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Abstract. In previous work a novel information-theoretic approach was
introduced for calculating the activation map for fMRI analysis [Tsai et
al , 1999]. In that work the use of mutual information as a measure
of activation resulted in a nonparametric calculation of the activation
map. Nonparametric approaches are attractive as the implicit assump-
tions are milder than the strong assumptions of popular approaches based
on the general linear model popularized by Friston et al [1994]. Here we
show that, in addition to the intuitive information-theoretic appeal, such
an application of mutual information is equivalent to a hypothesis test
when the underlying densities are unknown. Furthermore we incorporate
local spatial priors using the well-known Ising model thereby dropping
the implicit assumption that neighboring voxel time-series are indepen-
dent. As a consequence of the hypothesis testing equivalence, calculation
of the activation map with local spatial priors can be formulated as
mincut/maxflow graph-cutting problem. Such problems can be solved in
polynomial time by the Ford and Fulkerson method. Empirical results
are presented on three fMRI datasets measuring motor, auditory, and vi-
sual cortex activation. Comparisons are made illustrating the differences
between the proposed technique and one based on the general linear
model.
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1 Introduction

In previous work [6], we presented a novel information theoretic approach for
calculating fMRI activation maps. The information-theoretic approach is ap-
pealing in that it is a principled methodology requiring few assumptions about
the structure of the fMRI signal. In that approach, activation was quantified
by measuring the mutual information (MI) between the protocol signal and the
fMRI time-series at a given voxel. This measure is capable of detecting unknown
nonlinear and higher-order statistical dependencies. Furthermore, it is relatively
straightforward to implement.

In practice, activation decisions at each voxel are independent of neighboring
voxels. Spurious responses are then removed by ad hoc techniques (e.g. morpho-
logical operators). In this paper, we describe an automatic maximum a posteriori
(MAP) detection method where the well-known Ising model is used as a spatial
prior. The Ising spatial prior does not assume that the time-series of neighboring
voxels are independent of each other. Furthermore, removal of spurious responses
is an implicit component of the detection formulation. In order to formulate the
calculation of the activation map using this technique we first demonstrate that
the information-theoretic approach has a natural interpretation in the hypoth-
esis testing framework and that, specifically, our estimate of MI approximates
the log-likelihood ratio of that hypothesis test. Consequently, the MAP detec-
tion problem using the Ising model can be formulated and solved exactly in
polynomial time using the Ford and Fulkerson method [4].

We compare the results of our approach with and without spatial priors to
an approach based on the general linear model (GLM) popularized by Friston et
al [3]. We present results from three fMRI data sets. The data sets test motor,
auditory, and visual cortex activation, respectively.

1.1 Review of the Information Theoretic Approach
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Fig. 1. Illustration of the protocol time-line, SX|U=0, and SX|U=1.

In [6], each voxel is declared to be active (or not) based solely only the
temporal response of that voxel without considering the temporal responses of
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neighboring voxels. Let X(·, ·, ·, ·) = {X(i, j, k, t)|1 ≤ t ≤ n} denote the ob-
served fMRI signal, where i, j, k are spatial coordinates and t is the time coor-
dinate. Each voxel (i, j, k) has an associated discrete-time temporal response,
X1, . . . , Xn, where Xt denotes X(i, j, k, t) for convenience.

Figure 1 illustrates the protocol time-line and an associated temporal re-
sponse. SX|U=0 denotes the set of Xi’s where the protocol is 0 while SX|U=1

denotes the set of Xi’s where the protocol is 1. An implicit assumption in our
approach is that SX|U=[0,1] are i.i.d. according to pX|U=[0,1](x). We treat the
protocol U as a discrete random variable taking 0 and 1 with equal probability.
In this case the MI between X and U is as follows:

I(X ; U) = H(U) − H(U |X) = h(X) − h(X |U)

= h(X) − 1
2
h(X |U = 0) − 1

2
h(X |U = 1)

where H(U) is the discrete entropy of U and h(X) is the continuous differential
entropy of X . It can be shown that H(U) ≤ 1 bit and that 0 ≤ H(U |X) ≤ H(U)
consequently 0 ≤ I(X ; U) ≤ 1. Thus, MI as a measure between X and U is
normalized.

