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Abstract. Our goal was to improve image guidance during minimally
invasive image guided therapy by developing an intraoperative segmenta-
tion and nonrigid registration algorithm. The algorithm was designed to
allow for improved navigation and quantitative monitoring of treatment
progress in order to reduce the time required in the operating room and
to improve outcomes.

The algorithm has been applied to intraoperative images from cryother-
apy of the liver and from surgery of the brain. Empirically the algorithm
has been found to be robust with respect to imaging characteristics such
as noise and intensity inhomogeneity and robust with respect to param-
eter selection. Serial and parallel implementations of the algorithm are
sufficiently fast to be practical in the operating room.

The contributions of this work are an algorithm for intraoperative seg-
mentation and intraoperative registration, a method for quantitative
monitoring of cryotherapy from real-time imaging, quantitative monitor-
ing of brain tumor resection by comparison to a preoperative treatment
plan and an extensive validation study assessing the reproducibility of
the intraoperative segmentation. We have evaluated our algorithm with
six neurosurgical cases and two liver cryotherapy cases with promising
results. Further clinical validation with larger numbers of cases will be
necessary to determine if our algorithm succeeds in improving intraoper-
ative navigation and intraoperative therapy delivery and hence improves
therapy outcomes.

1 Introduction

Image guided surgical techniques are used in operating rooms equipped with
special purpose imaging equipment. The development of image guided surgi-
cal methods over the past decade has provided a major advance in minimally
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invasive therapy delivery. Early work such as that reviewed by Jolesz [1] has
established the importance and value of image guidance through better determi-
nation of tumor margins, better localization of lesions, and optimization of the
surgical approach.

Research in image guided therapy has been driven by the need for improved
visualization. Qualitative judgements by experts in clinical domains have been
relied upon as quantitative and automated assessment of intraoperative imaging
data has not been possible in the past. In order to provide the surgeon or inter-
ventional radiologist with as rich a visualization environment as possible from
which to derive such judgements, existing work has been concerned primarily
with image acquisition, visualization and registration of intraoperative and pre-
operative data. Intraoperative segmentation has the potential to be a significant
aid to the intraoperative interpretation of images and to enable prediction of
surgical changes.

Earlier work has been a steady progression of improving image acquisition
and intraoperative image processing. This has included increasingly sophisti-
cated multimodality image fusion and registration. Clinical experience with im-
age guided therapy in deep brain structures and with large resections has re-
vealed the limitations of existing rigid registration and visualization approaches
[1]. The deformations of anatomy that take place during such surgery are often
better described as nonrigid and suitable approaches to capture such deforma-
tions are being actively developed by several groups (described below).

A number of imaging modalities have been used for image guidance. These
include, amongst others, computed tomography (CT), ultrasound, digital sub-
traction angiography (DSA), and magnetic resonance imaging (MRI). Intraoper-
ative MR imaging can acquire high contrast images of soft tissue anatomy which
has proven to be very useful for image-guided therapy [2]. Multi-modality regis-
tration allows preoperative data that cannot be acquired intraoperatively, such
as fMRI or nuclear medicine scans, to be visualized together with intraoperative
data.

Gering et al. [3] described an integrated system allowing the ready visualiza-
tion of intraoperative images with preoperative data, including surface rendering
of previously prepared triangle models and arbitrary interactive resampling of
3D grayscale data. Multiple image acquisitions were presented in a combined vi-
sualization through rigid registration and trilinear interpolation. The system also
allows for visualization of virtual surgical instruments in the coordinate system
of the patient and patient image acquisitions. The system supports qualitative
analysis based on expert inspection of image data and the surgeons expecta-
tion of what should be present (normal anatomy, patient’s particular pathology,
current progress of the surgery etc.)

Several groups have investigated intraoperative nonrigid registration, primar-
ily for neurosurgical applications. The approaches can be categorized by those
that use some form of biomechanical model (recent examples include [4, 5, 6])
and those that apply a phenomenological approach relying upon image related
criteria (recent examples include [7, 8].)
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We aimed to demonstrate that intraoperative segmentation is possible and
adds significantly to the value of intraoperative imaging. Compared to regis-
tration of preoperative images and inspection of intraoperative images alone,
intraoperative segmentation enables identification of structures not present in
previous images (examples of such structures include the region of cryoablation
or radiofrequency treatment area, surgical probes and changes due to resec-
tion), quantitative monitoring of the progress of therapy (including the ability
to compare quantitatively with a preoperatively determined treatment plan) and
intraoperative surface rendering for rapid 3D interactive visualization.

