
Rotations and Translations
of Number Field Sieve Polynomials

Jason E. Gower�

CERIAS and Department of Mathematics
Purdue University, West Lafayette

IN 47907-2067, USA
jgower@math.purdue.edu

Abstract. We present an algorithm that finds polynomials with many
roots modulo many primes by rotating candidate Number Field Sieve
polynomials using the Chinese Remainder Theorem. We also present an
algorithm that finds a polynomial with small coefficients among all inte-
gral translations of X of a given polynomial in ZZ[X]. These algorithms
can be used to produce promising candidate Number Field Sieve poly-
nomials.

1 Introduction

The Number Field Sieve (NFS) [1] is the fastest (asymptotically) known general
integer factorization algorithm. When attempting to factor an integer N with
NFS, we must first choose a polynomial f ∈ ZZ[X] with a known root m modulo
N . When f has many roots modulo many small primes, then we say f has good
root properties. If the magnitude of values taken by f are small, then we say
that f has small size. It can be shown (heuristically) that if f has good root
properties and has small size, then NFS should run faster than when f does not
have these properties.

Procedures for generating candidate NFS polynomials with good root prop-
erties and small size are described in [2]. Specifically, through the use of rotations
and translations, we hope to generate polynomials with better than average root
properties and size. In Sect. 2 we recall some basic facts about homogeneous
polynomials and their roots modulo primes. In Sect. 3 we then recall the stan-
dard method for generating candidate NFS polynomials. In Sect. 4 we describe a
method for rotating candidate NFS polynomials to generate new candidate NFS
polynomials with many distinct roots modulo many primes. We discuss how to
find potentially small polynomials among polynomials of the form f(X − α),
where f ∈ ZZ[X] is fixed and α ∈ ZZ in Sect. 5. We present an algorithm in Sect.
6 that finds candidate NFS polynomials with good root properties and small
size based on the methods discussed in Sect. 3-5. Finally, we conclude in Sect.
7 with a discussion of how “good” candidate NFS polynomials generated by the
algorithms presented in this paper should be.
� This work was supported in part by grants from the CERIAS Center at Purdue

University and from the Lily Endowment Inc.

C.S. Laih (Ed.): ASIACRYPT 2003, LNCS 2894, pp. 302–310, 2003.
c© International Association for Cryptologic Research 2003

Rotations and Translations of Number Field Sieve Polynomials 303

2 Root Properties

Suppose f = adX
d + · · · + a0 ∈ ZZ[X] is a polynomial of degree d and p ∈ ZZ

is prime. The homogenization of f is the polynomial F ∈ ZZ[X, Y] defined by
F (X, Y) = Y df(X/Y). A co-prime pair (a, b) is a root of F modulo p if F (a, b) ≡
0 mod p. We shall sometimes refer to (a, b) as simply a root of F if the prime p
is understood. Thinking of (a, b) as a point on the projective line IP1(IFp), we
follow the language of [2] and divide roots into two classes:

– Projective Roots: A root (a, b) where p divides b is called projective. Note
that F will have projective roots if and only if p divides ad.

– Regular Roots: A root (a, b) where p does not divide b is called regular.
Here, (a, b) is a regular root iff f(ab−1) ≡ 0 mod p, where b−1 is calculated
in IFp. A regular root (a, b) with p | a is sometimes called a zero root.

3 Base-m Method

Given positive integers m, N with m ≤ N , it is not difficult to find a polynomial
f ∈ ZZ[X] such that f(m) ≡ 0 mod N . A well-known method for doing this
is the base-m method described in [1]. If N = adm

d + · · · + a0 is the base-m
representation of N , where 0 ≤ ai < m, then by taking f(X) = adX

d + · · ·+ a0
we have f(m) ≡ 0 mod N . Given d, the degree of f can be chosen to be d by
taking ⌊

N
1

d+1

⌋
< m ≤

⌊
N

1
d

⌋

and constructing f as above. Furthermore, suppose we want to construct a poly-
nomial with leading coefficient L and degree d. If 1 ≤ L < N1/(d+1) − 1, then it
is not hard to see that a base-m polynomial with

⌊(
N

L + 1

) 1
d

⌋
< m ≤

⌊(
N

L

) 1
d

⌋

will have leading coefficient ad = L.
Finally, we can arrange −�m/2� < ai ≤ �m/2� for 0 ≤ i < d by using the

transformation

if ai > �m/2� , then
ai ← ai −m

ai+1 ← 1 + ai+1

for i = 0, 1, . . . , d−1. It should be noted that this transformation may change the
leading coefficient. This happens precisely when ad−1 > �m/2�, after applying
the transformation. If ad−1 ≈ �m/2�, then |ad−1| ≈ |ad−1 −m| so we can leave
ad−1 alone; otherwise, we can change the value of m and start over.

