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Abstract. We introduce a new cryptographic tool: multiset hash func-
tions. Unlike standard hash functions which take strings as input, mul-
tiset hash functions operate on multisets (or sets). They map multisets
of arbitrary finite size to strings (hashes) of fixed length. They are incre-
mental in that, when new members are added to the multiset, the hash
can be updated in time proportional to the change. The functions may
be multiset-collision resistant in that it is difficult to find two multisets
which produce the same hash, or just set-collision resistant in that it is
difficult to find a set and a multiset which produce the same hash.
We demonstrate how set-collision resistant multiset hash functions make
an existing offline memory integrity checker secure against active ad-
versaries. We improve on this checker such that it can use smaller time
stamps without increasing the frequency of checks. The improved checker
uses multiset-collision resistant multiset hash functions.

Keywords: multiset hash functions, set-collision resistance, multiset-
collision resistance, incremental cryptography, memory integrity checking

1 Introduction

Standard hash functions, such as SHA-1 [11] and MD5 [12], map strings of
arbitrary finite length to strings (hashes) of a fixed length. They are collision-
resistant in that it is difficult to find different input strings which produce the
same hash. Incremental hash functions, described in [2], have the additional
property that, given changes to the input string, the computation to update
the hashes is proportional to the amount of change in the input string. For a
small change, incremental hashes can be quickly updated, and do not need to
be recalculated over the entire new input.

Multiset hash functions are a novel cryptographic tool, for which the order-
ing of the inputs is not important. They map multisets of arbitrary finite size
to hashes of fixed length. They are incremental in that, when new members
are added to the multiset, the hash can be quickly updated. Because multiset
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hash functions work on multisets, we introduce definitions for multiset-collision
resistance and set-collision resistance.

In particular, we introduce four multiset hash functions, each with its own
advantages. MSet-XOR-Hash uses the XOR operation and is very efficient; how-
ever, it uses a secret key and is only set-collision resistant. MSet-Add-Hash
uses addition modulo a large integer and, thus, is slightly less efficient than
MSet-XOR-Hash; MSet-Add-Hash also uses a secret key but it is multiset-collision
resistant. MSet-Mu-Hash uses finite field arithmetic and is not as efficient as
the other two hash functions; however, MSet-Mu-Hash is multiset-collision re-
sistant, and unlike the other two hash functions, does not require a secret key.
MSet-VAdd-Hash is more efficient than MSet-Mu-Hash; it is also multiset-collision
resistant, and does not use a secret key, but the hashes it produces are signifi-
cantly longer than the hashes of the other functions.

The proven security of MSet-XOR-Hash and MSet-Add-Hash is quantitative.
We reduce the hardness of finding collisions to the hardness of breaking the
underlying pseudorandom functions. The proven security of MSet-Mu-Hash is in
the random oracle model and is based on the hardness of the discrete logarithm
problem. The proven security of MSet-VAdd-Hash is also in the random oracle
model and is based on the hardness of the worst-case shortest vector problem.

We demonstrate how multiset hash functions enable secure offline integrity
checkers for untrusted memory. Checking the integrity of memory is important
in building secure processors which can facilitate software licensing and Digital
Rights Management (DRM) [13,14].

The paper is organized as follows. Section 2 describes related work and sum-
marizes our contributions. Multiset hash functions are defined in Section 3.
MSet-XOR-Hash and MSet-Add-Hash are described in Section 4; MSet-Mu-Hash
and MSet-VAdd-Hash are described in Section 5. Our application of multiset
hash functions to checking the integrity of memory is detailed in Section 6. Sec-
tion 7 concludes the paper. Appendices A, B, C, and D prove the security of our
multiset hash functions. Appendix E proves the security of our memory integrity
checker.

2 Related Work and Our Contributions

The main contribution of our work is the introduction of multiset hash functions
together with the definition of multiset and set collision resistance. The second
contribution is the development of a general theory leading to Theorem 1 from
which we derive set-collision resistance for MSet-XOR-Hash, a multiset hash based
on the XOR operation (addition modulo 2), and multiset-collision resistance for
MSet-Add-Hash, a multiset hash based on addition modulo a large integer. The
theory generalizes the results in [3], where an XOR-based scheme is used for
message authentication. Our theory holds for addition modulo any integer.

Both MSet-XOR-Hash and MSet-Add-Hash use a secret key. The third contri-
bution is Theorem 2 that proves multiset-collision resistance for MSet-Mu-Hash,
a multiset hash function based on multiplication in a finite field; MSet-Mu-Hash
does not use a secret key. The proof’s basic line of thought is from [4] which
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develops message hashing based on multiplication in a finite field. The fourth
contribution, leading to MSet-VAdd-Hash, is Theorem 3 proving that we may re-
place multiplication in the finite field by vector addition modulo a large integer.
In [4], a similar theorem is used for message hashing. Our theorem (and their
theorem) follows directly from application of Ajtai’s theorem [1,8].

Our final significant contribution is that we introduce an offline checker that
is cryptographically secure against active adversaries, and which improves on
the performance of the original offline checker in [6].

3 Multiset Hash Functions

This section describes multiset hash functions. We first introduce multisets. We
refer to a multiset as a finite unordered group of elements where an element can
occur as a member more than once. All sets are multisets, but a multiset is not
a set if an element appears more than once. Let M be a multiset of elements of
a countable set B. The number of times b ∈ B is in the multiset M is denoted
by Mb and is called the multiplicity of b in M . The sum of all the multiplicities
of M is called the cardinality of M . Multiset union combines two multisets into
a multiset in which elements appear with a multiplicity that is the sum of their
multiplicities in the initial multisets. We denote multiset union by ∪ and assume
that the context in which ∪ is used makes clear to the reader whether we mean
set union or multiset union.

