
CoOL: A Context Ontology Language
to Enable Contextual Interoperability

Thomas Strang1, Claudia Linnhoff-Popien2, and Korbinian Frank2

1 German Aerospace Center (DLR), Oberpfaffenhofen, Germany
thomas.strang@dlr.de

2 Ludwig-Maximilians-University (LMU), Munich, Germany
{linnhoff,frank}@informatik.uni-muenchen.de

Abstract. This paper describes a context modelling approach using on-
tologies as a formal fundament. We introduce our Aspect-Scale-Context
(ASC) model and show how it is related to some other models. A Con-
text Ontology Language (CoOL) is derived from the model, which may be
used to enable context-awareness and contextual interoperability during
service discovery and execution in a proposed distributed system archi-
tecture. A core component of this architecture is a reasoner which infers
conclusions about the context based on an ontology built with CoOL.

1 Introduction

The trend towards pervasive computing [1] is driving a need for services and
service architectures that are aware of the context of the different actors (any
user, any service provider and even the environment or third parties) involved
in a service interaction. For instance, context information (for definition of ter-
minology see section 2) can be used to reduce the amount of required user
interaction, as well as to improve the user interface of small mobile devices such
as mobile phones [2], which are typical for pervasive computing scenarios. A key
accessor to context information in any context-aware system is a well designed
model to describe contextual facts and contextual interrelationships. Several ap-
proaches from the early days of modelling the context typically lack formality
and are primarily concerned with requirements for the model from the customer
perspective. More recent proposals such as [3] try to countersteer the lack of
formality by introducing a graphical oriented approach to model contextual in-
terrelationships. The context modelling approach introduced in this paper tries
to close the formality gap by using ontologies [4] as a fundament to describe con-
textual facts and interrelationships. Particularly, this allows to determine service
interoperability on the context level [5].

This paper is organized as follows: In section 2 we will introduce our ASC
model after giving a motivation why we make use of ontologies as a fundament
of our model. Section 3 shows how our ASC model can be used as transfer
model for other proposed context models, considering a graphical context model
as an example. In section 4 we propose a way how to plug in our ASC model

J.-B. Stefani, I. Demeure, and D. Hagimont (Eds.): DAIS 2003, LNCS 2893, pp. 236–247, 2003.
c© IFIP International Federation for Information Processing 2003



CoOL: A Context Ontology Language to Enable Contextual Interoperability 237

into DAML-S. A context extension of a well established general purpose service
model shown in section 5 motivates the design of our system architecture in
section 6. Because relevance is more than just spatial and temporal proximity,
we describe our approach of expressing relevance criteria in section 7, before we
summarize our paper with a conclusion in section 8.

2 Model
Because of the fact that the terms context etc. in current publications are used
in various ways it is necessary to define the terminology we use. The follow-
ing is a short reflection of our terminlogy used throughout this paper, a more
comprehensive introduction to this terminology can be found in [5]: A context
information is any information which can be used to characterize the state of an
entity concerning a specific aspect. An entity is a person, a place or in general
an object. An aspect is a classification, symbol- or value-range, whose subsets
are a superset of all reachable states, grouped in one or more related dimensions
called scales. A context is the set of all context information characterizing the
entities relevant for a specific task in their relevant aspects. An entity is relevant
for a specific task, if its state is characterized at least concerning one relevant
aspect. An aspect is relevant, if the state with respect to this aspect is accessed
during a specific task or the state has any kind of influence on the task. A sys-
tem is context aware, if it uses any kind of context information before or during
service provisioning. The situation is the set of all known context information.
These definitions are very similar to other definitions of context (e.g. [6,7,8]),
but refine the expressiveness by introducing the terminology of an aspect, which
is discussed in detail in section 2.2.

2.1 Ontologies and the Context Ontology Language

When dealing with context information it is always a challenge to describe con-
textual facts and interrelationships in a precise and traceable manner. For in-
stance, to perform the task “print document on printer near to me”, it is re-
quired to have a precise definition of terms used in the task, particularly what
“near” means to “me”. It is highly desirable, that each participating party in
a service interaction shares the same interpretation of the data exchanged and
the meaning “behind” it (so called shared understanding). This is done in our
approach by the use of ontologies [4]. Ontologies seem to be well suited to store
the knowledge concerning context.