2 Method

Preparation for Image Guided Therapy

Preoperative data:
MRI,MRI, SPECT, Manual or Spatial
PET and/or CT > Automated - —
anajor Segmentation Localization
During Image Guided Therapy
Nonrigid cpataly Rigid Registration
Registration |« Vaying  [*] T99Red «
Classification 7' .
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and registered preoperative data

Fig. 1. Schema for Intraoperative Segmentation and Registration

In order to successfully segment intraoperative images, we have developed an
image segmentation algorithm that takes advantage of an existing preoperative
MR acquisition and segmentation to generate a patient-specific model for the
segmentation of intraoperative data. The algorithm uses the segmentation of
preoperative data as a template for the segmentation of intraoperative data.
Figure 1 illustrates the processing steps that take place before and during the
therapy procedure.

We have experimented for several years with a general image segmentation
approach that uses a 3D digital anatomical atlas to provide automatic local
context for classification [9, 10, 11]. The work described here extends our previous
work to ensure its suitability for intraoperative segmentation. Rather than a
generic digital anatomic atlas we propose here to use a segmented preoperative
patient scan to derive a patient-specific anatomical model for intraoperative
segmentation of new scans.
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Since preoperative data is acquired before surgery, the time available for
segmentation is longer. This means we can use segmentation approaches that
are robust and accurate but are time consuming and hence impractical to use
in the operating room. In our laboratory, preoperative data is segmented with
a variety of manual [3], semi-automated [12] or automated [13, 11] approaches.
We attempt to select the most robust and accurate approach available for a
given clinical application. Each segmented tissue class is then converted into
an explicit 3D volumetric spatially varying model of the location of that tissue
class, by computing a saturated distance transform [14] of the tissue class. This
model is used to provide robust automatic local context for the classification of
intraoperative data in the following way.

During surgery, intraoperative data is acquired and the preoperative data
(including any MRI/fMRI/PET/SPECT/MRA that is appropriate, the tissue
class segmentation and the spatial localization model derived from it) is aligned
with the intraoperative data using an MI based rigid registration method [15, 3].
The intraoperative image data then together with the spatial localization model
forms a multichannel 3D data set. Each voxel is then a vector having components
from the intraoperative MR scan, the spatially varying tissue location model
and if relevant to the particular application, any of the other preoperative image
data sets. For the first intraoperative scan to be segmented a statistical model
for the probability distribution of tissue classes in the intensity and anatomical
localization feature space is built. The statistical model is encoded implicitly
by selecting groups of prototypical voxels which represent the tissue classes to
be segmented intraoperatively (less than five minutes of user interaction). The
spatial location of the prototype voxels is recorded and is used to update the
statistical model automatically when further intraoperative images are acquired
and registered. This multichannel data set is then segmented with a spatially
varying classification [10, 13, 16].

Segmentation of intraoperative data helps to establish explicitly the regions
of tissues that correspond in the preoperative and intraoperative data. It is then
straightforward to apply our previously described [17, 18] and validated [19]
multi-resolution elastic matching algorithm. Once the nonrigid transformation
mapping from the preoperative to the intraoperative data has been established,
the mapping is applied to each of the relevant preoperative data sets to bring
them into alignment with the intraoperative scan.

3 Results

In this section illustrative segmentations and two validation experiments are pre-
sented. During interventional procedures in the liver and brain, intraoperative
MRI (IMRI) data sets were acquired and stored. Our segmentation and nonrigid
registration algorithm was applied to these data sets after therapy delivery in
order to allow us to assess the robustness, accuracy and time requirements of
the approach. In the future we intend to carry out segmentation, nonrigid regis-
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tration and visualization using the approach described here during the interven-
tional procedures with the goal of improving image guided therapy outcomes.