Definition 1. Let (H, +H,≡H) be a triple of probabilistic polynomial time (ppt)
algorithms. That triple is a multiset hash function if it satisfies:

compression: H maps multisets of B into elements of a set with cardinality
≈ 2m, where m is some integer. Compression guarantees that we can store
hashes in a small bounded amount of memory.

comparability: Since H can be a probabilistic algorithm, a multiset need not
always hash to the same value. Therefore we need ≡H to compare hashes.
The following relation must hold for comparison to be possible:

H(M) ≡H H(M)

for all multisets M of B.
incrementality: We would like to be able to efficiently compute H(M ∪M ′)

knowing H(M) and H(M ′). The +H operator makes that possible:

H(M ∪M ′) ≡H H(M) +H H(M ′)

for all multisets M and M ′ of B. In particular, knowing only H(M) and an
element b ∈ B, we can easily compute H(M ∪ {b}) = H(M) +H H({b}).
As it is, this definition is not very useful, because H could be any constant

function. We need to add some kind of collision resistance to have a useful hash
function. A collision for M ′ is a multiset M �= M ′ such that H(M) ≡H H(M ′).
A multiset hash function is (multi)set-collision resistant if it is computationally
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infeasible to find a (multi)set S of B and a multiset M of B such that the
cardinalities of S and M are of polynomial size in m, S �= M , and H(S) ≡H
H(M). The following definition makes this notion formal.

Definition 2. Let a family F of multiset hash functions (HK , +HK
,≡HK

) be
indexed by a key (seed) K ∈ K. For HK in F , we denote by mK the logarithm
of the cardinality of the set into which HK maps multisets of B, that is mK is
the number of output bits of HK . We define Km as the set of keys K ∈ K for
which mK ≥ m. By A(HK) we denote a probabilistic polynomial time (in mK)
algorithm with oracle access to (HK , +HK

,≡HK
).

The family F satisfies (multi)set-collision resistance if for all ppt algorithms
A(.), any number c, and m large enough (with respect to c)1,

Prob






K ← Km, (S, M)← A(HK) :
S is a (multi)set and M is a multiset of B
such that S �= M and HK(S) ≡HK

HK(M)





< m−c.

Note that because A(HK) is polynomial in mK , we will consider that it
can only output polynomial sized S and M . We are disallowing compact repre-
sentations for multisets that would allow A(.) to express larger multisets (such
compact representations do not lead to a feasible attack in our offline memory
integrity application).

4 Additive Multiset Hash

In this section we give an example of a construction of (multi)set-collision resis-
tant multiset hash functions. Let B = {0, 1}m represent the set of bit vectors
of length m and let M be a multiset of elements of B. Recall that the number
of times b ∈ B is in the multiset M is denoted by Mb and is called the mul-
tiplicity of b in M . Let HK : {0, 1}m+1 → ZZl

n be randomly selected from a
pseudorandom family of hash functions [9]. Let

L ≈ nl ≈ 2m, L ≤ nl, L ≤ 2m,

and define

HK(M) =

[

HK(0, r) +
∑

b∈B

MbHK(1, b) mod n ;
∑

b∈B

Mb mod L ; r

]∣
∣
∣
∣
∣
r←B

,

where r ∈ B is a random nonce2. Notice that the logarithm of the cardinality
mK of the set into which HK maps multisets of B is equal to

mK = log(nl) + log(L) + log(2m) ≈ 3m.
1 The probability is taken over a random selection of K in Km (denoted by K ← Km)

and over the randomness used in the ppt algorithm A(HK) (denoted by (S, M) ←
A(HK)).

2 Note, the set from which r is taken could be smaller than B.
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We say two triples [h, c, r] and [h′, c′, r′] are equivalent, [h; c; r] ≡HK
[h′; c′; r′],

if and only if h−HK(0, r) = h′−HK(0, r′) modulo n and c = c′ modulo L. Notice
that checking whether HK(M) ≡HK

HK(M ′) is efficient. We define addition of
two triples [h; c; r] +HK

[h′; c′; r′] by the result of the computation

[HK(0, r′′) + h−HK(0, r) + h′−HK(0, r′) mod n ; c + c′ mod L ; r′′]|r′′←B .

Clearly, HK(M ∪M ′) ≡HK
HK(M) +HK

HK(M ′), hence, (HK , +HK
,≡HK

) is
a multiset hash. The proof of the next theorem is in Appendix A.

Theorem 1. It is computationally infeasible to find a multiset M with multi-
plicities < n and a multiset M ′ such that the cardinalities of M and M ′ are
polynomial sized in m, M �= M ′, and HK(M) ≡HK

HK(M ′).

As an example we consider n = 2 and l = m. Then the condition that a
multiset M has multiplicities < 2 simply means that M is a set. This leads to
set-collision resistance. Furthermore notice that addition modulo 2 defines xor ⊕.

Corollary 1. (MSet-XOR-Hash) The multiset hash corresponding to

HK(M) =

[

HK(0, r)⊕
⊕

b∈B

MbHK(1, b) ;
∑

b∈B

Mb mod 2m ; r

]∣
∣
∣
∣
∣
r←B

,

where HK : {0, 1}×B → ZZm
2 is randomly selected from a pseudorandom family

of hash functions, is set-collision resistant.

Notice that HK(M) keeps track of the cardinality of M . If this were not the
case then HK(S) and HK(M) are equivalent for any S and M with Sb = Mb

modulo n = 2 for b ∈ B. This would contradict set-collision resistance. Also
notice that r ← B is randomly chosen. If r was a fixed known constant, then
knowledge of n tuples [M i ; HK(M i)] reveals n vectors

⊕

b∈B

M i
bHK(1, b) ∈ ZZm

2 .

If n = 2m then with high probability these n vectors span the vector space ZZm
2 .