An ontology is a specification of a conceptualization [9]. The term “ontol-
ogy” itself is borrowed from philosophy, where it has a long history in refering
to the subject of existence. In IT systems, ontologies are used to express the
more or less complete knowledge about concepts (classes of subjects) and their
attributes, as well as their interrelationships. Ontologies may be stored at differ-
ent places and created by different authors, which offers the amount of flexibility
and extensibility we need in distributed systems. The merging of different ontol-
ogy fragments is one of the main tasks of a reasoner, which is called inference



238 Thomas Strang, Claudia Linnhoff-Popien, and Korbinian Frank

engine if it infers knowledge from symbolically coded axioms. A reasoner may
be queried via some query language to deliver instances and their values, as well
as concept and attribute names based on the ontologies known to the reasoner.
A reasoner may also be used to validate consistency (within one ontology, but
also with respect to related ones), and to assert inter-ontology relationships and
“complete” the ontologies by computing implicit hierarchies and relationships
based on given rules. One of the most advanced inference engines is the On-
toBroker system [10], which we used to evaluate most of the inferencing issues
during our research.

There have been proposed several languages designed for or being even able
to describe ontologies in recent years. We analysed several ontology specification
and query languages with a focus of the following two questions:

1. How well is the language capable to describe concepts, attributes and rela-
tions in a precise and traceable manner? (knowledge representation)

2. How well is the language capable to create effective queries towards the
reasoner? (knowledge querying)

We found out, that any of the analysed languages which has advantages
w.r.t. the first question has disadvantages w.r.t. the second one and vice versa.
With this background we defined our Context Ontology Language (CoOL) not
as a single, monolithic language. Instead, it is a collection of several fragments,
grouped into two subsets.

The first subset, CoOL Core, is a projection of our model, which will be
introduced in section 2.2, into two (three) different common ontology languages:

– OWL and DAML+OIL, which are both part of the Semantic Web’s [11]
ontology languages based on XML and RDF/S. See figure 2 on how CoOL
Core is related to the Semantic Web stack. Because OWL is the successor
of DAML+OIL covering nearly the same issues, we will use the term OWL
as a representative for both languages in the reminder of this paper unless
stated otherwise.

– F-Logic [12], which is a logic language combining object-oriented and pred-
icate logic characteristics not based on XML.

The second subset, CoOL Integration, is a collection of schema and protocol
extensions as well as common subconcepts of the model introduced in the next
section, enabling the use of CoOL Core in several service frameworks, particulary
Web Services. This paper deals mainly with CoOL Core and the model it is based
on, whereas CoOL Integration is somewhat out of the focus of this paper.

Having a projection of the model in multiple ontology languages enables the
following proposed procedure: For the knowledge representation issues, a devel-
oper may use any of the languages which seems to be adequate, e.g. using OWL
because of the wide range of available tools helping to create and/or validate on-
tology fragments, or using F-Logic because of its object-oriented, compact syntax
or its rule based extensibility. For knowledge querying issues, we preferred to use
the OntoBroker inference engine, most notably because it supports F-Logic as



CoOL: A Context Ontology Language to Enable Contextual Interoperability 239

knowledge representation and knowledge query language. This decision requires
any knowledge not represented in F-Logic to be converted into F-Logic first, but
this is no real disadvantage, because most other major reasoners have a similar
requirement. This conversion is possible as long as the features of OWL in use
do not exceed a certain subset (OWL-DL), as Borgida showed in [13]. F-Logic is
more expressive than OWL, can be used as query language as well, and is much
more appropriate for specifying relevance conditions (see section 7).

2.2 Our ASC Model

Our Aspect-Scale-Context (ASC) model is named after the core concepts of the
model, which are aspect, scale and context information, see figure 1. Each aspect
aggregates one or more scales, and each scale aggregates one or more context
information. These core concepts are interrelated via hasAspect, hasScale and
constructedBy relations.

Aspect

hasDefaultScale:

hasScale: Scale

Scale

ObjectProp. �0

ObjectProp. =1

predicate

Concept

type cardinality

hasIntraOperation:

Scale

hasAspect:

constructedBy:

hasUnit:

memberCheck:

hasInterOperation:

IntraOperation

InterOperation

Operation

Unit

Aspect

<ContextInformation>

ObjectProp. �1

ObjectProp. =1

ObjectProp. �1

ObjectProp. �0

ObjectProp. �0

ObjectProp. �1 ObjectProp. �0

ContextInformation

minError:

meanError:

ContextInformation

ContextInformation

timestamp: ContextInformation

ObjectProp. =1

ObjectProp. �0

ObjectProp. =1

characterizes: Entity

hasQuality: ContextInformation
ObjectProp. �0

ObjectProp. �1
hasScale: Scale

Fig. 1. Aspect-Scale-Context (ASC) Model.