3.1 Intraoperative Segmentation for Neurosurgery

Figure 2 illustrates the segmentation of six neurosurgery cases using our intra-
operative segmentation algorithm. In each case, several volumetric MRI scans
were carried out during surgery. The first scan was acquired at the beginning
of the procedure before any changes in the shape of the brain took place, and
then over the course of surgery other scans were acquired as the surgeon checked
the progress of tumor resection. The final scan in each sequence exhibits signifi-
cant nonrigid deformation and loss of tissue due to tumor resection. In order to
test our segmentation approach each subsequent scan was aligned to the first by
maximization of mutual information and the first scan was manually segmented
to act as an individualized anatomical model. The last scan in each sequence
was then segmented with our new segmentation approach. The segmented brain
and IMRI is shown in Figure 2. In order to check the quality of the segmenta-
tion, each segmentation was visually compared with the MRI from which it was
derived. In each case the segmented brain closely matched the expected location.

Fig. 2. Visualizations of intraoperative segmentation of brain tissue from six
neurosurgery cases. Less than five minutes of user interaction was required for
each segmentation. The segmented brain tissue is shown in white with surface
rendering and the IMRI is texture mapped in planes along the coordinate axes.
This allows ready comparison of the position of the segmented brain and the
IMRI (skin appears bright, brain is gray closely matching the segmented brain
border).
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User Interaction and Computational Requirements Each brain segmentation of
Figure 2 involves the segmentation of the entire 3D IMRI scan of 256x256x60
= 3,932,160 voxels (with voxel size 0.9375x0.9375x2.5mm?.) Such a volume is
acquired in approximately 10 minutes intraoperatively (a second scanning mode
can acquire a 2D image in approximately 2 seconds). Less than five minutes of
user interaction was required for each brain segmentation shown in Figure 2.
On a Sun Microsystems Ultra-10 workstation with a 440MHz UltraSPARC-IIi
CPU and 512MB RAM each brain tissue segmentation (excluding generation of
spatial localization models which requires approximately 200 seconds and can
be done preoperatively and excluding rigid registration which requires approxi-
mately 30 seconds using maximization of mutual information [15]) required less
than 330 seconds to complete. As we have previously described, parallel tissue
classification can achieve excellent speedups [20]. On a Sun Microsystems Ultra-
80 server with 4 x 450MHz UltraSPARC-IT CPUs and 2GB RAM, each brain
tissue segmentation required less than 130 seconds to complete. This can be
compared to a typical manual segmentation that can take 1800-3600 seconds
and has significantly less reproducibility.

3.2 Intraoperative Segmentation for Liver Cryotherapy

(a) Segmentation (b) IMRI (¢) Tumor localization (d) Liver localization

Fig. 3. IMRI of the liver and the segmentation of the liver and tumor. Three of
the feature channels used to carry out the segmentation shown in (a) are shown
in (b), (c) and (d).

Figure 3 shows IMRI of the liver and the segmentation of the liver and
tumor. Intraoperative MRI has been used to guide percutaneous cryotherapy of
liver tumors [21]. This figure illustrates the spatial localization of liver and tumor
from a 3D volumetric preoperative segmentation (not shown) and indicates that
isointense but different structures in the IMRI can be successfully segmented in
the joint feature space formed with the IMRI intensity and spatial localization
information.

3.3 Intraoperative Monitoring of Cryotherapy Iceball Formation

Figure 4 shows the intraoperative appearance of an iceball during cryotherapy of
another case. Our intraoperative segmentation algorithm allowed rapid, robust
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Fig. 4. Intraoperative imaging of iceball formation. The lesion is bright in the
first image and the iceball grows to cover it. The iceball appears as a dark
region in the liver, which grows while freezing and shrinks during thawing. The
intraoperative iceball segmentation obtained with our method is indicated by
the white outline.

and straightforward segmentation of the iceball. By comparing the segmentation
of the iceball with a preoperative plan of the desired iceball size and location
the therapy progress can be monitored quantitatively.

3.4 Validation Experiments

Key parameters in our segmentation algorithm are the prototype voxels which
implicitly model the probability distribution of the intensities of tissues which
are to be segmented and the alignment of the spatial localization models which
form part of the feature space in which the tissue classification takes place. We
studied the effect of variations in these key parameters upon the segmentation.