This means that each vector in ZZm
2 can be constructed as a linear combination

of these n vectors [4]:

n⊕

i=1

ai ·
(
⊕

b∈B

M i
bHK(1, b)

)

=
⊕

b∈B

(
n⊕

i=1

aiM
i
b

)

HK(1, b).

Hence, a polynomial sized collision can be constructed for any polynomial sized
M .

In Appendix B we show that for n exponentially large in m, we may remove
the cardinality

∑
b∈B Mb from the scheme altogether. By taking l = 1 and

L = n = 2m we obtain the next corollary.
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Corollary 2. (MSet-Add-Hash) The multiset hash corresponding to

HK(M) =

[

HK(0, r) +
∑

b∈B

MbHK(1, b) mod 2m ; r

]∣
∣
∣
∣
∣
r←B

,

where HK : {0, 1}×B → ZZ2m is randomly selected from a pseudorandom family
of hash functions, is multiset collision resistant.

The main difference between the MSet-XOR-Hash and MSet-Add-Hash is bi-
nary addition without and with carry respectively. This leads to either set col-
lision resistance or multiset collision resistance.

In Appendix B we show that it is possible to replace the random nonce r
by a counter that gets incremented on each use of HK . This removes the need
for a random number generator from the scheme. Moreover, shorter values can
be used for r as long as the key is changed when r overflows; this reduces the
size of the hash. Also if the weighted sum of the hashes HK(1, b) in HK(M) is
never revealed to the adversary then we can remove HK(0, r) from the scheme
altogether. For example, in the case where the weighted sums are encrypted by
using a pseudorandom family of permutations (see Corollary 4 in Appendix B).

5 Multiplicative Multiset Hash

A multiset-collision resistant multiplicative multiset hash can be defined as fol-
lows. Let q be a large prime power and consider the computations in the field
GF (q). Let H : B → GF (q) be a poly-random function [9], that is, no polyno-
mial time (in the logarithm of q) algorithm with oracle access H can distinguish
between values of H and true random strings, even when the algorithm is per-
mitted to select the arguments to H (in practice one would use MD5 [12] or
SHA1 [11]). We define

H(M) =
∏

b∈B

H(b)Mb , (1)

≡H to be equal to =, and +H to be multiplication in GF (q).
Clearly, (H, +H,≡H) is a multiset hash. An advantage of the scheme is that

we do not need a secret key. Unfortunately it relies on finite field arithmetic,
which makes it too costly for some applications.

The proof of the following theorem is given in Appendix C, where we also
define the discrete log (DL) assumption which says that for random y ∈ GF (q)
and generator g ∈ GF (q), it is computationally infeasible to find x such that
gx = y (x is called the discrete log of y).

Theorem 2. (MSet-Mu-Hash) Under the DL assumption, the family3 of multi-
set hash functions, (H, +H,≡H), as defined in (1), is multiset collision resistant.

3 The family is seeded by GF (q).
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Under certain assumptions we may replace multiplication in GF (q) by ad-
dition modulo a large number. Even though the number of output bits of the
resulting multiset hash needs to be much larger (since it is based on ‘weaker’
assumptions), the overall solution becomes more efficient since no finite field
arithmetic is needed. Let H : B → ZZl

n, n = 2
√

m, l =
√

m, be a poly-random
function. Now, we define

H(M) =
∑

b∈B

MbH(b) mod n, (2)

≡H to be equal to =, and +H to be vector addition modulo n. See Appendix D
for the proof of the next theorem and the definition of the worst-case shortest
vector (SV) problem.

Theorem 3. (MSet-VAdd-Hash) By assuming that the SV problem is infeasible
to solve in polynomial time, the family4 of multiset hash functions, (H, +H,≡H),
as defined in (2), is multiset collision resistant.

Remark. Because H can be evaluated with oracle access to H, Theorems 2 and 3
still hold for a stronger form of multiset-collision resistance, in which it is com-
putationally infeasible for an adversary with oracle access to H (instead of H)
to find a collision. This is what allows to use a publicly available H.

6 Integrity Checking of Random Access Memory

We now show how our multiset hash functions can be used to build secure offline
integrity checkers for memory. Section 6.1 explains the model, and Section 6.2
shows our offline checker. Our implementation of this checker in the AEGIS
secure processor [13] is described in [14,7].

6.1 Model

Figure 1 illustrates the model we use. There is a checker that keeps and maintains
some small, fixed-sized, trusted state. The untrusted RAM (main memory) is
arbitrarily large. The finite state machine (FSM) generates loads and stores and
the checker updates its trusted state on each FSM load or store to the untrusted
RAM. The checker uses its trusted state to verify the integrity of the untrusted
RAM. The trusted computing base (TCB) consists of the FSM, and the checker
with its trusted state. For example, the FSM could be a processor. The checker
would be special hardware that is added to the processor to detect tampering in
the external memory.

The checker checks if the untrusted RAM behaves correctly, i.e. like valid
RAM. RAM behaves like valid RAM if the data value that the checker reads from
a particular address is the same data value that the checker had most recently
4 The family is seeded by ZZl

n.
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load

FSM checker untrusted RAM

write

read
trusted
state

store

Fig. 1. Model

written to that address. In our model, the untrusted RAM is assumed to be
actively controlled by an adversary. The untrusted RAM may not behave like
valid RAM if the RAM has malfunctioned because of errors, or if it has been
somehow altered by the adversary.

For this problem, a simple solution such as calculating a message authentica-
tion code (MAC) of the data value and address, writing the (data value, MAC)
pair to the address, and using the MAC to check the data value on each read,
does not work. The approach does not prevent replay attacks: an adversary can
replace the (data value, MAC) pair currently at an address with a different pair
that was previously written to the address. The essence of an offline checker
is that a “log” of the sequence of FSM operations is maintained in fixed-sized
trusted state in the checker.

