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Abstract. Existing differential approaches to the localization of
3D anatomical point landmarks in 3D tomographic images are relatively
sensitive to noise as well as to small intensity variations, both of which
result in false detections as well as affect the localization accuracy. In
this paper, we introduce a new approach to 3D landmark localization
based on deformable models, which takes into account more global im-
age information in comparison to differential approaches. To model the
surface at a landmark, we use quadric surfaces combined with global
deformations. The models are fitted to the image data by optimizing
an edge-based fitting measure that incorporates the strength as well as
the direction of the intensity variations. Initial values for the model pa-
rameters are determined by a semi-automatic differential approach. We
obtain accurate estimates of the 3D landmark positions directly from
the fitted model parameters. Experimental results of applying our new
approach to 3D tomographic images of the human head are presented.
In comparison to a pure differential approach to landmark localization,
the localization accuracy is significantly improved and also the number
of false detections is reduced.

1 Introduction

In this contribution, we address the problem of extracting 3D anatomical point
landmarks from 3D tomographic images, focusing on anatomical structures of
the human head. The driving task is landmark-based 3D image registration,
which is fundamental to computer-assisted neurosurgery. Existing work on the
automated extraction of 3D point landmarks is based on differential approaches
(e.g., [17],[11]). However, while being computationally efficient, differential ap-
proaches are relatively sensitive to noise as well as to small intensity variations,
both of which result in false detections as well as affect the localization accuracy.
In this paper, we introduce a new approach to 3D landmark localization based on
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deformable models, which takes into account more global image information in
comparison to differential approaches and thus opens the possibility of increas-
ing the robustness as well as the accuracy in landmark extraction. Previously,
deformable models have been applied to segmentation, tracking, and image reg-
istration (see [8] for a survey), whereas the localization of 3D point landmarks
based on deformable models has not been considered so far.

Exemplarily, we here focus on two different types of landmarks, namely,
salient surface loci (curvature extrema) of tips and saddle structures. Exam-
ples of corresponding 3D point landmarks of the human head are the tips of
the ventricular horns or the saddle points at the zygomatic bones (see Fig. 1).
To represent such structures, we utilize 3D surface models. In the literature, a
variety of 3D surface models has been used (e.g., [15],[13],[3],[14],[7],[16],[19],[1]).
Note that in comparison to earlier work on deformable models, we are here in-
terested in the accurate localization of salient surface loci. Central to an efficient
solution of this specific problem is that the model surface exhibits a unique point
whose position can be directly computed from the model parameters. As a com-
promise between generality and efficiency, we here use quadric surfaces as shape
prototypes, which are combined with additional global deformations to enlarge
the range of shapes (Sect. 2).

frontal horn occipital horn

temporal horn

zygomatic bone

Fig. 1. Ventricular horns of the human brain (from [12]) and the human skull
(from [2]). Examples of 3D point landmarks are indicated by black dots.

Model fitting is formulated as an optimization problem where a suitable
fitting measure is optimized w.r.t. the model parameters. Here, we use an edge-
based fitting measure that incorporates the strength as well as the direction of
the intensity variations. This measure, which is described in Sect. 3, is a 3D gen-
eralization of a 2D fitting measure suggested in [20]. Usually, only the strength
of the intensity variations is incorporated (e.g., [19],[14]). To determine initial
values for the model parameters, we have developed a semi-automatic differen-
tial approach (Sect. 4). Experimental results of applying our new approach to
3D tomographic images of the human head are presented in Sect. 5. In partic-
ular, we analyze the localization accuracy of our new approach and compare it
with that of an existing differential approach.
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2 Geometric Models of Tips and Saddle Structures

As 3D shape prototypes, we here use quadric surfaces, namely, ellipsoids for
3D tip-like structures and hyperboloids of one sheet for 3D saddle structures.
However, real structures in general show deviations from these prototypes (e.g.,
the ventricular horns generally have a bended shape and partly show a taper-
ing). To take into account bending in the case of tip-like structures, we here
additionally apply a quadratic bending deformation along the centerline of the
ellipsoid (i.e., the z-axis) [3]: B(x) = (x + δ cosυ z2, y + δ sinυ z2, z)T , where
x = (x, y, z)T denotes an arbitrary surface point and δ ≥ 0 determines the
strength and υ the direction of bending. To transform the object-centered model
coordinate system to the image coordinate system, we here use a rigid transfor-
mation, R(x) = Rx + t, where t = (X, Y, Z)T denotes the translation vector
and R the rotation matrix depending on the rotation angles α, β, γ.

