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Abstract. Two frameworks of hidden Markov modeling for multi-agent
systems and its learning procedure are proposed. Although a couple of
variations of HMMs have been proposed to model agents and their inter-
actions, these models have not handled changes of environments, so that
it is hard to simulate behaviors of agents that act in dynamic environ-
ments like soccer. The proposed frameworks enables HMMs to represent
environments directly inside of state transitions. I first propose a model
that handles the dynamics of the environments in the same state transi-
tion of the agent itself. In this model, the derived learning procedure can
segment the environments according to the tasks and behaviors the agent
is performing. I also investigate a more structured model in which the
dynamics of the environments and agents are treated as separated state
transitions and coupled each other. For this model, in order to reduce the
number of parameters, | introduce “symmetricity” among agents. Fur-
thermore, I discuss relation between reducing dependency in transitions
and assumption of cooperative behaviors among multiple agents.

1 Introduction

When we train an agent or a team of agents (learners) to imitate behaviors
of another agent or team (demonstrators), we must determine a framework to
model agents or teams. Hidden Markov Model (HMM) is a popular candidate
for this purpose. Because the behaviors of intelligent agents are complicated and

structured, however, we should apply HMM carefully.

Suppose that we write a code of a reactive soccer agent by hands. We may

write the following code for it:

while(true) {

if ((is my role a passer ?)) {
if ((is a receiver near %)) {
(kick the ball to the receiver I); ...
(change my role to receiver I); }
else if ({found dribbling course ?). ..
}
else if ((is my role a receiver 2)) {
if ({find an open space ?)) {
(mowve to the space Iy }... }
else ... }
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As shown in this example, situations (combinations of states of the environment
and the agent) are segmented into finite states like “is a receiver near?” and
“found dribbling course?’. These segmentations are vary according to agent’s
role or intention. In this example, “is a receiver near?’ is not used when the
agent’s role is “receiver”. In the context of the imitation learning, it is important
to estimate what kind of segmentation of environment a demonstrator is using.
The difficulty of the segmentation of environment is that the segmentation should
change according to agent’s current intentions that are usually invisible. This
means that segmentation of environment should be acquired in the same time
of learning intentions in the context of imitation learning.

In addition to it, when agents interact with each other, it is necessary to
assume a kind of structure of states in HMM. In the above example, whole situ-
ations are classified into states based on roles of agents (“passer” and “receiver”)
and conditions of the environment (“is a receiver near?’ and so on). Because it
is difficult to acquire such structure through learning, it is better to use HMM
in which states are structured suitably. In this case, we must pay attention the
learning performance and reasonabilities of the structure.

In this article, I propose frameworks of HMM that can segment environment
interaction between agents effectively through learning. In the following sections,
I introduce a integrated HMM of agents and environment for learning of seg-
mentation of environment in Section B, and framework of HMM to represent
interaction of agents in Section [3l.

2 HMM for Agents in Dynamic Environment

2.1 Agent Model

In general, an autonomous agent is modeled as a Mealy-type HMM (shown in
Figure[(a)), in which the agent’s behaviors are decided by the following manner:

The agent has finite internal states.
The internal state is transfered in a discrete time step.
— The next state (s{+1) is determined only by the previous state (s{).

The agent’ action (af*t1?) is selected by the current state transition
(s =5t

Moreover, in order to represent agent’s behavior in a dynamic environment,
we need take effect of interaction between the agent and the environment in
account. Strait forward implementation of the effect is using input-output-type
HMM [BF95[JGS97al, in which the data from the environments are treated as
input for the HMM. However, using the such HMM has the following drawbacks:

— If an HMM handles the environment as input, the HMM may not include
world model by which agent can predict changes of the environments.

— When the data from the environment consists of continuous values, we need
additional mechanisms to handle the continuous values to bridge them to
HMM’s behaviors.
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(a) Agent Model by Mealy-type HMM. (b) Agent Model by Moore-Mealy-type
HMM.

Fig. 1. Agent HMM.

In order to overcome these drawbacks, we introduce the following assumption:
— The internal state and the environment has a probabilistic relation.

This means that the environment (e{*) can be determined by the internal state
(5) under the probabilistic relation (Pr(e|s{??)). In other words, the changes
of the environment can be handled as a Moore-type HMM (Figure [dI(b)).

