
Structural Symbolic CTL Model Checking of

Asynchronous Systems�

Gianfranco Ciardo and Radu Siminiceanu

Department of Computer Science, College of William and Mary
Williamsburg, VA 23187, USA
{ciardo, radu}@cs.wm.edu

Abstract. In previous work, we showed how structural information can
be used to efficiently generate the state-space of asynchronous systems.
Here, we apply these ideas to symbolic CTL model checking. Thanks to
a Kronecker encoding of the transition relation, we detect and exploit
event locality and apply better fixed-point iteration strategies, resulting
in orders-of-magnitude reductions for both execution times and memory
consumption in comparison to well-established tools such as NuSMV.

1 Introduction

Verifying the correctness of a system, either by proving that it refines a specifi-
cation or by determining that it satisfies certain properties, is an important step
in system design. Model checking is concerned with the tasks of representing a
system with an automaton, usually finite-state, and then showing that the initial
state of this automaton satisfies a temporal logic statement [13].

Model checking has gained increasing attention since the development of tech-
niques based on binary decision diagrams (BDDs) [4]. Symbolic model checking
[6] is known to be effective for computation tree logic (CTL) [12], as it allows for
the efficient storage and manipulation of the large sets of states corresponding to
CTL formulae. However, practical limitations still exist. First, memory and time
requirements might be excessive when tackling real systems. This is especially
true since the size (in number of nodes) of the BDD encoding the set of states
corresponding to a CTL formula is usually much larger during the fixed-point
iterations than upon convergence. This has spurred work on distributed/parallel
algorithms for BDD manipulation and on verification techniques that use only
a fraction of the BDD nodes that would be required in principle [3, 19].

Second, symbolic model checking has been quite successful for hardware ver-
ification but software, in particular distributed software, has so far been consid-
ered beyond reach. This is because the state space of software is much larger, but
also because of the widely-held belief that symbolic techniques work well only in
synchronous settings. We attempt to dispel this myth by showing that symbolic
model checking based on the model structure copes well with asynchronous be-
� Work supported in part by the National Aeronautics and Space Administration

under grants NAG-1-2168 and NAG-1-02095 and by the National Science Foundation
under grants CCR-0219745 and ACI-0203971.

W.A. Hunt, Jr. and F. Somenzi (Eds.): CAV 2003, LNCS 2725, pp. 40–53, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Structural Symbolic CTL Model Checking of Asynchronous Systems 41

havior and even benefits from it. Furthermore, the techniques we introduce excel
at reducing the peak number of nodes in the fixed-point iterations.

The present contribution is based on our earlier work in symbolic state-space
generation using multivalued decision diagrams (MDDs), Kronecker encoding of
the next state function [17, 8], and the saturation algorithm [9]. This background
is summarized in Section 2, which also discusses how to exploit the model struc-
ture for MDD manipulation. Section 3 contains our main contribution: improved
computation of the basic CTL operators using structural model information.
Section 4 gives memory and runtime results for our algorithms implemented in
SmArT [7] and compares them with NuSMV [11].

2 Exploiting the Structure of Asynchronous Models

We consider globally-asynchronous locally-synchronous systems specified by a
tuple (Ŝ,Sinit, E ,N), where the potential state space Ŝ is given by the product
SK × · · · × S1 of the K local state spaces of K submodels, i.e., a generic (global)
state is i = (iK , ..., i1); Sinit ⊆ Ŝ is the set of initial states ; E is a set of (asyn-
chronous) events ; the next-state function N : Ŝ → 2Ŝ is disjunctively partitioned
[14] according to E , i.e., N =

⋃
α∈E Nα, where Nα(i) is the set of states that

can be reached when event α fires in state i; we say that α is disabled in i if
Nα(i) = ∅.

With high-level models such as Petri nets or pseudo-code, the sets Sk, for K≥
k≥1, might not be known a priori. Their derivation alongside the construction of
the (actual) state space S ⊆ Ŝ, defined by S = Sinit∪N (Sinit)∪N 2(Sinit)∪· · · =
N ∗(Sinit), where N (X) =

⋃
i∈X N (i), is an interesting problem in itself [10].

Here, we assume that each Sk is known and of finite size nk and map its elements
to {0, ..., nk−1} for notational simplicity and efficiency.

Symbolic model checking manages subsets of Ŝ and relations over Ŝ. In the
binary case, these are simply subsets of {0, 1}K and of {0, 1}2K, respectively,
and are encoded as BDDs. Our structural approach instead uses MDDs to store
sets and (boolean) sums of Kronecker matrix products to store relations. The
use of MDDs has been proposed before [15], but their implementation through
BDDs made them little more than a “user interface”. In [17], we showed instead
that implementing MDDs directly may increase “locality”, thus the efficiency
of state-space generation, if paired with our Kronecker encoding of N . We use
quasi-reduced ordered MDDs, directed acyclic edge-labeled multi-graphs where:

– Nodes are organized into K + 1 levels. We write 〈k|p〉 to denote a generic
node, where k is the level and p is a unique index for a node at that level.

– Level K contains only a single non-terminal node 〈K|r〉, the root, whereas
levels K−1 through 1 contain one or more non-terminal nodes.

– Level 0 consists of the two terminal nodes, 〈0|0〉 and 〈0|1〉.
– A non-terminal node 〈k|p〉 has nk arcs, labeled from 0 to nk−1, pointing

to nodes at level k−1. If the arc labeled ik points to node 〈k−1|q〉, we
write 〈k|p〉[ik] = q. Duplicate nodes are not allowed but, unlike the (strictly)

42 Gianfranco Ciardo and Radu Siminiceanu

reduced ordered decision diagrams of [15], redundant nodes where all arcs
point to the same node are allowed (both versions are canonical [16]).