Tips. The parametric form of our model is obtained by applying the bending
deformation and the rigid transformation to the parametric form of an ellipsoid:

xtip(θ, φ) = R

⎛
⎝

a1 cos θ cosφ + δ cosυ (a3 sin θ)2

a2 cos θ sin φ + δ sin υ (a3 sin θ)2

a3 sin θ

⎞
⎠ + t, (1)

where 0 ≤ θ ≤ π/2 and −π ≤ φ < π are the latitude and longitude angle pa-
rameters, resp., and a1, a2, a3 > 0 are scaling parameters. Hence, the model is
described by the parameter vector p = (a1, a2, a3, δ, υ, X, Y, Z, α, β, γ). The land-
mark position of our model, i.e., the position of the curvature extremum of the de-
formed ellipsoid, is given by xl = xtip(π/2, 0) = R(δ cosυ a2

3, δ sin υ a2
3, a3)T + t.

Figure 2 (left) shows an example of a bended tip-like structure.
Saddle structures. Here, the parametric form of our model is obtained by

applying the rigid transformation to the parametric form of a hyperboloid of
one sheet:

xsaddle(θ, φ) = R

⎛
⎝

a1 sec θ cosφ
a2 sec θ sin φ
a3 tan θ

⎞
⎠ + t, (2)

where |θ| < π/2 and 0 ≤ φ ≤ π. Thus, the model is described by the parameter
vector p = (a1, a2, a3, X, Y, Z, α, β, γ). The landmark position is here given by
xl = xsaddle(0, π/2) = R(0, a2, 0)T + t. Figure 2 (right) shows an example of a
saddle structure.

3 Model Fitting Using an Edge-Based Fitting Measure

The geometric models introduced in Sect. 2 are fitted to the image data by op-
timizing an edge-based fitting measure w.r.t. the model parameters. Our fitting
measure, which is a generalization of the 2D fitting measure in [20], exploits
(a) the similarity between the directions of the intensity gradient and the nor-
mals of the model surface as well as (b) the strength of the intensity variations.
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Fig. 2. Geometric models based on quadric surfaces as 3D shape prototypes. The
landmark positions are indicated by a black dot.

As a result, the influence of neighboring structures during fitting is diminished
significantly, which increases the robustness of model fitting.

During fitting, we consider the contributions of the intensity gradient in the
direction of the normal of the model surface, utilizing the projection of the
intensity gradient onto the unit normal of the model surface:

Mfit(p) = ±
Z Z

< ∇g(x(θ, φ;p)),
∂x(θ, φ;p)

∂θ
× ∂x(θ, φ;p)

∂φ
> dθ dφ → min., (3)

where g denotes the intensity function, x is the parametric form of the respective
geometric model, which depends on θ, φ, and the model parameter vector p, and
< ·, · > denotes the inner product. The choice of the sign ± of the fitting measure
depends on the appearance of the landmark at hand in the image: In the case of a
dark structure, where the intensity gradient points outward, the sign is positive,
whereas the sign is negative in the case of a bright structure. Thus, the better
the similarity between the directions of the intensity gradients and the normals
of the model surface is and the stronger the intensity variations along the model
surface are, the smaller is the measure in Eq. (3). It is worth noting that in
our implementation, only those surface points in Eq. (3) are considered where
± < ∇g(x(θ, φ;p)), ∂x(θ,φ;p)

∂θ × ∂x(θ,φ;p)
∂φ > is less than zero. That is, surface

points where the direction of the intensity gradient differs significantly from the
surface normal are excluded. As a result, the influence of neighboring structures
is further reduced. We optimize the fitting measure in Eq. (3) w.r.t. the model
parameters by applying the conjugate gradient method ([10]).

A similar 3D fitting measure was suggested in [5]. However, in [5] a dis-
crete formulation of Eq. (3) was used. Also, different geometric models based on
Fourier surfaces were used in [5], and the approach was applied to segmented
data only, while here we do not require segmented data.

4 Initialization of the Model Parameters

A central issue of fitting deformable models to the image data is the determina-
tion of suitable initial values for the model parameters. Often, initial values are
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manually determined, which is tedious and time-consuming. Here, we initialize
the model parameters using a semi-automatic procedure. The model for tip-like
structures is initialized using an ellipsoid as approximation. Thus, for both mod-
els from Sect. 2, we have to find initial values for nine parameters (translation,
rotation, and scaling).