In summary, an agent and its environment can be defined as a combination

of Moore- and Mealy-type HMM (MM-HMM) as follows:
Agent = (S, A,E,P,Q,R, ),

where S = {s;} is a set of internal states, A = {a;} is a set of action symbols,
E = {e;} is a set of environment symbols, P = {p;; = Pr(j{+V[i{))|i, j € S, vt}
is a probability matrix of state transitions, Q = {g;;(a) = Pr(a’**1 i) ;)i j
€ S,a € A,Vt} is a set of probability functions of actions for each transition,
R = {ri(e) = Pr(e|i)|i € S,e € E,Vt} is a set of probability functions of
environment for each state, 7w = {m; = Pr(i{?))} is a set of probability functions
of initial states, and (t) on the right shoulder of each variable indicates time t.

2.2 Learning Algorithm

Suppose that a learner can observe a sequence of demonstrator’s actions {a<1> e
a!T?} and changes of an environment {e{? ... e{™?}. The purpose of the learner is
estimate an HMM that can explain the given action and environment sequences
most likely. We can derive a learning procedure based on the combination of
Baum-Welch algorithms for Moore-type and Mealy-type HMM as follows:
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For given a set of sequences ({a‘V...al™}, {el® .. e{™}), the forward
(a®(4)) and backward (beta® (i)) probabilities are given by the following re-
cursive formulas.

() =0
all)(j) = 3" @ (piigis () () ; otherwise
iES
;t=0
B (i) = meJ“”<“meWﬂ ; otheruise
jES

Using these probabilities, p;;, ¢ij(a), 75(e) and m; are adjusted by the following
formulas:

S €0, j) >, €06)

t|oz<t> a

ij < : 7,

P S E ) il Zf“ Y (i, )
t
> 00

) t|e<’) e

Z,y(ﬂ

where
0 ) = @i @)y ()50 ()
' P(a®), e*)|Agent)
L0 () = DB G)

P(a*), e{*)|Agent)

2.3 Segmentation of Environments

When the above learning succeeds, the learner gets a suitable HMM, each of
whose states corresponds a combination of internal intentions of the demonstra-
tor and fragments of the environment. In other words, the representation of the
intention and the segmentation are mixed in a set of states. While such repre-
sentation is enough to imitate demonstrator’s behavior, it will be still useful to
know how the HMM segments the environment.

In the MM-HMM context, the segmentation of the environment means how
each data of the environments is mapped to the states of the HMM. Therefore,
the segmentation is represented by a probability function Pr(s|e) where e is an
environment data and s is an internal state of HMM. This probability can be
calculated by the following equation:

Pr(e|s)Pr(s)  rs(e)Pr(s) ()
Pr(e) ~ Pr(e)

Using this equation, we can illustrate the mapping from the environments to the

states.

Pr(sle) =
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Fig. 2. Setting of Ex.1: Discrete World.

2.4 Experimental Result

In order to show the performance of the proposed model to acquire segmentation
of environments, I conducted the following experiments.

Ex.1: Discrete World. In the first experiment, we use a linear block world
shown in Figure2l An agent is moving in the world using dash and turn actions.
When the agent turns, the agent’s direction flips between left and right. When
the agent dashes, the agent’s position moves forward. The step size of a dash
action varies 1 to 3 randomly.

The task of a learner is to acquire the rule of another agent (demonstrator)
who behaves as described below. A learner can observe the demonstrator’s po-
sition (= environment, {e®}) and action ({a‘?}) in each time t. We suppose
that the demonstrator behaves according to the following rules:

— If the position is in the left(or right) turning zone (margin of the zone is 3)
and the direction is left (or right), then turn.
— Otherwise, dash.

The main point of this experiment is that whether the learner can acquire the
correct segmentation by which the turning zone will be represented explicitly in
the state transition, because the concept of the turning zone is unobservable to
the learner. Also, estimation of the dash step size is also important, because it
defines how the world (environment) should be segmented in order to simulate it
by an HMM. Note that demonstrator’s direction is not observable. This means
that the learner needs to acquire the representation of the direction through the
learning.

In the experiments, we executed the above learning procedure using different
initial parameters 100 times, calculated the average of the likelihood of given
example sequences, and select the best one as the result. This is because the
learning of general HMMs is not guaranteed to reach the global optimal solution:
the adaptation may fall down to a local optimum.