Let A(〈k|p〉) be the set of tuples (iK , ..., ik+1) labeling paths from 〈K|r〉 to node
〈k|p〉, and B(〈k|p〉) the set of tuples (ik, ..., i1) labeling paths from 〈k|p〉 to 〈0|1〉.
In particular, B(〈K|r〉) and A(〈0|1〉) specify the states encoded by the MDD.

A more drastic departure from traditional symbolic approaches is our encod-
ing of N [17], inspired by the representation of the transition rate matrix for a
continuous-time Markov chain by means of a (real) sum of Kronecker products
[5, 18]. This requires a Kronecker-consistent decomposition of the model into
submodels, i.e., there must exist functions Nα,k : Sk → 2Sk , for α ∈ E and
K≥k≥1, such that, for any i ∈ Ŝ, Nα(i) = Nα,K(iK) × · · · × Nα,1(i1).

Nα,k(ik) represents the set of local states locally reachable (i.e., for submodel
k in isolation) from local state ik when α fires. In particular, α is disabled in
any global state whose kth component ik satisfies Nα,k(ik) = ∅. This consis-
tency requirement is quite natural for asynchronous systems. Indeed, it is al-
ways satisfied by formalisms such as Petri nets, for which any partition of the
P places of the net into K ≤ P subsets is consistent. We define the boolean
incidence matrices Wα,k∈{0, 1}Sk×Sk so that Wα,k[ik, jk] = 1 iff jk ∈ Nα,k(ik).
Then, W =

∨
α∈E

⊗
K≥k≥1 Wα,k encodes N , i.e., W[i, j] = 1 iff j ∈ N (i),

where ⊗ denotes the Kronecker product of matrices, and the mixed-base value∑K
k=1 ik

∏k−1
l=1 nl of i is used when indexing W.

2.1 Locality, In-Place-Updates, and Saturation

One important advantage of our Kronecker encoding is its ability to evidence
the locality of events inherently present in most asynchronous systems. We say
that an event α is independent of level k if Wα,k is the identity matrix; this
means that the kth local state does not affect the enabling of α, nor is modified
by the firing of α. We then define Top(α) and Bot(α) to be the maximum and
minimum levels on which α depends. Since an event must be able to modify
at least some local state to be meaningful, we can assume that these levels are
always well defined, i.e., K ≥ Top(α) ≥ Bot(α) ≥ 1.

One advantage of our encoding is that, for practical asynchronous systems,
most Wα,k are the identity matrix (thus do not need to be stored explicitly)
while the rest usually have very few nonzero entries per row (thus can be stored
with sparse data structures). This is much more compact than the BDD or MDD
storage of N . In a BDD representation of Nα, for example, an edge skipping levels
k and k′ (the kth components of the “from” and “to” states, respectively) means
that, after α fires, the kth component can be either 0 or 1, regardless of whether
it was 0 or 1 before the firing. The more common behavior is instead the one
where 0 remains 0 and 1 remains 1, the default in our Kronecker encoding.

In addition to reducing the memory requirements to encode N , the Kro-
necker encoding allows us to exploit locality to reduce the execution time when
generating the state space. In [17], we performed an iteration of the form

Structural Symbolic CTL Model Checking of Asynchronous Systems 43

repeat

for each α ∈ E do S ← S ∪ Nα(S)
until S does not change

with S initialized to Sinit. If Top(α) = k, Bot(α) = l, and i ∈ S, then, for any
j ∈ Nα(i) we have j = (iK , ..., ik+1, jk, ..., jl, il−1, ...i1). Thus, we descend from
the root of the MDD encoding the current S and, only when encountering a
node 〈k|p〉 we call the recursive function Fire(α, 〈k|p〉) to compute the resulting
node at the same level k using the information encoded by Wα,k; furthermore,
after processing a node 〈l|q〉, with l = Bot(α), the recursive Fire calls stop.

In [8], we gained further efficiency by performing in-place updates of (some)
MDD nodes. This is based on the observation that, for any other i′ ∈ S whose
last k components coincide with those of i and whose first K− k components
(i′K , ..., i′k+1) lead to the same node 〈k|p〉 as (iK , ..., ik+1), we can immediately
conclude that j′ = (i′K , ..., i′k+1, jk, ..., jl, il−1, ...i1) is also reachable. Thus, we
performed an iteration of the form (let Ek = {α : Top(α) = k})

repeat
for k = 1 to K do

for each node 〈k|p〉 do

for each α ∈ Ek do S ← S ∪ A(〈k|p〉) × Fire(α, 〈k|p〉)
until S does not change

where the “A(〈k|p〉)×” operation comes at no cost, since it is implied by starting
the firing of α “in the middle of the MDD” and directly updating node 〈k|p〉.

The memory and time savings due to in-place updates are compounded to
those due to locality. Especially when studying asynchronous systems with “tall”
MDDs (large K), this results in orders-of-magnitude improvements with respect
to traditional symbolic approaches. However, even greater savings are achieved
by saturation [9], a new iteration control strategy made possible by the use of
structural model information. A node 〈k|p〉 is saturated if it is a fixed point with
respect to firing any event that is independent of all levels above k:

∀l, k ≥ l ≥ 1, ∀α ∈ El, A(〈k|p〉)×B(〈k|p〉) ⊇ Nα(A(〈k|p〉)×B(〈k|p〉)).
With saturation, the traditional global fixed-point iteration for the overall MDD
disappears. Instead, we start saturating the node at level 1 (assuming |Sinit| = 1,
the initial MDD contains one node per level), move up in the MDD saturating
nodes, and end the process when we have saturated the root. To saturate a node
〈k|p〉, we exhaustively fire each event α ∈ Ek in it, using in-place updates at level
k. Each required Fire(α, 〈k|p〉) call may create nodes at lower levels, which are
recursively saturated before completing the Fire call itself (see Fig. 1).