6.2 Offline Checker

Figure 2 shows the basic put and get operations that are used internally in the
checker. Figure 3 shows the interface the FSM calls to use the offline checker to
check the integrity of the memory.

In Figure 2, the checker maintains two multiset hashes and a counter. In
memory, each data value is accompanied by a time stamp. Each time the checker
performs a put operation, it appends the current value of the counter (a time
stamp) to the data value, and writes the (data value, time stamp) pair to mem-
ory. When the checker performs a get operation, it reads the pair stored at
an address, and, if necessary, updates the counter so that it is strictly greater
than the time stamp that was read. The multiset hashes are updated (+H) with
(a, v, t) triples corresponding to the pairs written or read from memory.

Figure 3 shows how the checker implements the store-load interface. To
initialize the RAM, the checker puts an initial value to each address. When the
FSM performs a store operation, the checker gets the original value at the
address, then puts the new value to the address. When the FSM performs a
load operation, the checker gets the original value at the address and returns
this value to the FSM; it then puts the same value back to the address. To
check the integrity of the RAM at the end of a sequence of FSM stores and
loads, the checker gets the value at each address, then compares WriteHash

and ReadHash. If WriteHash is equal to ReadHash, the checker concludes
that the RAM has been behaving correctly.



196 Dwaine Clarke et al.

The checker’s fixed-sized state is:

– 2 multiset hashes: WriteHash and ReadHash. Initially both hashes are 0.
– 1 counter: Timer. Initially Timer is 0.

put(a, v) writes a value v to address a in memory:
1. Let t be the current value of Timer. Write (v, t) to a in memory.
2. Update WriteHash: WriteHash +H= hash(a, v, t).

get(a) reads the value at address a in memory:
1. Read (v, t) from a in memory.
2. Update ReadHash: ReadHash +H= hash(a, v, t).
3. Timer = max(Timer, t + 1).

Fig. 2. put and get operations

Because the checker checks that WriteHash is equal to ReadHash, sub-
stitution (the RAM returns a value that is never written to it) and replay (the
RAM returns a stale value instead of the one that is most recently written) at-
tacks on the RAM are prevented. The purpose of the time stamps is to prevent
reordering attacks in which RAM returns a value that has not yet been written
so that it can subsequently return stale data. Suppose we consider the put and
get operations that occur on a particular address as occurring on a timeline.
Line 3 in the get operation ensures that, for each store and load operation,
each write has a time stamp that is strictly greater than all of the time stamps
previously read from memory. Therefore, the first time an adversary tampers
with a particular (data value, time stamp) pair that is read from memory, there
will not be an entry in the WriteHash matching the adversary’s entry in the
ReadHash, and that entry will not be added to the WriteHash at a later
time.

The Timer is not solely under the control of the checker, and is a function
of what is read from memory, which is untrusted. Therefore, the WriteHash

cannot be guaranteed to be over a set. For example, for a sequence of store
and load operations occurring on the same address, an adversary can decrease
the time stamp that is stored in memory and have triples be added to the
WriteHash multiple times. The ReadHash can also not be guaranteed to be
over a set because the adversary controls the pairs that are read from memory.
Thus, set-collision resistance is not sufficient, and we require multiset-collision
resistant hash functions.

The proof of the following theorem is in Appendix E.

Theorem 4. Let W be the multiset of triples written to memory and let R be
the multiset of triples read from memory. That is, W hashes to WriteHash and
R hashes to ReadHash. Suppose the accesses to each address are an alternation
of puts and gets. If the RAM does not behave like valid RAM, then W �= R.
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initialize() initializes RAM.
1. put(a, 0) for each address a.

store(a, v) stores v at address a.
1. get(a).
2. put(a, v).

load(a) loads the data value at address a.
1. v = get(a). Return v to the caller.
2. put(a, v).

check() checks if the RAM has behaved correctly (at the end of operation).
1. get(a) for each address a.
2. If WriteHash is equal to ReadHash, return true.

Fig. 3. Offline integrity checking of random access memory

The following corollary shows the hardness of breaking our offline memory
integrity checking scheme.

Corollary 3. Tampering with the RAM without being detected is as hard as
finding a collision W �= R for the multiset hash function.

Offline memory integrity checking was introduced by Blum et al. [6]. However,
the original offline checker in [6] differs from our checker in two respects. First,
the original checker is implemented with ε-biased hash functions [10]. These hash
functions are set-collision resistant against random errors but not against a ma-
licious adversary. Secondly, the Timer is incremented on each put operation
and is not a function of what is read from memory. The Timer is solely under
the control of the checker. This means that the pairs that are used to update
WriteHash form a set. Therefore set-collision resistance is sufficient. The orig-
inal offline checker can be made secure against active adversaries by using a
set-collision resistant multiset hash function, instead of ε-biased hash functions.
Our offline checker improves on the original checker because Timer is not incre-
mented on every load and store operation. Thus, time stamps can be smaller
without increasing the frequency of checks, which improves the performance of
the checker.

7 Conclusion

We have introduced incremental multiset hash functions which can be efficiently
updated, and for which the ordering of inputs is not important. Table 1 sum-
marizes our comparison of the multiset hash functions introduced in this paper.
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Table 1. Comparison of the Multiset Hash Functions

collision key security comput. length of offline hash
resistance based on efficiency output checker visible

MSet-XOR-Hash set Y PRF ++ + original r/enc
MSet-Add-Hash multiset Y PRF ++ + both r/enc
MSet-Mu-Hash multiset N RO/DL − + both
MSet-VAdd-Hash multiset N RO/SV + − both

In the table, we indicate whether the security is based on pseudorandom family
of hash functions (PRF), the random oracle model (RO), the discrete log as-
sumption (DL), or/and the hardness of the worst case shortest vector problem
(SV). If hashes are to be visible to the adversary (i.e., the adversary can see
the hashes in the trusted state, but cannot modify them), we indicate whether
a random nonce/counter (r), or encryption is necessary. We have improved the
security and the performance of the offline memory integrity checker in [6] as
one application of these functions.
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A Proof of Collision Resistance of Additive Hash

Let Gm be the family of matrices with 2m+1 rows, l columns, and entries in ZZn

(recall L ≈ nl ≈ 2m). Let HK be a random matrix in Gm = {H1, H2, H3, . . .}.
Notice that HK is the K-th matrix in Gm. We assume that this matrix, or
equivalently its label K, is secret and only accessible by the secure processor.
The family of matrices Gm from which HK is selected is publicly known.