As anchored in the definitions at the beginning of the section, an aspect is
a set of one or more related scales. Likewise, any aspect is a dimension of the
situation space, being used as a collective term for information objects having
the same semantic type.

A scale is an unordered set of objects defining the range of valid context infor-
mation. In other words, a valid context information with respect to an aspect is
one of the elements of the aspect’s scales. For instance the aspect “GeographicCo-
ordinateAspect” may have two scales, “WGS84Scale” and “GaussKruegerScale”,
and a valid context information may be an object instance created in an object
oriented programming language such as Java with new GaussKruegerCoordi-
nate("367032", "533074"). Scales based on primitive datatypes such as scalars
instead of objects are captured by corresponding wrapper classes. Thus a valid
context information of the aspect “SpatialDistanceAspect” with the given scales
“MeterScale” and “KilometerScale” may be an object instance created with new
Integer(10).

On an abstract level, context information may be seen as content data com-
plemented by some meta data characterizing the content data. Each context
information has an associated scale defining the range of valid instances of that
type of context information. Context information characterizing the content of



240 Thomas Strang, Claudia Linnhoff-Popien, and Korbinian Frank

another context information is a meta information and thus a context infor-
mation of higher order and expresses the quality of the lower order context
information, see figure 3. CoOL Integration includes already a set of standard
quality aspects such as a minimumError, a meanError and or a timestamp, but
any other kind of context information characterizing the quality of another con-
text information may be assigned to the context information of interest using
the hasQuality property of the ASC model.

Unicode URI

Namespaces XML + XML schema

RDF + RDF schema

Ontology

OWL

Rules +Logic

Proof

D
ig

it
a

l
S

ig
n

a
tu

re

E
n

c
ry

p
ti
o

n

Trust

DAML+OIL

CoOL

Fig. 2. CoOL embedded
inside the Semantic Web
stack.

Entity
Aspect

of Interest

Entity

Instance

Context

Information

hasAspect

characterizedBy

classOf rangeOf

Context

Information

Quality

Aspect

characterizedByQuality

rangeOf

Context

Information

Quality

Aspect

characterizedByQuality

rangeOf

Context

Information

Quality

Aspect

characterizedByQuality

rangeOf

Fig. 3. Context Information being an Entity itself.

As mentioned, scales are sets of context information. Each scale is constructed
by one class of context information such as “WGS84Coordinate” and “Gauss-
KruegerCoordinate” in the example of the last subsection. All scales within one
aspect are constrained by the ASC model in a way, that there must exist a
mapping function from one scale to at least one other of the already existing
scales of the same aspect. This function is called IntraOperation, see figure 4.

Parameter

DatatypeProp. =1
PartName: xsd:NCName

ObjectProp. =1
contentFromScale: Scale

contentFromAspect: Aspect
ObjectProp. 0|1

ObjectProp. �0

Operation

IntraOperation

InterOperation

identifiedBy: xsd:anyURI
DatatypeProp. =1

ObjectProp. �0

ObjectProp. =1

hasParameter: Parameter

fromScale: Scale

toScale: Scale

ObjectProp. �0

MetricOperation

onScale: Scale

Fig. 4. Operations.

Like that, it is possible to access every scale from every other scale of the
same aspect by a series of IntraOperations. In other words, a new scale of an
aspect may be constructed by providing an IntraOperation from an existing
scale. This allows to build multiple related scales by providing different Intra-
Operations representing different scaling factors (“nautical miles”, “km” or “m”
for a “SpatialDistanceAspect” aspect). Depending on where the IntraOperation



CoOL: A Context Ontology Language to Enable Contextual Interoperability 241

is specified (at the source scale or at the destination scale), the corresponding
property toScale or fromScale has to be set.

Scales which require access to scales of one or more other aspects can be
defined using InterOperations, see also figure 4. An example for such a scale
would be “KilometerPerHourScale” of a “SpeedAspect” aspect. This scale can
be defined using an InterOperation with two Parameter, delta s and delta t,
where the parameter delta s is from an aspect “SpatialDistanceAspect” and
delta t is from an aspect “DurationAspect”.

Due to the fact that each scale is an unordered set of context information
instance objects, there may be no relative sort order between the context in-
formation inherently given. Therefore we introduced the MetricOperation which
may be used to compare two context information instance objects of the same
scale in an implementation-defined manner to see if they match or what their
relative sort order is by returning either the first or the second parameter. Thus
the return value indicates the ordering of the two objects.