The differential entropy of X

h(X) = −
∫

S

pX(x) log pX(x)dx

is approximated as [6]:

ĥ(X) ≈ − 1
n

n∑
i=1

log p̂X(xi) (1)

where p̂X(Xi) is the Parzen density estimator [5], defined as

p̂X(xi) =
1

nσ

∑
j

k

(
xi − xj

σ

)
(2)

The kernel k(x) must be a valid pdf (in our case a double exponential kernel).

2 Hypothesis Testing and MI

In order to extend our method to a MAP detection problem using spatial priors
it is necessary to formulate a suitable hypothesis test and associated likelihood
ratio. Here we show the equivalence of MI to the likelihood ratio of an underlying
binary hypothesis testing problem.
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2.1 Nonparametric Hypothesis Testing Problem

Consider the following hypothesis test

H0 : xt, ut ∼ pX(X)pU (U) , i.e. X, Uare independent
H1 : xt, ut ∼ pX,U (X, U) , i.e. X, Uare dependent

where the null hypothesis states that the protocol, U , and the fMRI time-series,
X are statistically independent while the alternative states that they are not. The
log-likelihood ratio, which is the optimal test statistic by the Neyman-Pearson
lemma, is

Tn =
n∑

t=1

log
(

pXU (xt, ut)
pX(xt)pU (ut)

)
(3)

assuming i.i.d. samples. It can be shown that [1]

lim
n→∞Tn = nI(X ; U) (4)

= E {Tn} (5)

consequently using I(X ; U) as the activation test statistic is equivalent to the
aforementioned hypothesis test. Since the distribution of U is binomial with
equal probability it can be shown that I(X ; U) simplifies to

I(X ; U) = h(X) − 1
2
h(X |U = 0) − 1

2
h(X |U = 1) (6)

=
1
2
D(pX|U=0‖pX) +

1
2
D(pX|U=1‖pX) (7)

where D(p1‖p2) is the asymmetric Kullback-Leibler divergence.

2.2 Bias in the Estimate of the Likelihood Ratio

When evaluating the likelihood ratio we substitute 1 into 6. The conditional
terms are summed over SX|U=0 and SX|U=1, respectively. The consequence is
that we introduce bias into our estimate of the likelihood ratio or equivalently
I(X ; U). In order to simplify matters consider the likelihood of the fMRI time-
series

pX1,...,Xn(x1, . . . , xn) =
n∏

t=1

pX(xt) = exp(
∑

t

log pX(xt))

= exp(
∑

t

log p̂X(xt) +
∑

t

log
pX(xt)
p̂X(xt)

)

= e
−n[ĥ(X)+ 1

n

∑
t
log

p̂X (xt)
pX (xt) ] ≈ e−n[ĥ(X)+D(p̂X‖pX )]
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In similar fashion the likelihood ratio is approximately

pX(x1, . . . , xn|H1)
pX(x1, . . . , xn|H0)

≈ en(Î(X;U)−γ) (8)

where γ = 1
2 [D(p̂X|U=0‖pX|U=0) + D(p̂X|U=1‖pX|U=1)] − D(p̂X‖pX),which is

nonnegative due to convexity of Kullback-Leibler divergence. More importantly,
the divergence terms asymptotically approach zero. Consequently, the approxi-
mation approaches the true likelihood ratio.

3 Modeling Voxel Dependency via the Ising Model

We use the Ising model, a simple Markov random field (MRF), as a spatial
prior of the binary activation map. Previously, Descombes et al [2] proposed
the use an MRF (specifically a Potts model) for fMRI signal restoration and
analysis. The substantive differences between the proposed method and that of
Descombes et al include

– Descombes et al used simulated annealing to solve the MAP estimation prob-
lem with no guarantee of an exact result.

– The MRF prior model was combined with data fidelity terms in a heuristic
way.