Saturation has numerous advantages over traditional methods, resulting in
enormous memory and time savings. Once 〈k|p〉 is saturated, we never fire an
event α ∈ Ek in it again. Only saturated nodes appear in the unique table and
operation caches. Finally, most of these nodes will still be present in the final
MDD (non-saturated nodes are guaranteed not to be part of it). In fact, the peak
and final number of nodes differ by a mere constant in some models [9].

44 Gianfranco Ciardo and Radu Siminiceanu

Wa,3 = I Wb,3 = I Wc,3 = I Wd,3 =

[
0 0
1 0

]
We,3 =

[
0 1
0 0

]

Wa,2 = I Wb,2 =

 0 1 0

0 0 0
0 1 0

 Wc,2 =

 0 1 0

0 0 0
0 0 0

 Wd,2 = I We,2 =

 0 0 1

0 0 0
0 0 0

Wa,1 =

 0 1 0

0 0 1
1 0 0

 Wb,1 = I Wc,1 =

 0 0 0

1 0 0
0 0 0

 Wd,1 = I We,1 =

 0 1 0

0 0 0
0 0 0

1
a a

b

c a

a

c

e a a

e

a

a a

b

e d

firing
chain
new node
or arc
saturated
node

a

e

0

0

0 0

0

0 0

0 0 0 0

0 0 0

0

2

0 0 0

0 1

1 1 2

0

0

0

0 1 2

0

0

0

1 1

1 1 1 1 1 1

1 1 1 1 1

1 1 1 1

1

1 1

1

0 1 20 1 2 0 1 2

0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

0 1 2 0 1 2 0 1 2

0 1 2

0 1 2 0 1 2

0 1 2

0 1 0 1 0 1 0 1

0 1 0 1 0 1

0 1

0 1 2

0 1 21 21 21 21

0 1 2

210

0 1

0

210

c

c

e

e

e

e

e

e

e

e

0 1 0 1 0 1

0 1 0 1

0 1 2

Fig. 1: Encoding of N and generation of S using saturation: K =3, E = {a, b, c, d, e}.
Arrows between frames indicate the event being fired (a darker shade is used for the
event label on the “active” level in the firing chain). The firing sequence is: a (3 times),
b, c (at level 1), a (interrupting c, 3 times to saturate a new node), c (resumed, at
level 2), e (at level 1) a (interrupting e, 3 times to saturate a new node) e (resumed, at

level 2), b (interrupting e), e (resumed, at level 3), and finally d (the union of 0 1 2

and 0 1 2 at level 2, i.e., 0 1 2 , is saturated by definition). There is at most one
unsaturated node per level, and the one at the lowest level is being saturated.

3 Structural-Based CTL Model Checking

After having summarized the distinguishing features of the data structures and
algorithms we employ for state-space generation, we now consider how to apply
them to symbolic model checking. CTL [12] is widely used due to its simple yet
expressive syntax and to the existence of efficient algorithms for its analysis [6].
In CTL, operators occur in pairs: the path quantifier, either A (on all paths)
or E (there exists a path), is followed by the tense operator, one of X (next), F
(future, or finally), G (globally, or generally), and U (until). Of the eight possible
pairings, only a generator (sub)set needs to be implemented in a model checker,
as the remaining operators can be expressed in terms of those in the set [13].
{EX, EU, EG} is such a set, but the following discusses also EF for clarity.

Structural Symbolic CTL Model Checking of Asynchronous Systems 45

3.1 The EX Operator

Semantics: i0 |= EXp iff ∃i1 ∈ N (i0) s.t. i1 |= p. (“|=” means “satisfies”)
In our notation, EX corresponds to the inverse function of N , the previous-

state function, N−1. With our Kronecker matrix encoding, the inverse of Nα is
simply obtained by transposing the incidence matrices Wα,k in the Kronecker
product, thus N−1 is encoded as

∨
α∈E

⊗
K≥k≥1 WT

α,k.
To compute the set of states where EXp is satisfied, we can follow the same

idea used to fire events in an MDD node during our state-space generation: given
the set P of states satisfying formula p, we can accumulate the effect of “firing
backward” each event by taking advantage of locality and in-place updates. This
results in an efficient calculation of EX . Computing its reflexive and transitive
closure, that is, the backward reachability operator EF , is a much more difficult
challenge, which we consider next.

3.2 The EF Operator

Semantics: i0 |= EFp iff ∃n ≥ 0, ∃i1 ∈ N (i0), ...,∃in ∈ N (in−1) s.t. in |= p.
In our approach, the construction of the set of states satisfying EFp is analo-

gous to the saturation algorithm for state-space generation, with two differences.
Besides using the transposed incidence matrices WT

α,k, the execution starts with
the set P , not a single state. These differences do not affect the applicability of
saturation, which retains all its substantial time and memory benefits.