Information about the signature of any InterOperation, IntraOperation or
MetricOperation is available in the signature specification pointed to with the
property identifiedBy, e.g. an operation within a WSDL file or an AtomicProcess
within a DAML-S grounding [14].

3 Transfer Model

The ASC model may be used as transfer model to employ the knowledge ex-
pressed in other context models. A good example is the nicely designed graphics
oriented context model introduced in [3] by Henricksen et al., which is a context
extension to the Object-Role Modelling (ORM) approach. In ORM, the basic
modelling concept is the fact, and the modelling of a domain using ORM involves
identifying appropriate fact types and the roles that entity types play in these.

Henricksen extended ORM to allow fact types to be categorised, according
to their persistence and source, either as static (facts that remain unchanged as
long as the entities they describe persist) or as dynamic. The latter ones are fur-
ther distinguished depending on the source of the facts as either profiled, sensed
or derived types. Using our ASC model, facts can be modelled as context infor-
mation. In doing so, Henricksen’s classification can be mapped by introducing a
quality aspect consisting of the scale with the elements {static, dynamic profiled,
dynamic sensed and dynamic derived}, which may be used to characterize any
context information in a quality sense. Henricksen’s quality indicators may be
directly mapped to some quality aspect, similar to her history fact types, which
may be addressed with a timestamp and/or time period quality aspect, which
are both already basic aspects in CoOL. The last extension to ORM made by
Henricksen for context modelling purposes are fact dependencies, which repre-
sent a special type of relationship between facts, where a change in one fact
leads automatically to a change in another fact: the dependsOn relation. This
behaviour is expressed in the ASC model by the existence of one or more corre-
sponding Intra/InterOperations between the scales a pair of context information
is based on each. Here our model is even more expressive, because it allows to



242 Thomas Strang, Claudia Linnhoff-Popien, and Korbinian Frank

specify exactly the kind of dependency. This example shows the potential of the
ASC model to be used as transfer model for other context model approaches.

4 Relation to DAML-S

In the framework of the Semantic Web there has been done some serious effort
in designing technologies that allow to discover, invoke, compose and monitor
web resources. Among them there has been created an ontology of services called
DAML-S [14], which can be used to create computer-interpretable descriptions
of services from multiple perspectives. Within DAML-S three essential types of
knowledge about a service have been identified: ServiceProfile, ServiceModel and
ServiceGrounding.

Some selected elements of the current version of DAML-S find a corre-
sponding counterpart in our Context Ontology Language. For instance, the non-
functional attribute geographicRadius of a DAML-S ServiceProfile may be ex-
pressed as a context information based on an aspect scope, which is one of the
default aspects within CoOL, whereas the non-functional attribute qualityRating
may be mapped to some quality aspect. DAML-S covers only a few contextual
aspects, and their specification is not very formal. To have a much more formal
and thus computer-interpretable approach to describe the contextual require-
ments and impact of a service, we suppose to extend DAML-S with a fourth
type of knowledge about a service, dealing with the contextual issues.

Resource ServiceContext

ServiceGrounding

ServiceModel

ServiceProfile

Service
provides

presents

describedBy

supports

hasContext

What the service does

How it works

How to access it

What the context is

ContextBinding

ContextObligation

Fig. 5. DAML-S with Context Extension.

This new perspective (we call it ServiceContext, see figure 5) may serve as a
more formal description of a service’s contextual interoperability by providing a
comprehensive but extensible model based on the ASC model. The obligations
of a service w.r.t. the context of its usage (e.g. the geographic scope “delivery
area” covered by the service with respect to a well defined aspect “region”) can be
expressed in a ContextObligation submodel. Another submodel ContextBinding
may be used to establish a virtual link from some input or output parameter of
an AtomicProcess of a ServiceGrounding to a specific aspect, enabling automatic
determination of valid or even optimal parameters.