We summarize the above with the following algorithm:

304 Jason E. Gower

Algorithm 1. (Modified base-m method) Let i, d, L, and N be positive integers
with 1 ≤ L < N1/(d+1) − 1. This algorithm attempts to find an integer m and
a polynomial f = adX

d + · · · + a0 ∈ ZZ[X] with ad = L and |aj | ≤ m/2. for
0 ≤ j < d − 1, such that f(m) ≡ 0 mod N . The parameter i allows the user to
vary the value of m.

1. [Generate m] Set m← i +
⌊(

N
L+1

) 1
d

⌋
. If m >

⌊(
N

L−1

) 1
d

⌋
, then print “i is

too big” and terminate the algorithm.
2. [Build base-m representation of N] Set temp← N . For j = 0, . . . , d, do

aj ← temp mod m
temp← (temp− aj)/m.

3. [Adjust aj] For j = 0, 1, . . . , d− 2, do
If aj > �m/2�, then

aj ← aj −m
aj+1 ← 1 + aj+1.

4. [Build polynomials] Set
f1(X)← adX

d + · · ·+ a0.
If ad−1 > �m/2� then set

ad−1 ← ad−1 −m
ad ← 1 + ad

f2(X)← adX
d + · · ·+ a0;

otherwise set
f2(X)← f1(X).

5. [Output and Terminate] If the leading coefficient of f2(X) is L, then re-
turn m and f2(X) and terminate the algorithm. Otherwise, if the leading
coefficient of f1(X) is L, then return m and f1(X) and terminate the algo-
rithm. Finally, if neither leading coefficient is L, then print “i is too big”
and terminate the algorithm.

Note that the homogenization of the polynomial generated by Algorithm 1
will have projective roots modulo each prime dividing L.

4 Rotations

Suppose f ∈ ZZ[X] is a polynomial of degree d with root m modulo N . Then
g = f + (brX

r + · · ·+ b0)(X −m), with 0 ≤ r < d, is a polynomial of degree d
(unless r = d−1 and bd−1 = −ad) with root m modulo N . We call the polynomial
brX

r + · · · + b0 a rotation of f . Given a finite set of powers of distinct primes
S, we look for a rotation that yields a polynomial with good root properties
with respect to S. In [2], linear rotations (r = 1) are found using a sieve-like
procedure. We present an algorithm that finds promising higher degree rotations
using the Chinese Remainder Theorem (CRT). The basic idea is to first choose
roots kij mod pei

i . Then for each i find a rotation that yields a polynomial with
roots kij mod pei

i , and finally use CRT to find a single rotation that yields a
polynomial with roots kij for all i, j.

Rotations and Translations of Number Field Sieve Polynomials 305

Suppose S = {pe1
1 , . . . , pes

s }, where pi �= pj unless i = j, and ei ≥ 1 for all
i. For each pi and each 0 ≤ j ≤ r, choose kij such that 0 ≤ kij < pi, kij �= kil

unless j = l, and pi does not divide m−kij . This requires r ≤ pi−2 for all i. Now
set zij = (m− kij)−1f(kij) mod pei

i . If we set g = f +(brX
r + · · ·+ b0)(X −m),

then kij will be a root of g modulo pei
i for 0 ≤ j ≤ r if

brk
r
ij + · · ·+ b1kij + b0 ≡ zij mod pei

i .

To determine the bi modulo pei
i , we must solve the matrix congruence

1 ki0 k2
i0 · · · kr

i0
...

...
...

...
1 kir k2

ir · · · kr
ir

b0
...
br

 ≡

zi0
...
zir

 mod pei

i . (1)

We have chosen the kij so that we may solve this system uniquely. Let
(bi0, . . . , bir)T denote the unique solution vector modulo pei

i . Finally, we solve
the system of linear congruences

bj ≡ b1j modpe1
1

bj ≡ b2j modpe2
2

...
bj ≡ bsj modpes

s

using CRT, for each 0 ≤ j ≤ r.
We now have a polynomial g = f+(brX

r+· · ·+b0)(X−m) such that g(kij) ≡
0 mod pei

i for 0 ≤ j ≤ r and 1 ≤ i ≤ s. We should note that the coefficients of g
may be larger than the coefficients of f . Explicitly, if f = adX