3.3 The EU Operator

Semantics: i0 |= E[p U q] iff ∃n ≥ 0, ∃i1 ∈ N (i0), ...,∃in ∈ N (in−1) s.t. in |= q
and im |= p for all m < n. (in particular, i |= q implies i |= E[p U q])

The traditional computation of the set of states satisfying E[p U q] uses a
least fixed point algorithm. Starting with the set Q of states satisfying q, it iter-
atively adds all the states that reach them on paths where property p holds (see
Algorithm EUtrad in Fig. 2). The number of iterations to reach the fixed point
is maxi∈Ŝ

(
min

{
n | ∃ i0 ∈ Q ∧ ∀ 0<m≤n, ∃ im ∈ N−1(im−1) ∩ P ∧ i = in

})
.

EUtrad(in P ,Q : set of state) : set of state

1. declare X ,Y : set of state ;
2. X ← Q; • initialize X with all states in Q
3. repeat
4. Y ← X ;
5. X ← X ∪ (N−1(X) ∩ P); • add predecessors of states in X that are in P
6. until Y = X ;
7. return X ;

Fig. 2: Traditional algorithm to compute the set of states satisfying E[p U q].

46 Gianfranco Ciardo and Radu Siminiceanu

Applying Saturation to EU. As the main contribution of this paper, we
propose a new approach to computing EU based on saturation. The challenge
in applying saturation arises from the need to “filter out” states not in P (line
5 of Algorithm EUtrad): as soon as a new predecessor of the working set X is
obtained, it must be intersected with P . Failure to do so can result in paths
to Q that stray, even temporarily, out of P . However, saturation works in a
highly localized manner, adding states out of breadth-first-search (BFS) order.
Performing an expensive intersection after each firing would add enormous over-
head, since our firings are very lightweight operations. To cope with this problem,
we propose a “partial” saturation that is applied to a subset of events for which
no filtering is needed. These are the events whose firing is guaranteed to preserve
the validity of the formula p. For the remaining events, BFS with filtration must
be used. The resulting global fixed point iteration interleaves these two phases
(see Fig. 3). The following classification of events is analogous to, but different
from, the visible vs. invisible one proposed for partial order reduction [1].

Definition 1 In a discrete state model (Ŝ,Sinit, E ,N), an event α is dead with
respect to a set of states X if there is no state in X from which its firing leads
to a state in X , i.e., N−1

α (X) ∩ X = ∅ (this includes the case where α is always
disabled in X); it is safe if it is not dead and its firing cannot lead from a state
not in X to a state in X , i.e., ∅ ⊂ N−1

α (X) ⊆ X ; it is unsafe otherwise, i.e.,
N−1

α (X) \ X �= ∅ ∧ N−1
α (X) ∩ X �= ∅. �

Given a formula E[p U q], we first classify the safety of events through static
analysis. Then, each EU fixed point iteration consists of two backward steps:
BFS on unsafe events followed by saturation on safe events. Since saturation is in
turn a fixed point computation, the resulting algorithm computes a nested fixed
point. Note that the operators used in both steps are monotonic (the working
set X is increasing), a condition for applying saturation and in-place updates.

Note 1 Dead events can be ignored altogether by our EUsat algorithm, since
the working set X is always a subset of P ∪Q.

Note 2 The Saturate procedure in line 10 of EUsat is analogous to the one we
use for EF , except that it is restricted to a subset ES of events.

Note 3 ClassifyEvents has the same time complexity as one EX step and is
called only once prior to the fixed point iterations.

Note 4 To simplify the description of EUsat , we call ClassifyEvents with the
filter P ∪ Q, i.e., ES = {α : ∅ ⊂ N−1

α (P ∪ Q) ⊆ P ∪ Q}. With a slightly more
complex initialization in EUsat , we could use instead the smaller filter P , i.e.,
ES = {α : ∅ ⊂ N−1

α (P) ⊆ P}. In practice, both sets of events could be computed.
Then, if one is a strict superset of the other, it should be used, since the larger
ES is, the more EUsat behaves like our efficient EF saturation; otherwise, some
heuristic must be used to choose between the two.

Structural Symbolic CTL Model Checking of Asynchronous Systems 47

ClassifyEvents(in X : set of state , out EU , ES : set of event)

1. ES ← ∅; EU ← ∅; • initialize safe and unsafe sets of events
2. for each event α ∈ E • determine safe and unsafe events, the rest are dead
3. if (∅ ⊂ N−1

α (X) ⊆ X)
4. ES ← ES ∪ {α}; • safe event w.r.t. X
5. else if (N−1

α (X) ∩ X �= ∅)
6. EU ← EU ∪ {α}; • unsafe event w.r.t. X

EUsat(in P ,Q : set of state) : set of state

1. declare X ,Y : set of state ;
2. declare EU , ES : set of event ;
3. ClassifyEvents(P ∪ Q, EU , ES);
4. X ← Q;
5. Saturate(X , ES); • initialize X with all states at unsafe distance 0 from Q
6. repeat
7. Y ← X ;
8. X ← X ∪ (N−1

U (X) ∩ (P ∪Q)); • perform one unsafe backward BFS step
9. if X �= Y then

10. Saturate(X ,ES); • perform one safe backward saturation step
11. until Y = X ;
12. return X ;

Fig. 3: Saturation-based algorithm to compute the set of states satisfying E[p U q].

Note 5 The number of EUsat iterations is 1 plus the “unsafe distance from P to
Q”, maxi∈P(min{n|∃i0∈R∗

S(Q)∧∀0<m≤n, ∃im∈R∗
S(RU (im−1)∩P)∧i = in}),

where RS(X) =
⋃

α∈ES
N−1

α (X) and RU (X) =
⋃

α∈EU
N−1

α (X) are the sets of
“safe predecessors” and “unsafe predecessors” of X , respectively.

Lemma 1 Iteration d of EUsat finds all states i at unsafe distance d from Q.