In contrast, our method combines the likelihood ratio obtained from the data
with a spatial prior rigorously within the Bayesian framework leading to an exact
solution of a binary MAP hypothesis test.

The Ising model captures the notion that neighboring voxels of an activated
voxel are likely to be activated and vice versa. Specifically, let y(i, j, k) be a
binary activation map such that y(i, j, k) = 1 if voxel (i, j, k) is activated and
0, otherwise. Then this idea can be formulated using Ising model as a prior
probability of the activation map y(·, ·, ·). Let

W =
{
w : w ∈ {0, 1}N1×N2×N3

}

be the set of all possible [0-1] configurations and let w(i, j, k) be an element of
any one sample configuration.

The Ising prior on y(·, ·, ·) penalizes every occurrence of neighboring voxels
with different activation states as follows:

P (y(·, ·, ·) = w) =
1
Z

e−U(w) Z =
∑

w∈W

e−U(w)

U(w) = β
∑
i,j,k

(w(i, j, k) ⊕ w(i + 1, j, k) + w(i, j, k) ⊕ w(i, j + 1, k)

+w(i, j, k) ⊕ w(i, j, k + 1)),
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where β > 0. As in [2] we assume that

p(X(·, ·, ·, ·)|Y (·, ·, ·)) =
∏
i,j,k

p(X(i, j, k, ·)|Y (i, j, k))

That is, conditioned on the activation map, voxel time-series are independent.
The MAP estimate of the activation is then

ŷ(·, ·, ·) = arg max
y(·,·,·)

pY (y(·, ·, ·))pX|Y (x(·, ·, ·, ·)|Y (·, ·, ·) = y(·, ·, ·))
= arg max

y(·,·,·)
log pY (y(·, ·, ·)) +

∑
i,j,k

y(i, j, k) log
pX|Y (x(i, j, k, ·)|Y (i, j, k) = 1)
pX|Y (x(i, j, k, ·)|Y (i, j, k) = 0)

= arg max
y(·,·,·)

∑
i,j,k

λi,j,ky(i, j, k) − β
∑
i,j,k

(y(i, j, k) ⊕ y(i + 1, j, k)

+y(i, j, k)⊕ y(i, j + 1, k) + y(i, j, k) ⊕ y(i, j, k + 1)) ,

where λi,j,k = ln pX|Y (x(i,j,k,·)|Y (i,j,k)=1)

pX|Y (x(i,j,k,·)|Y (i,j,k)=0) = n(Îi,j,k(X ; U)−γ) is the log-likelihood

ratio at voxel (i, j, k) and Îi,j,k(X ; U) is the MI estimated from time-series
X(i, j, k, ·). The previous use of MI as the activation statistic fits readily into
the MAP formulation.

3.1 Exact Solution of the Binary MAP Estimation Problem

There are 2Nv possible configurations of y(·, ·, ·) (or equivalently elements of the
set W ) where Nv = N1N2N3 is the number of voxels. It has been shown by
Greig et al [4] that this seemingly NP-complete problem can be solved exactly
in polynomial time (order Nv). Greig et al accomplished this by demonstrating
that under certain conditions the binary image MAP estimation problem (us-
ing MRFs as a prior) can be reduced to the minimum cut problem of network
flow. Consequently, the methodology of Ford and Fulkerson for such problems
can be applied directly. We are able to employ the same technique as a direct
consequence of demonstrating the equivalence of MI to the log-likelihood ratio
of a binary hypothesis testing problem. Details of the minimum cut solution are
beyond the scope of this paper and we refer the reader to [4] for further details.

4 Experimental Results

We present experimental results on three fMRI data sets. The protocols are
designed to activate the motor cortex (dominant hand movement protocol), au-
ditory cortex (verb generation protocol), and visual cortex (visual stimulation
with alternating checkerboard pattern), respectively. Each data set contains 60
whole brain acquisitions taken three seconds apart. We compare the resulting
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activation map computed by three methods: GLM, nonparametric MI, nonpara-
metric MI with an Ising prior.