5 MNM Service Model and the Context Extension

The Munich Network Management (MNM) team introduced in [15] a generic
model of commonly needed service-related terms, concepts and structuring rules



CoOL: A Context Ontology Language to Enable Contextual Interoperability 243

to describe a service from different perspectives (e.g. service view vs. imple-
mentation view). Their model is intended to analyze, identify and structure the
necessary actors and the corresponding inter- and intra-organizational associa-
tions between these actors. In this model the actors are grouped in either the
customer domain, or the service provider domain. Structural elements which
cannot be associated to any of these two domains are called side independent.
In the model’s service view these elements “build” the service in an abstract
manner, thus prefer to call this set of elements the abstract service.

service provider domain

customer domain

uses manages

implements

realizes observes implementsrealizes

supplies

accesses

usesservice
client

supplies

accesses

uses

concludes

substantiates

concludes

usage
functionality

management
functionality

c
o
n
te

x
t
p
ro

v
id

e
r

d
o
m

a
in

context

uses

CM
access point

uses

accesses

im
p
le

m
e
n
ts

p
ro

v
id

e
s

c
o
n
te

x
t
in

fo
rm

a
ti
o
n

m
a
n
a
g
e
s

d
ir

e
c
ts

c
o
n
te

x
t
m

g
t
im

p
le

m
e
n
ta

ti
o
n

«
r
o
l
e
»

c
o
n
te

x
t
p
ro

v
id

e
r

c
o
n
c
lu

d
e
s

awareness

supplies

accesses
re

a
liz

e
s

service
access point

service

CSM
clientcustomer

«role»CM
clientuser

«role»

CSM
access point

provides

service implementation
manages

directs

«role»

service provider
usesCM

client

service management implementation

service
agreement

QoS
parameters

A
b

s
tr

a
c
t

S
e
r
v
ic

e

Fig. 6. Service Model with emphazised Context Extension (MNMplusCE).

The MNM service model has been designed primarily with network manage-
ment tasks and carrier services in mind. But due to the level of abstraction this
model can be applied to highlevel (non-carrier) services perfectly. Moreover, the
model fits direct service usage approaches (client ↔ server) as well as intermedi-
ate service usage approaches (client ↔ middleware ↔ server). In the latter one a
middleware component “fulfills” an abstract service, i.e. it behaves like a client
towards the service provider domain, and behaves like a service provider towards
the service customer domain by providing at least a service access point.

To be able to describe contextual dependencies and issues of context provi-
sioning with the model in a similiar and consistent way, we extended the MNM
service model with a context provider domain (see figure 6 on the right). This
domain groups the actors responsible to manage the context observation, context
processing and delivery as context information.

The context provider is not yet another service provider. Its extraordinary
position is caused by, among others, the fact of being involved as a third party



244 Thomas Strang, Claudia Linnhoff-Popien, and Korbinian Frank

service provider in an interaction between the customer domain and a set of ser-
vice provider domains simultaneously. The context management implementation
offers a context management access point (CMAP) to give access to the context
to both other domains in the model (customer domain and service provider
domain) to enable context-aware services and context-aware service usage. A
service client, a service provider or even a middleware component may deter-
mine the entities relevant for a specific task by an interface provided by the
CMAP, which causes the associated context management implementation to de-
liver context information in an adequate manner.

The context management implementation offers a context management ac-
cess point (CMAP) to give access to the context to both other domains in the
model (customer domain and service provider domain) to enable context-aware
services and context-aware service usage. A service client, a service provider or
even a middleware component may determine the entities relevant for a specific
task through an interface provided by the CMAP, which causes the associated
context management implementation to deliver context information in an ade-
quate manner. In the latter we refer to this contextual extended MNM service
model as MNMplusCE service model. In this model, carrier services are a special-
ized derivative of highlevel services, and the Quality-of-Service (QoS) parameters
describing a service instance are derived from context information in the model.

6 System Architecture

The overall architecture of our system is shown in figure 7, with a focus on the
context provider domain as introduced in the preceeding section.

Service Provider

Domain

Service Provider

Domain

Service Provider

Domain

Service

Directory

(e.g. UDDI)

Intermediate

Customer Domain

Announcements

Invocation

Invocation

Context Mgt.

Access Point

Direct

Service Discovery

Delegated Svc.

Discovery

incl. Context

Binding Lookup

In
fe

re
n
c
e

E
n
g
in

e

Query

Knowledge

Rules

C
o
n
te

x
t

M
g
t.

Im
p
le

m
e
n
ta

ti
o
n

Context Provider Domain

Facts

ASC

Onto-

logies

C
o
O

L
b
a
s
e
d

K
n
o
w

le
d
g
e

Monitor &

Event Generator

Fig. 7. System Architecture.

This architecture enables the Intermediate as a middleware component to
“fulfill” an abstract service (see section 5), in particular it behaves like a client
towards the service provider domain, and behaves like a service provider towards
the service customer domain. By resolving the binding between the parameters



CoOL: A Context Ontology Language to Enable Contextual Interoperability 245

of a service call and information from a context provider (context binding) at
runtime, the intermediate is a central component in our architecture to enable
context-awareness.