d + · · ·+ a0, then
g = cdX

d + · · ·+ c0, where

ci =

ad + bd−1 if i = d
ai + bi−1 −mbi if 1 ≤ i < d
a0 −mb0 if i = 0

, (2)

where bi = 0 if i > r.
Now let C =

∏s
i=1 pei

i . We would usually take the bi as the least positive
residue modulo C, but it should be noted that we may as well take bi + lC,
where l ∈ ZZ, if it suits our purposes. In the best case scenario, we can choose
the bi so that g is a skewed polynomial with coefficients that grow geometrically
(roughly) from cd to c0. If this is not the case, then it may be possible by using
a suitable translation (see Sect. 5). Finally we note that if f has many roots
modulo many primes, then its homogenization F will have many regular roots
modulo many primes.

We summarize this discussion with the following algorithm:

Algorithm 2. (Rotation) Let f ∈ ZZ[X] be a polynomial of degree d, with root
m modulo N . Let S be a finite set of powers of distinct primes S = {pe1

1 , . . . , pes
s }

306 Jason E. Gower

and 0 ≤ r < d. This algorithm finds a polynomial g ∈ ZZ[X] with root m modulo
N and at least r + 1 distinct roots modulo each pei

i ∈ S. If r = d− 1, then the
degree of g will be either d or d− 1; otherwise the degree of g will be d.

1. [Check parameters] Order the primes so that p1 < p2 < · · · < ps. If r >
p1 − 2, then print “Either r is too big or p1 is too small” and terminate the
algorithm; otherwise proceed to the next step.

2. [Pick roots and build zij] For i = 1, . . . , s, do
For j = 0, . . . , r, do

kij ← j
zij ← (m− kij)−1f(kij) mod pei

i .
If kij ≡ m mod pei

i for some j, then set kij ← r + 1 and recalculate zij .
Note: there will be at most one such j for each i.

3. [Build bij] For i = 1, . . . , s, calculate (bi0, . . . , bir)T from (1).
4. [Build bi using CRT] For j = 0, 1, . . . , r, solve

bj ≡ b1j modpe1
1

bj ≡ b2j modpe2
2

...
bj ≡ bsj modpes

s

using CRT.
5. [Build g(X)] Define ci as in (2) and set

g(X)← cdX
d + · · ·+ c0.

6. [Output and Terminate] Return g(X) and {kij} and terminate the algo-
rithm.

5 Translations

Let us fix a polynomial f(X) = adX
d + · · ·+ a0 ∈ ZZ[X] with ad �= 0. Note that

for α ∈ ZZ, the roots of f(X−α) ∈ ZZ[X] will just be the roots of f translated by
α. However, the coefficients of f(X − α) will not (in general) be the coefficients
of f . So f(X −α) has the same root properties as f , but perhaps differs in size.
We now examine the effect of translation on the coefficients of f .

We define Tf (U) = {f(X − α) |α ∈ U}, where we will be interested in the
cases U = ZZ, IR. Also, fix ω = (ω0, . . . , ωd) ∈ IRd+1 and let

‖adX
d + · · ·+ a0‖ω,∞ = max

0≤i≤d
|ωiai|

‖adX
d + · · ·+ a0‖ω,k =

(
d∑

i=0

|ωiai|k
) 1

k

We will use the more covenient notation ‖ · ‖∞ and ‖ · ‖k and drop ω from the
notation. Since polynomials with small coefficients tend to have small size, we
will refer to ‖f‖∞ as the size of f . For our fixed f and ω, we seek h ∈ Tf (ZZ)
with minimal size. The following proposition is the first step in finding such an h.

Rotations and Translations of Number Field Sieve Polynomials 307

Proposition 1. Fix f ∈ ZZ[X] with deg(f) = d, and ω ∈ IRd+1. Let k ≥ 1 and
take gk, h ∈ Tf (ZZ) with

‖gk‖k = min
p∈Tf (ZZ)

‖p‖k

‖h‖∞ = min
p∈Tf (ZZ)

‖p‖∞ .

Then
‖gk‖∞ ≤ (d + 1)

1
k ‖h‖∞ .

Proof. Let gk = bdX
d + · · ·+ b0, and h = cdX

d + · · ·+ c0. It is easy to see that
‖gk‖∞ ≤ ‖gk‖k. Let rk = ‖gk‖k and suppose that |ωici| < rk/(d + 1)

1
k for all i.