Proof. By induction on d. Base: d = 0 ⇒ i ∈ R∗
S(Q) which is a subset of X

(lines 4,5). Inductive step: suppose all states at unsafe distance m≤d are added
to X in the mth iteration. By definition, a state i at unsafe distance d+1 satisfies:
∃i0 ∈ R∗

S(Q)∧∀0<m≤d+1, ∃jm ∈ RU (im−1)∩P , ∃im ∈ R∗
S(jm), and i = id+1.

Then, im and jm are at unsafe distance m. By the induction hypothesis, they are
added to X in iteration m. In particular, id is a new state found in iteration d.
This implies that the algorithm must execute another iteration, which finds jd+1

as an unsafe predecessor of id (line 8). Since i is either jd+1 or can reach it
through safe events alone, it is added to X (line 10). �

Theorem 1 Algorithm EUsat returns the set X of states satisfying E[p U q].

Proof. It is immediate to see that EUsat terminates, since its working set is a
monotonically increasing subset of Ŝ, which is finite. Let Y be the set of states
satisfying E[p U q]. We have (i) Q ⊆ X (line 4) (ii) every state in X can reach a
state in Q through a path in X , and (iii) X ⊆ P ∪ Q (lines 8,10). This implies

48 Gianfranco Ciardo and Radu Siminiceanu

0 1 2 3

0 1 2 3 4 5 6

unsafe distance:

distance:

Fig. 4: Comparing BFS and saturation order: distance vs. unsafe distance.

X ⊆ Y. Since any state in Y is at some finite unsafe distance d from Q, by
Lemma 1 we conclude that Y ⊆ X . The two set inclusions imply X = Y. �

Figure 4 illustrates the way our exploration differs from BFS. Solid and
dashed arcs represent unsafe and safe transitions, respectively. The shaded areas
encircle the explored regions after each iteration of EUsat , four in this case.
EUtrad would instead require seven iterations to explore the entire graph (states
are aligned vertically according to their BFS depth).

Note 6 Our approach exhibits “graceful degradation”. In the best case, all
events are safe, and EUsat performs just one saturation step and stops. This
happens for example when p∨q ≡ true, which includes the special case p ≡ true.
As E[true U q] ≡ EFq, we simply perform backward reachability from Q using
saturation on the entire set of events. In the worst case, all events are unsafe, and
EUsat performs the same steps as EUtrad . But even then, locality and our Kro-
necker encoding can still substantially improve the efficiency of the algorithm.

3.4 The EG Operator

Semantics: i0 |= EGp iff ∀n > 0 , ∃in ∈ N (in−1) s.t. in |= p.
In graph terms, consider the reachability subgraph obtained by restricting

the transition relation to states in P . Then, EGp holds in any state belonging to,
or reaching, a nontrivial strongly connected component (SCC) of this subgraph.

Algorithm EGtrad in Fig. 5 shows the traditional greatest fixed point itera-
tion. It initializes the working set X with all states in P and gradually eliminates
states that have no successor in X until only the SCCs of P and their incoming
paths along states in P are left. The number of iterations equals the maximum
length of any path over P that does not lead to such an SCC.

Applying Saturation to EG. EGtrad is a greatest fixed point, so to speed
it up we must eliminate unwanted states faster. The criterion for a state i is a
conjunction: i should be eliminated if all its successors are not in P . Since it
considers a single event at a time and makes local decisions that must be globally
correct, it would appear that saturation cannot be used to improve EGtrad .

Structural Symbolic CTL Model Checking of Asynchronous Systems 49

EGtrad (in P : set of state) :
set of state

1. declare X ,Y : set of state ;
2. X ← P ;
3. repeat
4. Y ← X ;
5. X ← N−1(X) ∩ P ;
6. until Y = X ;
7. return X ;

EGsat(in P : set of state) : set of state

1. declare X ,Y, C,T : set of state ;
2. C ← EUsat(P , {i∈P : i∈N (i)});
3. T ← ∅;
4. while ∃i ∈ P \ (C ∪ T) do
5. X ← EUsat(P \ C, {i});
6. Y ← ESsat(P \ C, {i});
7. if |X ∩ Y| > 1 then
8. C ← C ∪ X ;
9. else

10. T ← T ∪ {i};
11. return C;

Fig. 5: Traditional and saturation-based EG algorithms.

However, Fig. 5 shows an algorithm for EG which, like [2, 20], enumerates the
SCCs by finding forward and backward reachable sets from a state. However,
it uses saturation, instead of breadth-first search. In line 2, Algorithm EGsat
disposes of selfloop states in P and of the states reaching them through paths
in P (selfloops can be found by performing EX using a modified set of matrices
Wα,k where off-diagonal entries are set to zero). Then, it chooses a single state
i ∈ P and builds the backward and forward reachable sets from i restricted to P ,
using EUsat and ESsat (ES is the dual in the past of EU ; it differs from EUsat
only in that it does not transpose the matrices Wα,k). If X and Y have more
than just i in common, i belongs to a nontrivial SCC and all of X is part of our
answer C. Otherwise, we add i to the set T of trivial SCCs (i might nevertheless
reach a nontrivial SCC, in Y, but we have no easy way to tell). The process
ends when P has been partitioned into C, containing nontrivial SCCs and states
reaching them over P , and T , containing trivial SCCs.

EGsat is more efficient than our EGtrad only in special cases. An example
is when the EUsat and ESsat calls in EGsat find each next state on a long
path of trivial SCCs through a single lightweight firing, while EGtrad always
attempts firing each event at each iteration. In the worst case, however, EGsat
can be much worse than not only EGtrad , but even an explicit approach. For this
reason, the next section discusses only EGtrad , which is guaranteed to benefit
from locality and the Kronecker encoding.