Reproducibility: Variations in Prototype Selection Table 1 records the
variability of brain segmentation from a single neurosurgery case when the set of
prototype voxels modeling the tissue characteristics is varied. The set of proto-
types used for the segmentation was subsampled by randomly selecting 90% of
the prototypes 100 times. Each of the 100 subsets simulates different user proto-
type selection. Each subset was used to segment the IMRI using the new method
and the volume of the brain segmentation was recorded. The mean, minimum
and maximum volume recorded are shown in the table along with the coefficient
of variation (C.V.) of the volume of segmentation (which is less than 1%). This
indicates the segmentation is extremely robust in the presence of variability in
the prototype voxel selection.

Minimum volume Maximum volume Mean volume C.V. (%)
401074 voxels 422440 voxels 414440 voxels  0.97

Table 1. Measures of variability of the volume of the brain (units are voxels) in
repeated segmentations, with different selections of prototype voxels, from brain
IMRI.
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Reproducibility: Variations in Preoperative Model Alignment In order
to determine the influence of the alignment of the preoperative segmentation
upon the intraoperative segmentation, we selected a neurosurgery case and seg-
mented the brain as described above. We then applied a set of translations and
rotations to the preoperative segmentation so that it was no longer correctly
registered to the IMRI to be segmented. For each translation and rotation we
applied our segmentation method and obtained a segmentation of the brain. We
then compared the volume of tissue segmented as brain for each misaligned posi-
tion with that obtained with the correct alignment and recorded the ratio of the
new segmentation volume to the original segmentation volume. The variation
in segmentation with translations along each of the coordinate axes is shown in
Figure 5. Similar results (not shown) were obtained for rotations around each of
the coordinate axes.

Intrapatient registration with maximization of mutual information has a
typical accuracy smaller than one voxel (in this case 0.9375x0.9375x2.5mm?).
The perturbation of the registration of the preoperative segmentation does not
cause a significant change in the intraoperative segmentation until this misalign-
ment reaches around +10 mm, which indicates our intraoperative segmentation
method is robust to misalignment errors and also to errors in the preoperative
segmentation.

Segmented brain volume. Segmented brain volume. Segmented brain volume.
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Fig. 5. Reproducibility of brain tissue segmentation as the spatial localization
model is translated. The low variability in segmentation around the correct align-
ment indicates the segmentation is robust to misregistration and spatial local-
ization errors.

4 Discussion and Conclusion

Our early experience with two liver cases and six neurosurgery cases indicates
that our intraoperative segmentation algorithm is a robust and reliable method
for intraoperative segmentation. It requires little user interaction, is robust to
variation in the parameters that require interaction, and is sufficiently fast to be
used intraoperatively.

The application of our previously described and validated nonrigid registra-
tion algorithm is enabled by intraoperative segmentation establishing the cor-
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responding tissues in the data sets to be aligned. Further work is needed to
characterize the accuracy and robustness of our nonrigid registration for intra-
operative data, especially in the liver.

Intraoperative segmentation adds significantly to the value of intraoperative
imaging. Compared to registration of preoperative images and inspection of in-
traoperative images alone, intraoperative segmentation enables identification of
structures not present in previous images (examples of such structures include
the region of cryoablation or RF treatment area, surgical probes and changes
due to resection), quantitative monitoring of therapy application including the
ability to compare quantitatively with a preoperatively determined treatment
plan and intraoperative surface rendering for rapid 3D interactive visualization.

The contributions of this work are an algorithm for intraoperative segmen-
tation and intraoperative registration, a method for quantitative monitoring of
cryotherapy from real-time imaging, quantitative monitoring of brain tumor re-
section by comparison to a preoperative treatment plan and an extensive val-
idation study assessing the reproducibility of the intraoperative segmentation.
Empirically the algorithm has been found to be robust with respect to imaging
characteristics such as noise and intensity inhomogeneity and robust with respect
to parameter selection. Serial and parallel implementations of the algorithm are
sufficiently fast to be practical in the operating room.

We have evaluated our algorithm with six neurosurgical cases and two liver
cryotherapy cases. Further clinical validation with larger numbers of cases will
be necessary to determine if our new approach succeeds in improving intraopera-
tive navigation and intraoperative therapy delivery and hence improves therapy
outcomes.
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