An initial estimate of the landmark position, x̂l, is obtained by a semi-
automatic differential approach ([11],[6]). To initialize the rotation angles α, β, γ,
we exploit the pose of the local isointensity surface at the estimated landmark
position, assuming that the local isointensity surface, which is defined by the
implicit equation g(x)−g(x̂l) = 0, well approximates the surface of the anatom-
ical structure at hand. The rotation angles are then determined by the direction
of the intensity gradient ∇g(x̂l) (estimate of the normal) as well as the princi-
pal curvature directions of the local isointensity surface at x̂l (see, e.g., [4],[17]
for computing the curvature of isointensity surfaces). The scaling parameters
a1, a2, a3 are initialized based on the principal curvatures κ1, κ2 of the local isoin-
tensity surface at the estimated landmark position. For example, in the case of
a tip, we have the relations κ1 = a3/a2

1 and κ2 = a3/a2
2. Note, however, that we

have only two principal curvatures, while we have three scaling parameters. To
cope with this problem, we here initialize one scaling parameter manually.

5 Experimental Results for 3D Tomographic Images

We have applied our approach to 3D synthetic data as well as to 3D tomographic
images of the human head. In this section, we present experimental results of
applying our approach to a 3D MR image and a 3D CT image of one patient.
In Sect. 5.1, we describe the parameter setting, and in Sect. 5.2 we present the
results obtained for different anatomical landmarks of the human head.

5.1 Parameter Setting

In the case of the 3D MR image (T1-weighting, voxel size ≈ 0.86×0.86×1.2mm3),
we considered the tips of the frontal and occipital ventricular horns as well
as the saddle points at the zygomatic bones (see Fig. 1, where the landmarks
are indicated). The field-of-view of the CT image captures only a part of the
ventricular horns, and therefore we here considered only the zygomatic bones.
Instead of the original, anisotropic CT data, we used interpolated data with an
isotropic voxel size of 1.03mm3 (for interpolation we applied the approach in [9]).

Initial estimates of the landmark positions were determined by applying
the semi-automatic differential approach in [11],[6], where partial derivatives of
the intensity function were estimated using cubic B-spline image interpolation
([18]) and Gaussian smoothing. The scale of the Gaussian filters was coarsely
adapted to the scale of the respective landmark: For the ventricular horns we
used σ = 1.5mm, while for the zygomatic bones we used σ = 1.0mm (in our
implementation of derivative computation, the filter scales are specified in units
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of mm and are afterwards converted to voxel units based on the respective im-
age resolution). In case of several detections, we selected the candidate with the
maximal operator response. For computing the curvature of the local isointensity
surface, the scale of the Gaussian filters was the same as that used for landmark
detection.

The fitting measure Mfit(p) as well as its derivative w.r.t. the model param-
eter vector p (∇Mfit(p) is required for optimization) involve (a) the parametric
forms of the models as well as partial derivatives of the parametric forms w.r.t.
θ, φ, and the model parameters and (b) image derivatives. Expressions involv-
ing the parametric forms were determined analytically. Image derivatives were
computed using Gaussian filters with σ = 1.0mm. For numerical evaluation of
the integral in the fitting measure in Eq. (3) and in its derivative, we adopted a
scheme based on equidistant sampling of the two-dimensional parameter space
(θ, φ) and cubic interpolation ([10]). The image derivatives were trilinearly in-
terpolated. To diminish the influence of neighboring structures, model fitting
was restricted to a spherical region-of-interest (ROI) centered at the estimated
landmark position, where the ROI radius was set to 15 voxels.

5.2 Results for the Ventricular Horns and the Zygomatic Bones

Ventricular Horns We considered four different landmarks, namely, the tips
of the frontal and occipital ventricular horns in both hemispheres. For each land-
mark, the semi-automatic differential approach in [11],[6] yielded a reasonable
initial estimate of the landmark position. The rotation angles α, β, γ as well as
the scaling parameters a1 and a2 were automatically determined based on the
differential characteristics of the local isointensity surfaces at the position esti-
mates (see Sect. 4). Only the scaling parameter a3 was manually initialized. The
bending parameters were initially set to zero. Figure 3a visualizes the initializa-
tion result obtained for the left frontal ventricular horn; for the other landmarks,
we obtained similar initialization results.

Given the relatively large number of parameters, model fitting was then per-
formed in two steps for reasons of robustness: To achieve a coarse adaption, we
first fitted only the six parameters of the rigid transformation, while the other
parameters were kept constant. In the second step, all parameters (translation,
rotation, scaling, and bending) were considered during optimization. Model fit-
ting took in total between 34 and 184 seconds (SUN SPARC Ultra 2) and suc-
ceeded in all cases. Figure 3b exemplarily shows the fitting result obtained for
the left frontal ventricular horn. One can see that the fitted model surface well
agrees with the ventricle surface.