4 Results

We implemented our algorithms in SmArT [7] and compared them with NuSMV

(version 2.1.2), on a 2.2 GHz Pentium IV Linux workstation with 1GB of RAM.
Our examples are chosen from the world of distributed systems and protocols.
Each system is modeled in the SmArT and NuSMV input languages. We verified
that the two models are equivalent, by checking that they have the same sets of
potential and reachable states and the same transition relation.

50 Gianfranco Ciardo and Radu Siminiceanu

We briefly describe the chosen models and their characteristics. Detailed
descriptions can be found in [7]. The randomized asynchronous leader election
protocol solves the problem of designating a unique leader among N participants
by sending messages along a unidirectional ring. The dining philosophers and the
round robin protocol models solve a specific type of mutual exclusion problem
among N processes. The slotted ring models a communication protocol in a net-
work of N nodes. The flexible manufacturing system model describes a factory
with three production units where N parts of each of three different types move
around on pallets (for compatibility with NuSMV, we had to change immediate
events in the original SmArT model [7] into timed ones). This is the only model
where the number of levels in the MDD is fixed, not depending on N (of course,
the size of the local state spaces Sk, depends instead on N). All of these models
are characterized by loose connectivity between components, i.e., they are ex-
amples of globally-asynchronous locally-synchronous systems. We used the best
known variable ordering for SmArT and NuSMV (they coincide in all models
except round robin, where, for best performance, NuSMV uses the reverse of
the one for SmArT). The time to build the encoding of N is not included in the
table; while this time is negligible for our Kronecker encoding, it can be quite
substantial for NuSMV, at times exceeding the reported runtimes.

Table 4 shows the state-space size, runtime (sec), and peak memory consump-
tion (MB) for the five models, counting MDD nodes plus Kronecker matrices in
SmArT, and BDD nodes in NuSMV. There are three sets of columns: state-space
generation (analogous to EF), EU , and EG. See [7] for the meaning of the atomic
propositions. In NuSMV, it is possible to evaluate EU expressions without ex-
plicitly building the state space first; however, this substantially increases the
runtime, so that it almost equals the sum of the state-space generation and EU
entries. The same holds for EG. In SmArT the state-space construction is always
executed in advance, hence the memory consumption includes the MDD for the
state space. We show the largest parameter for which NuSMV can build the
state space in the penultimate row of each model, while the last row shows the
largest parameter for which SmArT can evaluate the EU and EG.

Overall, SmArT outperforms NuSMV time- and memory-wise. Saturation
excels at state-space generation, with improvements exceeding 100,000 in time
and 1,000 in memory. Indeed, SmArT can scale N even more than shown, e.g., 10
for the leader election, 10,000 for philosophers, 200 for round robin, and 150 for
FMS. For EU , we can see the effect of the data structures and of the algorithm
separately, since we report for both EUtrad and EUsat . When comparing the
two, the latter reaches a fixed point in fewer iterations (recall Fig. 4) and uses
less memory. While each EUsat iteration is more complex, it also operates on
smaller MDDs, one of the benefits of saturation. The performance gain is more
evident in large models, where EUtrad runs out of memory before completing
the task and is up to 20 times slower. The comparison between our EUtrad ,
EGtrad and NuSMV highlights instead the differences between data structures.
SmArT is still faster and uses much less memory, suggesting that the Kronecker
representation for the transition relation is much more efficient than the 2K-level
BDD representation.

Structural Symbolic CTL Model Checking of Asynchronous Systems 51

S
ta

te
-s

p
a
ce

g
en

er
a
ti
o
n

E
U

q
u
er

y
E

G
q
u
er

y
N

u
S
M

V
S
m
A
r
T

N
u
S
M

V
S
m
A
r
T

N
u
S
M

V
S
m
A
r
T

N
|S
|

a
ft

er
S
S

a
lo

n
e

E
U

tr
a
d

E
U

sa
t

a
ft

er
S
S

a
lo

n
e

E
G

tr
a
d

ti
m

e
m

em
ti
m

e
m

em
ti
m

e
m

em
ti
m

e
m

em
it
er

ti
m

e
m

em
it
er

ti
m

e
m

em
ti
m

e
m

em
ti
m

e
m

em
ti
m

e
m

em

L
ea

d
er

:
K

=
2
N

,
|E
|=

N
2

+
1
3
N

E
[(

p
re

f 1
=

0
)
U

(s
ta

tu
s 0

=
le

a
d
er

)]
E

G
(s

ta
tu

s 0
�=

le
a
d
er

)

3
8
.4

9
×

1
0
2

0
.1

2
0
.0

4
<

.5
0
.1

3
1
8
.3

1
2

4
3

0
.0

2
<

.5
2
2

0
.0

2
<

.5
0
.2

4
0
.7

4
0
.0

2
<

.5

4
1
.1

5
×

1
0
4

2
.1

1
0

0
.2

7
<

.5
2
.3

1
1

8
1
0
4
.7

3
7
1

6
2

0
.3

6
1

3
8

0
.2

7
1

2
3
2
.8

1
2

1
1
8
9
.1

2
3
5

0
.1

1
2

5
1
.5

0
×

1
0
5

5
6
.0

2
9

1
.4

9
1

5
2
.0

3
3

—
—

8
1

3
.7

4
7

5
2

3
.0

9
7

1
8
0
2
3
.6

1
0
4

—
—

0
.4

4
9

6
1
.8

9
×

1
0
6

1
0
6
3
.7

2
9
5

7
.3

5
3

—
—

—
—

1
0
1

4
6
.9

0
3
0

6
6

3
5
.6

7
2
8

—
—

—
—

1
.6

4
3
8

7
2
.3

9
×

1
0
7

—
—

4
0
.6

4
7

—
—

—
—

1
2
1

6
9
0
.8

5
1
1
6

8
5

4
1
6
.8

5
1
0
1

—
—

—
—

7
.1

5
1
2
8

P
h
il
o
so

p
h
er

s:
K

=

N

/
2
�,

|E
|=

4
N

E
[(

p
h
il

1
�=

ea
t)