The rows of HK are labelled by x ∈ {0, 1}m+1 and denoted by HK(x). This
represents HK as a function from x ∈ {0, 1}m+1 to ZZl

n, the set of vectors with
length l and entries in ZZn. In practice, HK is not a completely random matrix
over ZZn, but HK is selected from a pseudorandom family of functions. We
address this issue as soon as we are ready to formulate a proof of Theorem 1.

The following theorem is about the probability that an adversary finds a
collision for some multiset M ′. The probability is taken over random matrices
HK in Gm (HK ← Gm) and the randomness of the random nonce used in HK .

Theorem 5. Let M and M ′ be multisets of B. Let d be the greatest common
divisor5 of n and each of the differences |Mb −M ′

b|, b ∈ B. Given knowledge of
u tuples [M i ; HK(M i)], the probability that M is a collision for M ′ is at most
u2/2m + (d/n)l.

We first introduce some notation. Let v(r, M) be the vector of length 2m+1

defined by
v(r, M)(0,b) = 1 if and only if b = r

and
v(r, M)(1,b) = Mb.

Let v(M) be the vector of length 2m+1 defined by v(M)(0,b) = 0 and v(M)(1,b) =
Mb.

Lemma 1. (i) Knowing [M ; HK(M)] is equivalent to knowing

[v(r, M) ; v(r, M)HK mod n].

(ii) HK(M) ≡HK
HK(M ′) if and only if v(M)HK = v(M ′)HK modulo n and∑

b∈B Mb =
∑

b∈B M ′
b modulo L.

Proof. Notice that v(r, M) encodes r, M , and, hence, the cardinality
∑

b∈B Mb

of M , and notice that

HK(M) =

[

v(r, M)HK mod n ;
∑

b∈B

Mb mod L ; r

]

.

The lemma follows immediately from these observations.
5 The greatest common divisor of 0 with a positive integer i is equal to i.
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Suppose that an adversary learns u tuples [M i ; HK(M i)] or, according to
Lemma 1.(i), u vectors v(ri, M i) together with the corresponding v(ri, M i)HK

modulo n. Let A be the u× 2m+1 matrix with rows v(ri, M i). Then the matrix
with rows v(ri, M i)HK is equal to AHK . Clearly, A modulo n has full rank over
ZZn if all ri are different. The probability that there are two equal ri’s is at most
u2/2m.

Lemma 2. The probability that the ri’s corresponding to matrix A are all dif-
ferent is at least 1− u2/2m.

By Lemma 1.(ii), in order to find a collision for M ′, the adversary needs to
find a multiset M �= M ′ such that v(M)HK = v(M ′)HK modulo n and such
that the cardinalities of M and M ′ are equal to one another modulo L. The next
three lemmas show how difficult this is for the adversary if he is in the situation
of the previous lemma.

Lemma 3. Let M and M ′ be multisets of B. The probability that v(M)HK =
v(M ′)HK modulo n is statistically independent of the knowledge of a full rank
matrix A over ZZn corresponding to different ri’s and the knowledge of h = AHK

modulo n.

Proof. W.l.o.g. (after reordering the columns of A and the corresponding entries
of v(M) − v(M ′) and corresponding rows of HK) matrix A has the form A =
(I A1), where I is the u × u identity matrix, and v(M) − v(M ′) has the form
(0 v), where 0 is the all zero vector of length u. Denote the top u rows of HK

by H0
K and let H1

K be such that

HK =
(

H0
K

H1
K

)

.

Clearly, the equation h = AHK modulo n is equivalent to

h = H0
K + A1H1

K mod n. (3)

The equation 0 = (v(M)− v(M ′))HK modulo n is equivalent to

0 = vH1
K mod n. (4)

Straightforward counting tells us that Prob{(4)|(3)} is equal to the # of matrices
H1

K satisfying (4) divided by the total # of matrices H1
K . This is in turn equal

to the # of matrices HK satisfying (4) divided by the total # of matrices HK ,
which is Prob{(4)}.

Lemma 4. Let M and M ′ be multisets of B. Let d be the greatest common divi-
sor of n and each of the differences |Mb−M ′

b|, b ∈ B. Then (v(M)− v(M ′))HK

modulo n is uniformly distributed in dZZl
n.
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Proof. To prove this lemma, we show that each entry of (v(M) − v(M ′))HK

modulo n is uniformly distributed in dZZn. Let y represent one of the columns
of HK and define for β ∈ ZZn the set

Cβ = {y : (v(M)− v(M ′))y = β mod n}.

Since d divides each entry of v(M)− v(M ′), it also divides the product (v(M)−
v(M ′))y, hence, Cβ = ∅ if β is not divisible by d. Since d is the greatest common
divisor of n and each of the entries of v(M)−v(M ′), there exists a vector y such
that (v(M) − v(M ′))y = d modulo n. This proves that Cβ �= ∅ if and only if d
divides β. For a fixed column y′ ∈ Cβ �= ∅, the mapping y ∈ Cβ → y− y′ınC0 is a
bijection. Hence, the non-empty sets Cβ have equal cardinality. We conclude that
each entry of (v(M)− v(M ′))HK modulo n is uniformly distributed in dZZn.