Then

‖h‖kk =
d∑

i=0

|ωici|k < (d + 1)
(

rk

(d + 1)
1
k

)k

= rk
k = ‖gk‖kk

which implies that ‖h‖k < ‖gk‖k, a contradiction since ‖gk‖k is minimal in
Tf (ZZ). So there must be some i such that |ωici| ≥ rk/(d + 1)

1
k . But this means

that ‖h‖∞ ≥ rk/(d + 1)
1
k , which immediately implies ‖gk‖k ≤ (d + 1)

1
k ‖h‖∞.

Proposition 1 gives us the tool we need to find h.

Corollary 1. If k > ln (d+1)
ln (1+‖f‖−1

∞)
, then ‖gk‖∞ = ‖h‖∞.

Proof. For k ≥ 1, Proposition 1 says that

0 ≤ ‖gk‖∞ − ‖h‖∞ ≤ ((d + 1)
1
k − 1)‖h‖∞ .

But since ‖h‖∞ ≤ ‖f‖∞, we have

0 ≤ ‖gk‖∞ − ‖h‖∞ ≤ ((d + 1)
1
k − 1)‖f‖∞ .

Now ((d + 1)
1
k − 1)‖f‖∞ → 0 as k → ∞. But since ‖gk‖∞ − ‖h‖∞ is a

nonnegative integer, as soon as ((d + 1)
1
k − 1)‖f‖∞ < 1, we must have ‖gk‖∞ =

‖h‖∞.

Notice that although Corollary 1 gives us a way of finding h with minimal
size in Tf (ZZ) in theory, there is little hope of using this result in practice. In
fact, lnx ≈ x − 1 when x ≈ 1, so the denominator of the lower bound will be
approximately ‖f‖−1

∞ , when ‖f‖∞ is large. If we were to try to use Corollary 1,
we would end up having to find the critical points of a degree kd polynomial,
as we shall see shortly, which is clearly unreasonable when k is very large. With
that said, Proposition 1 says that even for small k we can generate a polynomial
with size equal to a rather small constant times ‖h‖∞. With this in mind, let us
now consider how we can find gk as defined in Proposition 1. Observe that

308 Jason E. Gower

f(X − α) =
∑d

i=0 ai(X − α)i

=
∑d

i=0 ai

∑i
j=0

(
i
j

)
(−α)i−jXj

=
∑d

j=0

[∑d
i=j ai

(
i
j

)
(−α)i−j

]
Xj

=
∑d

j=0 pj(α)Xj ,

where

pj(α) =
d∑

i=j

ai

(
i
j

)
(−α)i−j .

Now define mk(α) =
∑d

i=0 (ωipi(α))k and change variables to get mk(X) =∑d
i=0 (ωipi(X))k. Let k be even. Then mk(X) is a polynomial of degree kd, with

mk(X) ≥ 0 and mk(α) = ‖f(X−α)‖kk. Finding the value in ZZ at which mk(X)
achieves its absolute minimum is a straightforward task for small k.

We summarize this discussion with the following algorithm:

Algorithm 3. (Translation) Let f ∈ ZZ[X] be a polynomial of degree d, let k
be a positive even integer and let ω ∈ IRd+1. This algorithm finds a polynomial
gk ∈ ZZ[X] and αk ∈ ZZ, with gk(X) = f(X − αk) and ‖gk‖∞ less than or
equal to (d + 1)

1
k times the size of a polynomial in Tf (ZZ) of minimal size. In

the process of computing gk, the algorithm will compute the critical points of
a polynomial of degree kd. If k ≥ κ :=

⌈
ln (d+1)

ln (1+‖f‖−1
∞)

⌉
, then the algorithm will

instead compute the critical points of a polynomial of degree κd, and gk will
have minimal size in Tf (ZZ).

1. [Generate κ] Set
κ←

⌈
ln (d+1)

ln (1+‖f‖−1
∞)

⌉

minimal?← false.
2. [Is k too big?] If k ≥ κ, then set

k ← κ if κ is even;
otherwise set

k ← κ + 1
minimal?← true.

3. [Generate translate coefficients] For j = 0, 1, . . . , d, set

pj(X)←∑d
i=j ai

(
i
j

)
(−X)i−j .

4. [Build mk(X)] Set
mk(X)← (ωdpd(X))k + · · ·+ (ω0p0(X))k.

5. [Find critical numbers] Find αk1, . . . , αkl such that m′
k(αki) = 0 for all i.

6. [Identify αk] Find αk ∈ {�αki�, αki�}li=1 such that
mk(αk) ≤ mk(�αki�), mk(αki�) for all i.