U
(p

h
il

0
=

ea
t)

]
E

G
(p

h
il

0
�=

ea
t)

(s
ta

rv
a
ti
o
n
)

2
0

3
.4

6
×

1
0
1
2

0
.8

6
0
.0

2
<

.5
0
.1

7
0
.8

6
4
0

0
.0

3
<

.5
4

0
.0

2
<

.5
0
.1

8
1
.1

6
0
.0

1
<

.5

5
0

2
.2

3
×

1
0
3
1

3
6
.0

4
6

0
.0

7
<

.5
1
.2

4
6

3
9
.7

4
6

1
0
0

0
.1

7
1

4
0
.0

6
1

0
.9

4
6

1
3
2
.3

5
0

0
.0

2
1

1
0
0

4
.9

6
×

1
0
6
2

1
1
3
4
.8

3
1
6

0
.1

5
<

.5
7
.9

3
1
6

1
1
2
1
.8

3
1
6

2
0
0

0
.6

7
3

4
0
.1

4
3

9
.0

3
1
6

2
5
2
5
.3

3
5
8

0
.0

5
3

5
0
0

3
.0

3
×

1
0
3
1
3

—
—

1
.0

1
1

—
—

—
—

1
0
0
0

1
9
.0

9
7
8

4
0
.7

7
6
0

—
—

—
—

0
.2

8
5
8

S
lo

tt
ed

ri
n
g
:
K

=
N

,
|E
|=

8
N

E
[(

sl
ot

1
�=

bf
)
U

(s
lo

t 0
=

a
g
)]

E
G

(s
lo

t 0
�=

h
g
)

5
5
.3

8
×

1
0
5

0
.1

1
<

.0
0
5

<
.5

0
.0

1
0
.0

1
3
3

0
.0

1
<

.5
9

<
.0

0
5

<
.5

<
.0

0
5

1
<

.0
0
5

<
.5

<
.0

0
5

<
.5

1
0

8
.2

9
×

1
0
9

3
.1

1
0

0
.0

5
<

.5
0
.2

1
0

0
.4

3
6
3

0
.0

1
<

.5
9

0
.0

1
<

.5
0
.6

1
0

0
.1

1
0
.0

1
<

.5

1
5

1
.4

6
×

1
0
1
5

1
5
0
3
.9

1
5

0
.1

7
<

.5
1
.8

1
5

2
.0

1
0

9
3

0
.3

7
1

9
0
.0

2
<

.5
4
.7

1
5

0
.2

2
0
.0

1
<

.5

1
0
0

3
.0

3
×

1
0
1
0
5

—
—

3
9
.7

0
1
6

—
—

—
—

6
0
3

—
—

9
1
.6

0
6
2

—
—

—
—

0
.6

2
6
2

R
o
u
n
d

ro
b
in

:
K

=
N

+
1
,
|E
|=

6
N

E
[(

p
1
�=

lo
a
d
)
U

(p
0

=
se

n
d
)]

E
G

(t
ru

e)
(fi

n
d

a
ll

cy
cl

es
)

5
3
.6

0
×

1
0
2

0
.1

1
<

.0
0
5

<
.5

0
.0

1
0
.2

1
1
9

<
.0

0
5

<
.5

6
<

.0
0
5

<
.5

0
.0

1
0
.1

1
<

.0
0
5

<
.5

1
0

2
.3

0
×

1
0
5

6
8
.2

1
1

0
.0

1
<

.5
0
.2

1
1

8
5
.0

1
1

3
9

0
.0

1
<

.5
1
1

0
.0

1
<

.5
0
.3

1
1

7
8
.5

1
3

<
.0

0
5

<
.5

1
5

1
.1

0
×

1
0
6

4
2
0
1
.5

4
0

0
.0

2
<

.5
0
.6

4
0

4
9
2
2
.7

4
0

5
9

0
.0

3
<

.5
1
6

0
.0

1
<

.5
1
.2

4
0

4
7
3
9
.5

4
4

0
.0

1
<

.5

1
0
0

2
.8

5
×

1
0
3
2

—
—

1
.9

8
1

—
—

—
—

3
9
9

1
3
.3

2
3
2

1
0
1

4
.6

7
1
9

—
—

—
—

1
.2

9
2
0

F
le

x
ib

le
m

a
n
u
f.

sy
s.
:
K

=
1
9
,
|E
|=

2
0

E
[(

M
1

>
0
)
U

(P
1
s

=
P

2
s

=
P

3
s

=
N

)]
E

G
¬(

P
1
s

=
P

2
s

=
P

3
s

=
N

)

2
3
.4

4
×

1
0
3

1
2
8
.3

1
7

0
.0

1
<

.5
0
.2

1
7

3
1
8
.1

4
3

3
1

0
.0

4
<

.5
6

0
.0

1
<

.5
0
.2

1
7

1
2
8
.9

1
8

<
.0

0
5

<
.5

3
4
.8

6
×

1
0
4

4
1
0
7
.5

1
2
7

0
.0

2
<

.5
1
.0

1
2
7

—
—

4
6

0
.1

6
<

.5
8

0
.0

2
<

.5
1
.0

1
2
7

—
—

0
.0

1
<

.5

2
5

8
.5

4
×

1
0
1
3

—
—

1
7
.9

8
<

.5
—

—
—

—
3
7
6

—
—

5
2

1
0
1
0
.8

5
2
9
3

—
—

—
—

5
0
.3

8
2
5
1

T
a
b
le

1
:

E
x
p
er

im
en

ta
l
re

su
lt
s:

S
m
A
r
T

v
s.