Lemma 5. Let M and M ′ be multisets of B. Let d be the greatest common
divisor of n and each of the differences |Mb −M ′

b|, b ∈ B. Given knowledge of a
full rank matrix A over ZZn corresponding to different ri’s and given knowledge
of h = AHK modulo n, the probability that v(M)HK = v(M ′)HK modulo n is
equal to (d/n)l.

Proof. By Lemma 3, since matrix A corresponds to different ri’s and (v(M) −
v(M ′))(0,ri) = 0, the probability that the randomly chosen matrix HK satisfies
0 = (v(M)− v(M ′))HK modulo n is independent of the knowledge of h = AHk

mod n. By Lemma 4, since HK is uniformly distributed, (v(M) − v(M ′))HK

is uniformly distributed in dZZl
n. Hence, the probability that 0 = (v(M) −

v(M ′))HK mod n is equal to one divided by the cardinality of dZZl
n, which

is equal to (d/n)l.

Combining Lemmas 2 and 5 proves Theorem 5. To prove Theorem 1 we need
the following extra lemma.

Lemma 6. Suppose that v(M) = v(M ′) modulo n,
∑

b∈B Mb =
∑

b∈B M ′
b mod-

ulo L, the cardinalities of M and M ′ are < L, and that the multiplicities of M
are < n. Then M = M ′.

Proof. If the cardinalities of M and M ′ are equal modulo L and < L then
∑

b∈B

Mb =
∑

b∈B

M ′
b. (5)

If all entries of v(M) are < n and v(M) = v(M ′) modulo n, then

M ′
b = Mb + βbn, b ∈ B, (6)

for integers βb ≥ 0. Combining (5) and (6) proves
∑

b∈B βb = 0, hence, all βb = 0.
We conclude that M = M ′.

Now we are ready to prove Theorem 1.
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Proof. Let A(HK) be a probabilistic polynomial time (in mK ≈ 3m) algorithm
with oracle access to (HK , +HK

,≡HK
). Then A(HK) can gain knowledge about

at most a polynomial number u(m) tuples [M i ; HK(M i)] (here u(.) denotes
a polynomial). Furthermore, A(HK) can search for a collision among at most
a polynomial number t(m) of pairs (M, M ′), where M and M ′ are multisets,
M �= M ′, and M has mult iplicities < n. According to Theorem 5, the probability
that A(HK) finds a collision is at most

t(m)(u(m)2/2m + (d/n)l).

Since A(HK) can only compute polynomial sized multisets, the cardinality
of the multisets M and M ′ are < L ≈ 2m. This allows us to apply Lemma 6
and conclude that 0 �= (v(M)− v(M ′)) modulo n. Hence, the greatest common
divisor d of n and each of the differences |Mb−M ′

b|, b ∈ B, is at most n/2. This
leads to

(d/n)l ≤ 2−l.

Let c > 0 be any number and suppose that 2−l ≥ m−c, or equivalently, l ≤
c log m. Notice that each of the differences |Mb −M ′

b| is polynomial sized in m,
hence, d is polynomial sized in m and there exists a number e > 0 such that
d ≤ me for m large enough. This proves

(d/n)l ≤ mel/nl ≈ mel/2m ≤ mec log m/2m,

which is at most m−c for m large enough. We conclude that the probability that
A(HK) finds a collision is at most m−c for m large enough. This proves Theorem
1 for random matrices HK .

Remark. The theorem also holds for a pseudorandom family of hash functions
represented as matrices. Suppose that an adversary can compute a collision with
a significant probability of success in the case where a pseudorandom family of
hash functions is used. We have just shown that an adversary has a negligible
probability of success in the case where random hash functions are used. Hence,
with a significant probability of success he is able to distinguish between the
use of pseudorandom hash functions and the use of random hash functions. This
contradicts the definition of pseudorandomness, see [3] for a detailed proof of a
similar result.

B Variants of Additive Hash

A few interesting variants of HK exist. Suppose that v(M) = v(M ′) modulo n
and that the multiplicities of M and M ′ are < n. Then clearly M = M ′. Hence,
we do not need Lemma 6 in the proof of Theorem 5. This means that the proof
of Theorem 5 does not depend on the cardinalities of M and M ′ to be equal
modulo L. We can remove the cardinality

∑
b∈B Mb from the scheme altogether.

For example, for n exponentially large, the cardinalities and in particular the
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multiplicities of M and M ′ are < n. This proves Corollary 2. An other example
is n = 2 and both M and M ′ are sets, which proves the main result of [3].

Secondly, it is possible to replace the random nonce r by a counter that
gets incremented on each use of HK , or by any other value that never repeats
itself in polynomial time. This guarantees with probability 1 that the matrix A
corresponds to different ri’s (see Lemma 2). This removes the need for a random
number generator from the scheme. Moreover, shorter values can be used for r
as long as the key is changed when r overflows; this reduces the size of the hash.

If u = 0 then the proof of Theorem 5 does not depend on matrix A and its
corresponding ri’s. Similarly, if sums of hashes,

HK(0, r) +
∑

b∈B

MbHK(1, b) mod n,

are hidden from the adversary (he knows which multiset M is being hashed, but
not the value of the sum of hashes) then we can remove HK(0, r) from the scheme
altogether. As the following corollary shows, complete hiding is not necessary.
We can use a pseudorandom permutation to hide sums of hashes.