Figure B] shows the result of the experiment. In this figure, (a) shows pos-
sibilities of environment symbols (e ...eg) for each state (sq ...s7). Each box
corresponds to Pr(e;|s;) whose value is denoted the size of black area in the box.
For example, in the sq line of boxes, columns of e; and eg have significant values
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Fig. 3. Result of Ex.1: Discrete World (L=10).

and both values are relatively equal. This can be interpreted that e5 and eg are
grouped in the same state sg, because the environment is estimated es or eg
equally when the HMM is in state so. Similarly, Figure 3 (b) shows possibilities
of states for each environment symbol calculated by Eq. [l whose value Pr(s;le;)
is denoted black area of each box. For example, the ey line has two columns
of s1 and s5 who have relatively the same significant possibilities. This can be
interpreted that ey can correspond to two states, s; and s5, equally.

From these figures, we found that the acquired HMM segments the environ-
ment into 4 regions, {eg, e1,e2}, {er,es,e9}, {e3,e4}, and {es, eg}. The first two
regions correspond the “turning zone” defined inside of the demonstrator. Rest
of the two regions have the same length, 2. This value correspond the average
step size of dash commands. These results means that the acquired HMM rep-
resents both of the rules of agent behavior and dynamics of the environment.
In addition to it, each environment symbol corresponds two states. This means
that the HMM recognizes the (unobservable) direction of the demonstrator by
doubled states for each environment.

Ex.2: Continuous World. The second experiment is a continuous version of
the previous experiment, in which the demonstrator’s position (e) is a continuous
value instead of a discrete symbol. The rule of the demonstrator’s behavior is
the same as the previous one. The length of the world L is 25.0 and step size of
a dash varies 5.0 to 15.0 randomly.

Figure [4 shows the acquired probabilities, Pr(e|s) and Pr(sle). In these
graphs, the probabilities are plotted as follows:

— Pr(e|s) is plotted as a set of probability density functions of environment
value, gs(e) = Pr(e|s), for each state s.

— Pr(sle) is plotted as a set of changes of probability of each state, fs(e) =
Pr(sle), according to environment value.
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Fig. 4. Result of Ex.2.

In the figure, (a.1) and (a.2) show the result when the number of HMM’s states
is 8, and (b) shows the result in the case of 14. From (a.l) and (a.2), we can
find that the HMM segments the environment in the similar way as the discrete
case.

— Two turning zones at the both ends of the world are segmented clearly.
— There are two corresponding states for the most of the environment value.
This means that the HMM represents the direction of movement.

We can also find an additional features from these graphs: There are 4 peaks
(State A-D in (a.2)) in the middle of the environment in the graph, and, A
and B (or C and D) are relatively overlapped with each other. As same as the
first experience, this means that the two states A and B (or C and D) indicate
difference of the direction of the movement. On the other hand, while two states
share the same part of the environment in the first experiment, peaks of A and
B (or C and D) are shifted. As a result, the segment point of the environment in
each direction are different. For example, the segment pointﬂ is at about 13.0 in

1 A crossing point of probabilities of two states in the graph of Figure @ (a.2).
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the case of the rightward transition (B —D), and it is at about 11.0 in the case of
leftward (C — A This means that the segmentation of the environment is not
fixed for every agent’s internal state, but varies depend on them. The structure
of the segmentation are stable when we use more states in the learning. For
example, when we use 14 states to learn the same task, the HMM can acquire
the similar segmentation of the environment (Figure[d(b)).

In order to show that the proposed method can acquire segmentation of
environment flexibly, we conducted the following experiment. We introduce an
additional half turning zone in the middle of the world, where the demonstrator
turns in the probability 0.5 . The detailed rule in this turning zone is as follows:

— If the demonstrator faces rightward (leftward)and the position is in the left
(right) hand side of the half turning zone, then turn in the probability 0.5.

Figure [ shows how the segmentation of the environment (Pr(s|e)) changes
according to the various numbers of states. As shown in this result, many states
are used to represent turning zones, especially the half turning zone (the middle
area of the world). We can see when the number of state increases, the HMM
assigns many states to segment the half turning zone. This is because that the
conditions to decide demonstrator’s behaviors are complicated so that the HMM
needs to represent detailed information about the environment.