We first apply the GLM method to each data set. The coronal slice exhibiting
the highest activation for each data set is shown in the first column of figure 2
with the GLM activation map overlaid in white for each data set. The F-statistic
threshold for GLM was set such that the visual inspection of the activation map
was consistent with our prior expectation of the number of activated voxels. This
corresponded to a p-value of 10−10.

In the next column of the figure the same slices are shown using MI to
compute the activation map. In this case, the MI threshold γ was set such that
all of the voxels detected by the GLM were detected by MI. Consequently figure
2 (b), (e) and (h) contain additional activations when compared to GLM. Some
of these additional activations are spurious and some are not.

Finally, the Ising prior was applied to the MI activation map with β = 1. An
intuitive understanding of the relationship of γ and β is as follows. If β = 0, then
there is no prior and the method reduces to MI only. For β �= 0 the interpretation
is not so simple, but we can consider a special case. Suppose the neighbors
of a voxel are declared to be active (in our case there are six neighbors for
every voxel), then the effective MI activation threshold γ for that voxel has been
reduced by 6β/n. Conversely, if all of the neighbors are inactive then the effective
threshold is increased by the same amount. For these experiments, n = 60 and
β = 1, this equates to a 0.1 nat (equal to 0.14 bits) change in the MI activation
threshold for the special cases described.

Comparison of figures 2 (b), (e) and (h) to figures 2 (c), (f), and (i) shows
that many of the isolated activations were removed by the Ising prior, but some
of the new MI activations remain. Figure 3 shows the temporal responses of the
voxels with the lowest GLM score which were detected by MI with prior but
not by GLM. Examination of these temporal responses (with protocol signal
overlaid) reveals obvious structure related to the protocol signal.

A reasonable question is whether this result is due to an unusually high
threshold set for GLM. In order to address this we next lower the GLM thresh-
old such that the voxels of figure 3 are detected by GLM. We then consider
regions of the resulting activation map where new activations have appeared in
figure 4. The activations of 4a and 4b (motor cortex, auditory cortex), would
be considered spurious in light of the region in which they occur. The result for
figure 4c is not so clear as these activations are most likely spurious, but might
possibly be related to higher-ordered visual processing.

5 Conclusion

We demonstrated that our previous approach, derived from an information-
theoretic perspective, can be formulated in a hypothesis testing framework. Fur-
thermore, the resulting hypothesis test is free of many of the strong assumptions
inherent in GLM. As fMRI is a relatively new modality for examining cognitive
function we think that it is appropriate to examine nonparametric methods (i.e.
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(a) GLM: 10th slice (b)MI: 10th slice; γ=0.50 bits (c) MI with prior: 10th slice

(d)GLM: 9th slice (e) MI: 9th slice; γ =0.58 bits (f) MI with prior: 9th slice

(g)GLM: 2nd slice (h)MI: 2nd slice; γ=0.53 bits (i) MI with prior: 2nd slice

Fig. 2. Comparison of fMRI Analysis results from motor, auditory and visual
experiments
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those without strong model assumptions). In this way, phenomenology which is
not well-modeled by traditional approaches may be uncovered.

GLM

(a) motor 14th slice (b) auditory 20th slice (c) visual 4th slice

MI with Ising prior

(a) motor 14th slice (b) auditory 20th slice (c) visual 4th slice

Fig. 4. Comparison of fMRI Analysis results from motor, auditory and visual
experiments with lowered GLM threshold

We introduced an extension of our method which incorporates spatial priors
via the Ising model. A consequence of the hypothesis testing formulation of the
original MI-only approach was that the resulting MAP estimation problem (with
the addition of spatial priors) could be reduced to a minimum cut network flow
problem. Thereby allowing for an exact and relatively fast (polynomial-time)
algorithm.

We presented results comparing our approach to the GLM method. While
fMRI analysis of patient data is always faced with the difficulty that exact truth
is unknown our results indicate that the MI approach with spatial priors was
able to detect “true” activations with a significantly smaller number of spurious
responses.
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