Corollary 4. (Permuted-MSet-XOR-Hash) The multiset hash corresponding to

HK,K′(M) =

[

PK′

(
⊕

b∈B

MbHK(1, b)

)

;
∑

b∈B

Mb mod 2m

]

,

where HK : {0, 1}×B → ZZm
2 and PK′ are randomly selected from a pseudoran-

dom family of hash functions and permutations, is set-collision resistant.
(Permuted-MSet-Add-Hash) The multiset hash corresponding to

HK,K′(M) = PK′

(
∑

b∈B

MbHK(1, b) mod 2m

)

where HK : {0, 1}×B → ZZ2m and PK′ are randomly selected from a pseudoran-
dom family of hash functions and permutations, is multiset-collision resistant.

Notice that the multiset hashes are incremental because PK′ is a permutation
and, hence, invertible.

Proof. We first consider a random function PK′ . Suppose that the adversary
learns u tuples [M i ; HK,K′(M i)]. As in Lemma 2, the probability that two
permuted sums of hashes in the u tuples are equal is at most u2/2m. If all of
them are unequal to one another then matrix AHK (defined without the part
corresponding to the random nonce) is uniformly distributed and not known
to the adversary (since PK′ is a random function). Hence, the probability that
v(M)HK = v(M ′)HK modulo n is statistically independent of the knowledge of
the adversary. This can be used instead of Lemma 5 to prove Theorems 5 and 1.
This result also holds for a pseudorandom family of permutations PK′ , see the
remark at the end of the proof of Theorem 1 in Appendix A.
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C Proof of Collision Resistance of Multiplicative Hash

In the following lemma A(.) is a probabilistic polynomial time (in log q) algo-
rithm which outputs weights6 w1, . . . , wu ∈ ZZq−1 for a polynomial number of
random inputs x1, . . . , xu ∈ GF (q) such that 1 =

∏
i xwi

i with probability at
least ρ. We show that if such an algorithm exists then we can break the DL
problem in GF (q) in polynomial time with probability at least ρ.

Lemma 7. Let A(.) be a ppt algorithm such that there exists a number c such
that for u ≤ (log q)c,

Prob

{
(xi ← GF (q))u

i=1, (wi ∈ ZZq−1)u
i=1 ← A(x1, . . . , xu) :

1 =
∏

i xwi
i , ∃iwi �= 0, ∀i|wi| ≤ (log q)c

}

≥ ρ. (7)

Let g be a generator of GF (q). Then there exists a probabilistic polynomial time
(in log q) algorithm A′(.) such that

Prob{y ← GF (q), x← A′(y) : y = gx} ≥ ρ/(log q)c.

In words, given a random y ∈ GF (q), we are able to find the discrete log of y in
GF (q) with probability at least ρ/(log q)c.

Proof. Let y ← GF (q). Select a polynomial number u of random elements
r1, . . . , ru in ZZq−1 and j ∈ {1, . . . , u} and compute

xj = ygrj and xi = gri for i �= j.

Compute (w1, . . . , wu)← A(x1, . . . , xu). Since by construction the xis have been
chosen uniformly at random, we know that with probability at least ρ the weights
w1, . . . , wu ∈ ZZq−1 are computed such that they are not all equal to zero,
|wj | ≤ (log q)c, and

1 =
∏

i

xwi
i = ywj g

∑
i riwi . (8)

Since the u inputs are in random order, the probability that wj �= 0 is at
least

1/u ≥ (log q)−c.

Suppose that wj �= 0. Let d be the greatest common divisor between wj and
q−1. Then7 wj/d is invertible in ZZq−1. By using the Chinese remainder theorem
(assuming that we know the factorization of q − 1), we are able to compute the
inverse of wj/d in ZZq−1 in polynomial time. Denote this inverse by w′j . From
(8) we infer that

yd = g−w′
j

∑
i riwi .

6 Not all equal to zero and each of them bounded by a polynomial number.
7 Division / denotes division over integers, not over ZZq−1 (since d has no inverse in

ZZq−1, we can not divide wj by d in ZZq−1).
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Notice that if yd = gs and y = gt, then gdt = gs, that is dt = s modulo q−1.
Recall that d divides q−1. For this reason d must also divide s. Let d′ = (q−1)/d
and s′ = s/d. Both can be computed in polynomial time as we have shown. Now
y can be expressed as one of the roots

y = gs′+jd′
,

where 0 ≤ j ≤ d− 1. Since d ≤ |wj | ≤ (log q)c, each of the roots can be checked
in polynomial time. This proves the lemma.

The DL assumption states that for all ppt algorithms A(.), any number c,
and Q large enough,

Prob

{
q ≥ Q is a prime power, g generates GF (q),
y ← GF (q), x← A(q, y) : y = gx

}

≤ (log q)−c.

We are ready to prove Theorem 2.

Proof. Suppose that there exists a number c and a probabilistic polynomial
time algorithm B(H), which runs in time u = (log q)c, with access to a random
oracle H which outputs with probability ρ ≥ 1/u a collision M for M ′. That is,
M �= M ′, M and M ′ are polynomial sized < u, and

H(M) =
∏

b∈B

H(b)Mb =
∏

b∈B

H(b)M ′
b = H(M ′).

This means that
1 =

∏

b∈B

H(b)Mb−M ′
b ,

there is a polynomial number Mb’s and M ′
b’s unequal to zero, for all b ∈ B the

absolute value |Mb−M ′
b| < u is polynomial sized, and there exists a b ∈ B such

that Mb −M ′
b �= 0.

Let C be an algorithm that goes from GF (q)u to B → GF (q), where B →
GF (q) denotes the set of oracles with inputs in B and outputs in GF (q). C is
chosen such that C(x1, . . . , xu) returns x1 when it is called for the first time on
some input y1, x2 when it is called for the first time on some input y2 different
from y1, and so on.