2.5 Discussion: Environment as Output

The proposed method looks little bit strange because it handles environment
as output from states rather than as input to state transitions. As mentioned
above, input-output HMMs seems more reasonable to model relations between
agents and environments, in which the environment is treated as input to state-
transitions [BE95LIGS97a). There are the following different points between these
two methods:

— When we handle the environment as input, we can apply the HMM for
planning. Suppose that initial and goal situations of environment (e{*’ and
efT)) are given. Then, the planning can be formalized as follows:

To get the most likely path of state transitions that maximizes the
probability Pr(ef?), e{T)|Agent).
When the environment is handled as output like the proposed method,
we can seek the most likely path simply using well-known algorithm like
Viterbi’s one. On the other hand, we need an additional simulator or inverse
model of environment when the environment is handled as input.

— When we use continuous value for input of HMM, we need to use gradi-
ent ascent methods like neural networks to learn the parameters in a cycle,
which requires more computation power. On the other hand, in the pro-
posed method, we can apply the one-shot adaptation algorithm derived in
Section 2.2l

2 The transitions B —D and C —A are extracted from the probability matrix of state
transitions of the trained HMM.
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Fig. 5. Changes of Segmentation (Pr(s|e)) by the Number of States (in Ex.2).

3 Symmetrically Coupled HMM
3.1 Symmetricity Assumption

In Section @] we handle environment and agent’s intention by a single HMM.
However, the number of states increases exponentially when the agent has more
complex intentions. This is significant when HMM handles interactions among
agents in multi-agent systems(MAS). In this case, we will face generalization
performance problem. As the number of states or learning parameters increases,
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(h) # of states = 18

Fig. 5. (Continued).

the huge number of examples are required to guarantee the generalization per-
formance. In order to avoid this problem, I introduce symmetricity assumption
among agents as follows:

symmetricity assumption

Agents in a MAS are symmetric, that is, every agent has the same rules
of behavior. In the HMM context, every agent shares the same state
transition rules with each other.
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Fig. 6. Coupled HMMs of Agents and Environment.

To reflect the above assumption in HMM, first, I divide the internal state
into two states, environment state se and agent state s,, and form a coupled
HMM as shown in Figure BF(a). In this model, sensor data e’ and action com-
mands a‘® are determined by environment states sét) and agent states sfit) re-

spectively. Transitions of both states are determined as follows: The next en-
(t+1)

vironment state se is determined according to the current environment and
agent states {sét),séw}. The next agent state sf,tH) is determined according to

the current agent and the new environment states {55:’> , sét+1> }. Then I introduce

the second agent who cooperates with the first agent as shown in Figure Bl (b). In
this coupling, both state transitions become affected by the second agent state
(t)

Sa’ in the following manner:

Pr(s{™V]x) = Pr(s{*V[s{), s, 5{)

Pr(s{TH [x) = Pr(s{s0 50, s{H0)

In order to complete the state transition for Figure[6l(b), we must consider about
transitions of the second agent state s5. Here, I apply symmetricity assumption
for the second state transition, that is, the probabilities of state transitions of
the second agent are determined by the same one of the first agent. The most
naive implementation of this assumption is that the probabilities are described
as follows:

Pr(s{+Y %) = Pr(s

(D50, 50, s (D)
= Pr|

(
a
(7 = IS = 50 50 = 50 $f04)
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Own Side

Other Side

Fig. 7. Symmetrically Coupled HMM. sagent and Sgnw correspond to sa and se in the
agent definition respectively.

This formulation is valid when both agents share the same environment state.
In general, however, two agents may have different environment state inside of
them, because the environment state in this formalization is a kind of internal
world state that each agent has. Such a situation is not avoidable especially when
the sensor data el?) is represented from the viewpoint of each agent. In order
to overcome this problem, I propose a symmetrically coupled HMM (sCHMM)
shown in Figure[Zl In this model, the second agent has its own environment state

)

5{) . Using this, the transition of ES are represented as follows:

Pr(i0 |x) = Pr(s{t) = 50D |50 = 50 50 = () 0+ = glt+1)y

a e
where the transition of the second environment state §(9 follows:

Pr(s8F 0 |x) = Pr(s{H) = 5{+0 s = 5 s = 50 580 = s{)

3.2 Formalization and Learning Procedure

I summarize the sSCHMM agent as the following tuple:
Agent = <Sea Sa,BE,A, P, P,,Q,,Q,, T, 7Ta> ,

where S, = {sa;} and Se¢ = {se;} are sets of states for agent and environment
respectively, E = {e;} is a set of sensor data of environment, and A = {a;}
is a set of agent action symbols. Pe = {peijii|i € Se,j,k € Sa,Vt} and P, =
{Pajriml|j. k € Sa,m € Se,Vt} are probability tensors of state transitions of
environment and agent, Q. = {¢ei(€)|i € Se,e € E,Vt} and Q, = {¢a;(a)|j €
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Sa,a € A,Vt} are probability tensors of is observed symbols of environment and
actions, and we = {me; = Pr(séU> =14)[i € Se} and wa = {ma; = Pr(sa o =
J)|i € Sa} are probability vectors of initial states of environment and agent.
Each element of P, P,, Q., and Q, represents the following probability.