N
u
S
M

V
.

52 Gianfranco Ciardo and Radu Siminiceanu

5 Conclusion and Future Work

We showed how, by exploiting the structure of a discrete-state model, one can
recognize event locality, encode it using a boolean Kronecker matrix represen-
tation of the next-state function, and greatly improve the efficiency of symbolic
CTL model checking, i.e., the computation of the sets of states satisfying an
EX , EF , EU , or EG formula.

Furthermore, we showed that the saturation algorithm we initially proposed
for state-space generation can be adapted to efficiently find the states satisfying
an EU expression, by automatically classifying the safety of the model events.
The resulting EUsat algorithm is at least as fast, and in many cases much faster
than, our already improved EU computation. EUsat can also be used as the key
procedure to compute the set of states satisfying an EG formula. However, this
approach enumerates the SCCs in the model, thus it can be pathologically poor.

In the future, we will investigate how to further improve the EG computation,
for example by exploring how saturation may be used to obtain the SCC hull
without enumeration. We will also extend our work to Fair-CTL, since our event
classification idea should remain applicable. Finally, since the asynchronous sys-
tems we target are often studied using explicit partial-order reduction techniques,
we intend to perform a thorough comparison with tools such as SPIN.

References

[1] R. Alur et al. Partial-order reduction in symbolic state space exploration. In
Proc. CAV, pages 340–351. Springer, 1997.

[2] R. Bloem, H. Gabow, and F. Somenzi. An algorithm for strongly connected
component analysis in n log n symbolic steps. In Proc. FMCAD, pages 37–54.
Springer, 2000.

[3] R. Bloem, K. Ravi, and F. Somenzi. Symbolic guided search for CTL model
checking. In Proc. DAC, pages 29–34. ACM Press, 2000.

[4] R. E. Bryant. Symbolic boolean manipulation with ordered binary-decision dia-
grams. ACM Comp. Surv., 24(3):393–318, 1992.

[5] P. Buchholz, G. Ciardo, S. Donatelli, and P. Kemper. Complexity of memory-
efficient Kronecker operations with applications to the solution of Markov models.
INFORMS J. Comp., 12(3):203–222, 2000.

[6] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
model checking: 1020 states and beyond. In LICS, pages 428–439, 4–7 1990.

[7] G. Ciardo et al. SMART: Stochastic Model checking Analyzer for Reliability and
Timing, User Manual. Available at http://www.cs.wm.edu/∼ciardo/SMART/.

[8] G. Ciardo, G. Luettgen, and R. Siminiceanu. Efficient symbolic state-space con-
struction for asynchronous systems. In Proc. ICATPN, LNCS 1825, pages 103–
122. Springer, June 2000.

[9] G. Ciardo, G. Luettgen, and R. Siminiceanu. Saturation: An efficient iteration
strategy for symbolic state space generation. In Proc. TACAS, LNCS 2031, pages
328–342. Springer, Apr. 2001.

[10] G. Ciardo, R. Marmorstein, and R. Siminiceanu. Saturation unbound. In Proc.
TACAS, LNCS 2619, pages 379–393. Springer, Apr. 2003.

Structural Symbolic CTL Model Checking of Asynchronous Systems 53

[11] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: A new symbolic
model verifier. In Proc. CAV, LNCS 1633, pages 495–499. Springer, 1999.

[12] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skele-
tons using branching time temporal logic. In Proc. IBM Workshop on Logics of
Programs, LNCS 131, pages 52–71. Springer, 1981.

[13] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.
[14] J.R. Burch, E.M. Clarke, and D.E. Long. Symbolic model checking with parti-

tioned transition relations. In Proc. Int. Conference on VLSI, pages 49–58. IFIP
Transactions, North-Holland, Aug. 1991.

[15] T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli. Multi-valued deci-
sion diagrams: theory and applications. Multiple-Valued Logic, 4(1–2):9–62, 1998.

[16] S. Kimura and E. M. Clarke. A parallel algorithm for constructing binary decision
diagrams. In Proc. ICCD, pages 220–223. IEEE Comp. Soc. Press, Sept. 1990.

[17] A. S. Miner and G. Ciardo. Efficient reachability set generation and storage using
decision diagrams. In Proc. ICATPN, LNCS 1639, pages 6–25, June 1999.

[18] B. Plateau. On the stochastic structure of parallelism and synchronisation models
for distributed algorithms. In Proc. SIGMETRICS, pages 147–153, May 1985.

[19] K. Ravi and F. Somenzi. Efficient fixpoint computation for invariant checking. In
Proc. ICCD, pages 467–474. IEEE Comp. Soc. Press, Oct. 1999.

[20] A. Xie and P. A. Beerel. Implicit enumeration of strongly connected components.
In Proc. ICCAD, pages 37–40. ACM Press, 1999.

	Introduction
	Exploiting the Structure of Asynchronous Models
	Locality, In-Place-Updates, and Saturation

	Structural-Based CTL Model Checking
	The EX Operator
	The EF Operator
	The EU Operator
	The EG Operator

	Results
	Conclusion and Future Work

