz

up to 4.5 rounds and practical up to 3 rounds. This significantly improves the
previously known results.

In the second half of the paper we applied boomerang attacks to Safer++
which allow for even more efficient attacks because they exploit special proper-
ties of the exponentiation and logarithmic S-boxes and their interaction with the
PHT-mixing layer. We presented an attack on 5.5 out of 7 rounds of Safer++
requiring 2108 data blocks and steps of analysis. A 4-round variant of this
boomerang attack is practical and was tested on a 64-bit mini-version of the
cipher. See Table 1 for a summary of results presented in this paper and their
comparison with previously known attacks.

Finally, note that the methods developed in the second half of this paper can
be applied to arbitrary SPNs with incomplete diffusion, with the exception of the
middle round trick which exploits special properties of the Safer++ S-boxes.

References

[1] E. Biham and A. Shamir, Differential Cryptanalysis of the Data Encryption Stan-
dard . Springer-Verlag, 1993.

[2] A. Biryukov and A. Shamir, “Structural cryptanalysis of SASAS,” in Advances in
Cryptology – EUROCRYPT 2001 (B. Pfitzmann, ed.), vol. 2045 of Lecture Notes
in Computer Science, pp. 394–405, Springer-Verlag, 2001.

[3] H. Gilbert and M. Minier, “A collision attack on seven rounds of Rijndael,” in Pro-
ceedings of the Third AES Candidate Conference, pp. 230–241, National Institute
of Standards and Technology, Apr. 2000.

[4] J. Kelsey, B. Schneier, and D. Wagner, “Key-schedule cryptanalysis of 3-WAY,
IDEA, G-DES, RC4, SAFER, and Triple-DES,” in Advances in Cryptology –
CRYPTO’96 (N. Koblitz, ed.), vol. 1109 of Lecture Notes in Computer Science,
pp. 237–251, Springer-Verlag, 1996.

[5] L. R. Knudsen, “Truncated and higher order differentials,” in Fast Software En-
cryption, FSE’94 (B. Preneel, ed.), vol. 1008 of Lecture Notes in Computer Sci-
ence, pp. 196–211, Springer-Verlag, 1995.

[6] L. R. Knudsen, “A detailed analysis of SAFER K,” Journal of Cryptology , vol. 13,
no. 4, pp. 417–436, 2000.

[7] J. L. Massey, “SAFER K-64: A byte-oriented block-ciphering algorithm,” in Fast
Software Encryption, FSE’93 (R. J. Anderson, ed.), vol. 809 of Lecture Notes in
Computer Science, pp. 1–17, Springer-Verlag, 1994.

[8] J. L. Massey, “On the optimality of SAFER+ diffusion,” in Proceedings of the Sec-
ond AES Candidate Conference, National Institute of Standards and Technology,
Mar. 1999.

[9] J. L. Massey, G. H. Khachatrian, and M. K. Kuregian, “Nomination of SAFER++
as candidate algorithm for the New European Schemes for Signatures, Integrity,
and Encryption (NESSIE).” Primitive submitted to NESSIE by Cylink Corp.,
Sept. 2000.

[10] M. Matsui, “Linear cryptanalysis method for DES cipher,” in Advances in Cryptol-
ogy – EUROCRYPT’93 (T. Helleseth, ed.), vol. 765 of Lecture Notes in Computer
Science, pp. 386–397, Springer-Verlag, 1993.

[11] S. Murphy, “An analysis of SAFER,” Journal of Cryptology , vol. 11, no. 4,
pp. 235–251, 1998.



Cryptanalysis of Safer++ 211

[12] J. Nakahara Jr, Cryptanalysis and Design of Block Ciphers. PhD thesis,
Katholieke Universiteit Leuven, June 2003.

[13] J. Nakahara Jr, B. Preneel, and J. Vandewalle, “Linear cryptanalysis of reduced-
round versions of the SAFER block cipher family,” in Fast Software Encryption,
FSE 2000 (B. Schneier, ed.), vol. 1978 of Lecture Notes in Computer Science,
pp. 244–261, Springer-Verlag, 2001.