Peigit = Pr(s =1]s¢70 = i,si " = jisiy = k)
Paghin = Pr(sd =m | sig " = j,say = ksl = 1)
gei(e) = Pr(e®) = ¢ | st —z‘)
daj(a) = Pr(a") = a | s =)

We can derive a learning procedure for sCHMM as shown below. Suppose that
sequences of sensor information {e®}, agent’s own actions {a*}, and other’s
actions {a?} are observed (0 < ¢ < T). We can calculate agent’s own forward

and backward probabilities, ot

o, a0d 55;2 respectively, as follows:

7Tel7Tam7TanQ(lmn)(VV<O>) ;=0
(t)

Xmn = Z ag;l)P(ijk)(lmn)Q(lmn)(W<t>) ; otherwise
(ijk)
1 t=T—-1
¢
B = > Py imm) Qeumm (W BEEY S otherwise -

Ilmn
(Imn)

where

Pijky(imn) = Deijkl * Pajkim * Pakjin
Qeijiy (W) = Qeijy (e, 0t at™)
—Qez( <>) q]( <>)'qak(d<t>)

In the same way, other’s forward and backward probabilities, a§n>m and ﬂlk J
respectively, can be calculated:

TelTamTan @ (tnm) (W) ;=0
5‘1<rtl>m = Z @§Z;1>P(ikj)(lnm)Q(lnm)(Wm) ; otherwise
(ikj)
1 t=T -1
Bf}ié = Z Plikg)yinm)Q lnm)( t+1>) frr ; otherwise >

Inm
(Inm)

where W = {&®,a® 4™}, and &f*) is the sensor data received by the second
agent. Using these probabilities, we can adapt transition and output probabilities
Deijkls Pajkim, Qei, Gej as follows:
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Peijkl < Z Z P(ijk)(lmn)

m n

D <_ E Z (’ij‘ (Imn)
jkl

e Zipeljk‘l

Geile) Z Z Z Z Q(ijk)(& a,a)
7 k a a
qaj ((L) — Z Z Z Z Q(zgk) (67 a, a)7
i k e a
where
(t) 7(t)
Blogiotmm) = 2 5<ijk><<zmvlz; +2 §<<ikjl>znm>
7, mn t— _(t
2ot Yije  + > Vikj
Wi —w V(Zﬂk) 0+ >, W<t> —w 71<k>j

S k) + X A

(t) _ (t=1) (t)
(iik)(tmn) = Yijh) P(ijk)(lrrm)Q(lmn)(W< )5(zmn)

Q(’L]k)( )

F(t) _ (=1 1 (t)
E(ikj)(inm) = Cikj) P(ikj)(lnm)Q(lnm)(W )5 (Inm)
) _
’y(lmn) (lmn)ﬁ(lmn)

(t) = (t)
/y(lnm) a(lnm)’g(lnm)

3.3 Discussion: The Number of Parameters in the Model

As mentioned before, the number of parameters in HMM is an important factor
for generalization performance of learning. In the case of the coupled HMM,
especially, the number of parameters increases exponentially. Actually, if we
use the model shown in Figure [G(b) without the symmetricity assumption, the
number of parameters in the state transition is

1Sel” |Sal™ + N [Se| |Sal ¥ !

where N is the number of agents. This is already reduced from (|Se| \Sa|N)2,
the number of parameters in the case we represent the same model using single
HMM. Compared with this, symmetrically coupled HMM has fewer parameters
as follows:

|Sel® Sal™ + |Se|1Sal™ !

In addition to it, the symmetricity assumption can increase the virtual number
of examples. Eq |2| and Eq. [3] mean that the same HMM is tramed by using
both pairs of {e{?,a{"} and {&®,a®} for a given observation {e(, al? af"}.
As a result, the generalization performance is improved by the virtually doubled
examples.