The localized landmark positions derived from the fitted model turned out
to be good. Figures 3c and 4 show the localization results obtained for the tips
of the left frontal and occipital horn, resp. Please note that for visualization
purposes, the model surfaces as well as the landmark positions are represented
by voxel positions only, while the fitting results yield subvoxel positions.
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(a) Model initialization

(b) Fitting result

(c) Localized landmark position

Fig. 3. Localization of the tip of the left frontal ventricular horn in a 3D MR image.
Orthogonal sections at the ROI center depicting (a) the surface initialization and (b)
the fitting result. The considered spherical ROI is highlighted. (c) Orthogonal sections
at the localized landmark position based on the fitted model (white cross).

Fig. 4. Localization of the tip of the left occ. ventr. horn in a 3D MR image. Orthogonal
sections at the localized landmark position based on the fitted model (white cross).
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Zygomatic Bones In both modalities, we obtained reasonable initial values
for the model parameters. Only the scaling parameters were manually coarsely
initialized. In contrast to the experiments using the ventricular horns, we here
performed model fitting in a single step in which all parameters were adapted.
Model fitting took between 35 and 117 seconds and gave in all cases good results.
The localized landmark positions derived from the fitting results are in all cases
satisfying as visual inspection revealed. Figure 5 shows the localization results
for the saddle point at the left zygomatic bone in MR and CT.

Fig. 5. Localization of the saddle point at the left zygomatic bone in a 3D MR image
(top) and a 3D CT image (bottom). Orthogonal sections at the localized landmark
position based on the fitted model (white (black) cross in the MR (CT) image).

Localization Accuracy We now analyze the localization accuracy of our new
approach in the case of the MR image, using as ground truth positions that
were manually determined in agreement with up to four persons. Note that
manually only voxel positions were determined, while our new approach yields
subvoxel positions. For comparison, we use the results obtained with a differential
approach ([11],[6]), which was here also used to determine initial estimates of
the landmark positions. Table 1 summarizes the computed Euclidean distances
to the ground truth positions for six landmarks. One can see that for each
landmark, the locus obtained with our new approach based on deformable models
is better (i.e., closer to the reference position) than the locus obtained with the
differential approach. The mean Euclidean distance from the positions localized
with our new approach to the reference positions is enew = 1.22mm, while for
the differential approach we have edifferential = 2.11mm. Thus, the localization
accuracy was improved by 0.89mm.
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edifferential enew

Left frontal horn 1.92mm 0.90mm

Left occipital horn 3.32mm 1.23mm

Left zygomatic bone 0.86mm 0.78mm

edifferential enew

Right frontal horn 1.72mm 1.28mm

Right occipital horn 2.58mm 1.61mm

Right zygomatic bone 2.26mm 1.52mm

Table 1. Comparison of the localization accuracy of a differential approach to land-
mark localization (edifferential) and our new approach based on deformable models (enew)
for six landmarks in a 3D MR image. edifferential and enew denote the Euclidean dis-
tances to the reference positions, which were determined manually.

False Detections One problem with differential approaches is that often more
than one landmark candidate is detected, i.e., we have to ensure that a correct
candidate is selected for model initialization. To this end, we studied the suit-
ability of using the fitting results to automatically identify false detections. For
each landmark from above, we used all detected candidates to determine a set
of initial values for the model parameters: For the left and right frontal ventric-
ular horn as well as for the right occipital horn in the MR image we obtained
two candidates, while for the left (right) zygomatic bone in the MR image we
obtained three (five) candidates. In the case of the other landmarks, only one
correct candidate was detected. We then compared the fitting results obtained
for each candidate based on the value of the fitting measure divided by the sur-
face area (the normalization was done to avoid a bias due to the surface area).
We found that in all cases but one, the selection of a correct candidate actually
resulted in the best fitting result. For the right occipital horn, it turned out that
the detected two candidates are both correct in the sense that they refer to two
prominent anatomical loci at the tip of the occipital horn.

6 Conclusion

In this paper, we introduced a new approach to 3D landmark localization based
on deformable geometric models. By fitting these models to the surface at the
landmark at hand, we obtain accurate estimates of the 3D landmark positions.
Experimental results using 3D MR and CT images demonstrated the applica-
bility of our approach. The utilization of differential approaches for determining
initial values for the model parameters resulted in reasonable initializations. Us-
ing manually determined positions as ground truth, we analyzed in detail the
accuracy of the estimated 3D landmark positions obtained from the fitting re-
sults. In particular, we compared the localization results with those of a differen-
tial approach. It turned out that our new approach based on deformable models
significantly improves the localization accuracy and also reduces the number of
false detections. Future work will include further experiments using clinical data.
Also, extensions of the geometric models will be studied to capture a broader
range of shapes.
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