[14] NESSIE Project – New European Schemes for Signatures, Integrity and Encryp-
tion. http://cryptonessie.org.

[15] D. Wagner, “The boomerang attack,” in Fast Software Encryption, FSE’99 (L. R.
Knudsen, ed.), vol. 1636 of Lecture Notes in Computer Science, pp. 156–170,
Springer-Verlag, 1999.

A The Linear Layer

This appendix contains the matrices corresponding to the linear layer and its
inverse.

A =




1 2 1 1 1 1 1 1 4 2 2 2 1 1 2 1
2 1 1 1 1 1 2 1 1 1 1 1 2 4 2 2
2 2 4 2 2 1 1 1 1 2 1 1 1 1 1 1
1 1 1 1 1 2 1 1 1 1 2 1 2 1 1 1
4 2 2 2 1 1 2 1 1 1 1 1 1 2 1 1
1 1 2 1 2 1 1 1 2 4 2 2 1 1 1 1
1 1 1 1 1 2 1 1 2 2 4 2 2 1 1 1
1 2 1 1 1 1 1 1 2 1 1 1 1 1 2 1
1 1 2 1 4 2 2 2 1 2 1 1 1 1 1 1
1 1 1 1 2 4 2 2 1 1 2 1 2 1 1 1
1 2 1 1 1 1 1 1 2 1 1 1 2 2 4 2
2 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1
1 1 1 1 1 2 1 1 1 1 2 1 4 2 2 2
2 4 2 2 1 1 1 1 2 1 1 1 1 1 2 1
2 1 1 1 2 2 4 2 1 1 1 1 1 2 1 1
1 1 2 1 2 1 1 1 1 2 1 1 1 1 1 1




A−1 =




0 0 0 −4 1 0 1 0 0 1 0 −1 1 0 0 0
0 0 0 −4 0 0 1 −1 0 1 0 0 1 1 0 0
0 0 1 −4 0 0 1 0 0 1 0 0 1 0 0 −1
0 0 −1 16 −1 0 −4 1 0 −4 0 1 −4 −1 0 1
1 0 0 0 0 0 0 −4 1 0 1 0 0 1 0 −1
1 0 0 −1 0 0 0 −4 0 1 1 0 0 1 0 0
1 0 0 0 0 0 0 −4 0 0 1 −1 0 1 1 0

−4 0 0 1 0 0 0 16 −1 −1 −4 1 0 −4 −1 1
1 1 0 0 1 0 0 −1 0 0 0 −4 0 0 1 0
0 1 0 0 1 1 0 0 0 0 0 −4 0 0 1 −1
0 1 0 −1 1 0 1 0 0 0 0 −4 0 0 1 0

−1 −4 0 1 −4 −1 −1 1 0 0 0 16 0 0 −4 1
0 0 1 −1 0 1 0 0 1 0 0 0 1 0 0 −4
0 1 1 0 0 1 0 0 1 0 0 −1 0 0 0 −4
0 0 1 0 0 1 0 −1 1 0 1 0 0 0 0 −4
0 −1 −4 1 0 −4 0 1 −4 0 −1 1 −1 0 0 16




http://cryptonessie.org

	Introduction
	Description of textsc {unhbox voidb @x hbox {Safer++}}
	The Keyed Nonlinear Layer
	The Linear Layer
	The Key Schedule

	Properties of the Components
	Diffusion in the Linear Layer
	Symmetry of the Linear Layer
	Properties of the S-Boxes

	Multiset Attack on 3 Rounds Using Collisions
	A Two-Round Distinguisher in Decryption Direction
	Adding a Round at the Bottom

	Multiset Attack on 4 Rounds Using Structural Approach
	A Two-Round Distinguisher in Encryption Direction
	Adding a Round at the Top
	Adding a Round at the Bottom

	Boomerang Attacks on textsc {unhbox voidb @x hbox {Safer++}}
	A Boomerang Distinguisher for 4.5 Rounds
	The Middle Round S-Box Trick
	Breaking 5 and 5.5 Rounds

	Conclusions
	The Linear Layer