108 Itsuki Noda

It is, however, true that an sCHMM still has too many parameters for real
applications. Therefore, it is meaningful to introduce additional assumptions to
reduce the number of parameter. Fortunately, in the case of cooperative inter-
action in the MAS, we can pick-up reasonable assumptions as follows:

— “no explicit communication” assumption: In the formalization of sSCHMM,
the transition of the agent state is affected by the previous states of other
agents. This corresponds the case that agents use explicit communication
with each other in every action cycle. In the case of human cooperative
behaviors like soccer, on the other hand, we do not use so much explicit
communication, but model others via sensor information instead. In such
case, the transition of the agent state can be represented as follows:

Pr(s{™V]x) = Pr(s{"V[s{),s{HY)
In this case, the total number of the parameters is reduced to:
2 N 2
|Sel™ [Sal™ +[Se|[Sal

— “filtering” assumption: Usually, when we write a code of agent behavior, we
classify states systematically. For example, in the code shown in Section [
states are grouped by agent’s roles (agent states) first then branched by
world status (environment states) second. This can be represented by the
following manner in the transition of HMM:

Pr{s{+V 1) = Pr(s{ 0 |s{0) - Pr(sfi0s{0)
In this case, the number of parameters are reduced to:

|Sel® 1Sal™ + |Se| |Sal +1Sal " !

— “shared joint intention” assumption: During a cooperation of multiple agents
each agent believes that all agents share the joint intention. This means that
each agent thinks that all other agents will behave as the agent wants. In
this case, the transition of environment states can be represented as follows:

Pr{s{+V]x) = Pr(s{ 0 |s{0, )
This reduces the number of parameters to:
[Sel* [Sal + [ Se| [
Note that this assumption can not be applied with the “no explicit commu-

nication” assumption, because the SCHMM is reduced into a simple CHMM
like Figure[@(a) that does not reflect cooperation among agents.
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3.4 Related Works

Uther and Veloso have been attacked the problem of segmentation of the
continuous environment and proposed Continuous U Tree algorithm. Although
the algorithm is a powerful tool for segmenting a given continuous data space,
it is hard to apply for the purpose to find unobservable features like direction
feature in the experiments shown in Section 24l Han and Veloso [HV99] showed a
framework to recognize behaviors of robots by HMM in which the environment
is handled as output. In this work, they did not focused on acquiring state
transitions, but method to find an HMM from multiple pre-defined HMMs for
seen data.

Brand Et al. [Bra97lhMmfcar96] proposed coupled HMM and its learning
method, in which several HMMs are coupled via inter-HMM dependencies. Jor-

dan Et al. [JGSI7HIGIITIIGIS99] proposed factorial HMM and hidden Markov
decision trees. Both of works mainly focused on reducing the complexity in EM
processes. Even using these HMMs, the complexity of calculation of a naive im-
plementation increase exponentially, so that it is hard to handle the large number
of states. They use mean field approximation or N-heads dynamic programming
to reduce the cost of the approximation of posterior probabilities. However, they
does not focused on symmetricity in agent-interactions and generalization per-
formance problem.

These methods can be applicable to our model. Actually, a naive implementa-
tion of learning method derived in the previous section costs O(T N*M?), which
is too huge for dynamical application like soccer. Above methods will reduce the
cost into O(TN2M), which is reasonable cost for real application.

4 Concluding Remarks

In this article, we proposed two frameworks to learn behaviors of multiple agents
in dynamic environment using HMM. The first framework handles agent’s envi-
ronments as output of HMM rather than as input. As the result, the acquired
HMM represents suitable segmentation of environment explicitly in the states.
The explicit segmentation is expected to leads the following features to the
HMM:

— HMM can be used planning of agent’s behavior working in a dynamic envi-
ronment.

— Flexible segmentation can improve generalization performance of the learn-
ing.

The second framework is conducted to represent interactions among multi-
ple agents and environments. In order to avoid the explosion of the number of
parameters, I introduced symmetricity assumptions among agents, and propose
symmetrically coupled HMM (sCHMM) and its learning procedure.

There are the following open issues on the proposed model and method:
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— The cost of calculation increase exponentially when structures of agents and
environments become complicated. In order to reduce the complexity, several
techniques like mean field approximation and N-head dynamic programming
should be applied to these models.

— The incremental learning will suit to acquire high-level cooperative behav-
iors. We may be able to realize the step-by-step learning using dependency
of the initial parameters.
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