When x1, . . . , xu are chosen randomly, C(x1, . . . , xu) cannot be distinguished
from a random oracle by B because B cannot query C more than u times. There-
fore, if we let A be the composition of B and C, A is able to find a collision for
H with probability ρ when its inputs are chosen uniformly at random. More-
over, A is a ppt algorithm satisfying (7), so by Lemma 7, A can break the
discrete log problem in GF (q) in polynomial time with probability at least
ρ/(log q)c ≥ (log q)−2c. This contradicts the DL assumption. So B does not
exist, which proves multiset-collision resistance.

Because oracle access to H is stronger than oracle access to H, this proves
Theorem 2 when H is a random oracle. The result carries over to poly-random
functions because they are indistinguishable from random functions by ppt al-
gorithms.



206 Dwaine Clarke et al.

Remark. Supposing that H is a random oracle is a strong assumption. Compared
to the MSet-XOR-Hash and MSet-Add-Hash we do not need a secret key (as the
seed of a pseudorandom family of hash functions) at all. We refer to [5] for a
discussion into what extent the random oracle assumption can be met in practice.

D Proof of Collision Resistance of Vector Additive Hash

If r is a fixed constant in the MSet-Add-Hash, then we are again vulnerable
for the attack described for the MSet-XOR-Hash, where r is a fixed constant.
The main difference is that the attack is not modulo n = 2 but modulo n =
2m. This means that the linear combination may lead to a collision with large
multiplicities. This would give a non-polynomial sized collision and does not
defeat the multiset collision resistance. It turns out that this problem is related
to a weighted knapsack problem (see also [4]). In this sense MSet-Add-Hash
remains multiset collision resistant, even if the pseudorandom family of hash
functions HK is replaced by a single random function avoiding the use of a
secret key as in MSet-Mu-Hash.

The weighted knapsack (WK) assumption is defined as follows. For all ppt
algorithms A(.), any number c, q large enough, and u ≤ (log q)c,

Prob

{
(xi ← ZZq)u

i=1, (wi ∈ ZZq)u
i=1 ← A(x1, . . . , xu) :

0 =
∑

i wixi mod q, ∃iwi �= 0, ∀i|wi| ≤ (log q)c

}

≤ (log q)−c.

Notice the resemblance with (7), where multiplication in GF (q) is now replaced
by addition modulo q (where q can be any integer and does not need to be a prime
power). It remains unclear to what extent Ajtai’s work [1] relates this problem to
the worst-case shortest vector problem. It is an open problem whether to believe
in the WK assumption.

Let H : B → ZZq be a poly-random function. We define

H(M) =
∑

b∈B

MbH(b) mod q, (9)

≡H to be equal to =, and +H to be addition modulo q (q plays the role of 2m

in MSet-Add-Hash). The proof of the next theorem is similar to the proof of
Theorem 2 in Appendix C.

Theorem 6. Under the WK assumption, (H, +H,≡H) as defined in (9) is mul-
tiset collision resistant.

For completeness, we introduce a multiset hash corresponding to parameters
n = 2

√
m and l =

√
m (see Section 4). Let H : B → ZZl

n be a poly-random
function. Now, we define

H(M) =
∑

b∈B

MbH(b) mod n,
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≡H to be equal to =, and +H to be vector addition modulo n. Theorem 6 holds
again if we modify the WK assumption by replacing xi ← ZZq by xi ← ZZl

n,
wi ∈ ZZq by wi ∈ ZZn, and q by n. The main difference is that the xi’s are vectors
of length l =

√
m. According to [8, Sections 2.1 and 2.2]8, if there is a ppt solving

the modified WK problem (that is it contradicts the modified WK assumption)
then, by Ajtai’s theorem [1], there is a probabilistic polynomial (in l) algorithm
which, for any lattice L in IRl, given an arbitrary basis of L, approximates (up
to a polynomial factor in l) the length of the shortest vector in L. This proves
Theorem 3. The worst-case shortest vector problem is believed to be hard, see
[8] for more discussion.

E Proof of Improved Offline Checker

In this appendix, we prove Theorem 4.

Proof. Suppose the RAM does not behave like valid RAM (i.e. the data value
that the checker reads from an address is not the same data value that the
checker had most recently written to that address). We will prove that W �= R.

Consider the put and get operations that occur on an address as occurring
on a timeline. To avoid confusion with the values of Timer, we express this
timeline in terms of processor cycles. Let x1 be the cycle of the first incorrect
get operation. Suppose the checker reads the pair (v1, t1) from address a at x1.
If there does not exist a cycle at which the checker writes the pair (v1, t1) to
address a, then W �= R and we are done.

Suppose there is a cycle x2 when the checker first writes (v1, t1) to address
a. Because of line 3 in the get operation, the values of time stamps of all of the
writes to a after x1 are strictly greater than t1. Because the time stamps at x1
and x2 are the same, and since put operations and get operations do not occur
on the same cycle, x2 occurs before x1 (x2 < x1). Let x3 be the cycle of the first
read from a after x2. Notice that x1 is a read after x2, so x1 ≥ x3. If x1 were
equal to x3, then the data value most recently written to a, i.e. v1, would be read
at x1. This contradicts the assumption that x1 is an incorrect read. Therefore,
x1 > x3.

Because the read at cycle x1 is the first incorrect read, the read at cycle x3
is a correct read. So the read at x3 reads the same pair that was written at x2.
Again, because of line 3 in the get operation, the values of time stamps of all
the writes to a after x3 are strictly greater than t1. Therefore, (v1, t1) cannot
be written after x3. Because x2 is the first cycle on which (v1, t1) is written to
a, (v1, t1) cannot be written before x2. Because x3 is the first read from a after
x2, and two writes to an address always have a read from that address between
them, (v1, t1) cannot be written between x2 and x3. Therefore, the pair (v1, t1)
is written only once, but it is read at x1 and x3. Therefore, W �= R.

8 Notice that the matrix with columns xi is in ZZl×u
n and that the vector with entries

wi is unequal to zero and has Euclidean norm polynomial in l =
√

m.
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