7. [Build gk] Set gk ← f(X − αk).
8. [Output and Terminate] Return αk and gk. If minimal? = true, print “This

polynomial has minimal size in Tf (ZZ).” In either case, terminate the algo-
rithm.

Rotations and Translations of Number Field Sieve Polynomials 309

6 Candidate NFS Polynomials

We can use Algorithms 1-3 to generate candidate NFS polynomials. More pre-
cisely, let us fix a positive integer N that we wish to factor and d ≥ 1. Pick a
suitable leading coefficient L, divisible by many small primes. We use Algorithm
1 to generate a polynomial f1 of degree d with leading coefficient L and root m
modulo N . We can then use Algorithm 2 to rotate f1 by a polynomial of degree
r = d − 2. This generates a polynomial f2 with at least d − 1 roots modulo
each element in some fixed set S of small powers of distinct primes. Also, f2
has leading coefficient L and root m modulo N . Finally, we use Algorithm 3
with a suitable choice for ω to produce a polynomial f3 which has all the root
properities as f2, with perhaps minimal size in Tf2(ZZ).

At this point, we have a candidate NFS polynomial with good root properties
and small size. However, if this polynomial is not satisfactory for some reason,
adjustments can be made to generate more polynomials. For example, we may
generate many candidate NFS polynomials by varying i and L in Algorithm
1, S in Algorithm 2, or ω in Algorithm 3. The following algorithm combines
Algorithms 1-3 to produce candidate NFS polynomials:

Algorithm 4. (NFS candidate polynomial) Let N ≥ 1 be a number that we
wish to factor, L, d, and i be positive integers, S = {pe1

1 , . . . , pes
s } be a finite set

of small powers of distinct primes, and ω ∈ IRd+1. This algorithm attempts to
produce a candidate NFS polynomial with at least d − 1 roots modulo every
pei

i ∈ S.

1. [Generate a base-m polynomial] Generate m and f1 from Algorithm 1, us-
ing inputs i, d, L and N . If Algorithm 1 returns an error message, print the
error message and terminate the algorithm.

2. [Rotate f1] Generate f2 and {kij} from Algorithm 2, using inputs f1, d, m,
N , S, and r = d−2. If Algorithm 2 returns an error message, print the error
message and terminate the algorithm.

3. [Translate f2] Generate f3 and α from Algorithm 3, using inputs f2, d, and
ω. If Algorithm 3 generates a message, print the message.

4. [Translate kij] For all i, j set:
kij ← kij + α.

5. [Output and Terminate] Return f3 and {kij} and terminate the algorithm.

7 Conclusion

One may wonder how “good” candidate NFS polynomials generated by Algo-
rithm 4 will be. Let f ∈ ZZ[X] have degree d and F ∈ ZZ[X, Y] be the homoge-
nization of f . One measure of “goodness” is

αB(F) =
∑
p≤B

(
1− qp

p

p + 1

)
ln p

p− 1

310 Jason E. Gower

where the sum is over all well-behaved primes (primes that do not divide the
discriminant of f) less than or equal to some bound B, and qp is the number
of roots (regular and projective) of F modulo p, as defined in [2]. Heuristically
and roughly speaking, we expect a typical value F (x, y) to behave like a random
integer of size F (x, y) · eαB(F). So the more negative αB(F) is, the “better” F
should be. But clearly αB(F) will be more negative whenever qp is large for
small primes p. Now 0 ≤ qp ≤ d + 1. However, by using Algorithm 4 we can
force qp ≥ d for each pi|L with pei

i ∈ S. If S = {pe1
1 , . . . , pes

s } with p1 < p2 <
· · · < ps ≤ B, with r ≤ p1 − 2, then we will have a polynomial F which very
likely has αB(F)� 0. Finally, by adjusting the coefficients after the CRT-step,
or by using Algorithm 3, one hopefully has a suitable polynomial for factoring
N using the Number Field Sieve. Future work will be devoted to identifying
optimal parameters (i.e. L,S, ω) for a given N .

Acknowledgements

The author wishes to thank Samuel S. Wagstaff, Jr. for valuable conversations
concerning this work, as well as the anonymous referees for their useful comments
on the paper.

References

1. A.K. Lenstra and H.W. Lenstra, Jr., editors. The Development of the Number Field
Sieve, volume 1554 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1993.

2. Brian Murphy. Polynomial Selection for the Number Field Sieve Integer Factorisa-
tion Algorithm. PhD thesis, Australian National University, July 1999.

	1 Introduction
	2 Root Properties
	3 Base-m Method
	4 Rotations
	5 Translations
	6 Candidate NFS Polynomials
	7 Conclusion
	References