The context management implementation inside the context provider domain
implements the context management access point (CMAP) interface and is re-
sponsible for the mapping to the query language (e.g. F-Logic) used to query the
inference engine (e.g. OntoBroker). This engine is feeded with knowledge from
different sources, specifying knowledge as conclusions from ontologies and facts
based on those ontologies. Due to the fact that our ASC model is one of the base
ontologies, the inference engine is able to determine knowledge about entities,
aspects, scales and context information as desired for our purpose.

Any party interested in asynchronous notification about specific context con-
ditions (“notify me when I am near the restrooms”) may register with the context
provider with a corresponding condition statement via the CMAP. The context
provider is responsible for re-checking these conditions each time a part of the
condition statement is affected by a change in the knowledge base.

7 Relevance

As mentioned we consider an entity as relevant for a specific task, if its state is
characterized at least concerning one relevant aspect. Consequently we consid-
ered an aspect as relevant, if the state with respect to this aspect is accessed
during a specific task or the state has any kind of influence on the task. The sep-
aration between customer domain, service provider domain and context provider
domain in the MNMplusCE service model (see section 5) makes it necessary to
declare the task-specific relevance towards the task-independent context provider
domain through the CMAP. In other words, by specifying relevance conditions
an abstract context-aware service becomes a concrete context-aware service.

We distinguish between external and internal relevance, depending on the
domain of relevance determination. If the relevance of an entity is identified
outside the context provider domain, e.g. at the customer domain, we call this
an external relevance. In this case the other domain advises the context provider
domain through the CMAP to a specific entity by an entity identifier, and the
context provider delivers context information assigned to that entity. An example
for an external relevance is a service client identifying an entity representing its
own device. By sending this entity representative to the context provider domain,
the context management implementation may be able to determine the current
position of the client device by some sensor, and deliver an adequate context
information to the service client, which uses this information while invoking the
service implementation.

In contrast, if the relevance of an entity is identified in the context provider
domain itself, we call this an internal relevance. It is essential to enable the
context provider domain to determine internal relevance of one or more entities
by providing some relevance condition.

A relevance condition is a filter, which can be used at several levels to iden-
tify one or more relevant entities out of the set of all known entities in the



246 Thomas Strang, Claudia Linnhoff-Popien, and Korbinian Frank

context provider domain. A first level filter specifies only an aspect of interest
(e.g. “get all entities where you know something about the aspect place”). The
corresponding F-Logic query would be similar to

FORALL E,C,S <-
C:"urn:cool"#ContextInformation AND C["urn:cool"#characterizes->E] AND
C["urn:cool"#hasScale->>S] AND S["urn:cool"#hasAspect->>"urn:aspects"#Place].

A second level filter specifies a condition about the context information based
on the aspect of interest (e.g. “get all entities where you know that the current
state with respect to the aspect place is near”). The corresponding F-Logic query
would be similar to

FORALL E,C,S,V <-
C:"urn:cool"#ContextInformation AND C["urn:cool"#characterizes->E] AND
C["urn:cool"#hasScale->>S] AND S["urn:cool"#hasAspect->>"urn:aspects"#Place] AND
C["urn:cool"#hasValue->V] AND equal(V,"urn:dist"#Near).

A third level filter specifies a condition about the quality based on the aspect
of quality of a context information based on the aspect of interest (e.g. “get all
entities where you know that the current state with respect to the aspect place is
near and that information with respect to the quality aspect age of information
is less than or equal to 10 seconds”). The corresponding F-Logic query would be
similar to

FORALL E,C1,C2,S1,S2,V1,V2 <-
C1:"urn:cool"#ContextInformation AND C1["urn:cool"#characterizes->E] AND
C1["urn:cool"#hasScale->>S] AND S1["urn:cool"#hasAspect->>"urn:aspects"#Place] AND
C1["urn:cool"#hasValue->V1] AND equal(V1,"urn:ci"#Near) AND
C1["urn:cool"#hasQuality->>C2] AND C2["urn:cool"#hasScale->>S2] AND
S2["urn:cool"#hasAspect->>"urn:aspects"#Age] AND C2["urn:cool"#hasValue->V2] AND
lessorequal(V2,10).

Figure 3 on page 240 also illustrates the distinction between the levels visu-
ally. Note that the context information characterising an entity w.r.t. the aspect
of interest is treated as an entity instance itself when characterized w.r.t. some
quality aspect. The party specifying the relevance condition may be interested in
the respective context information instead of the entities characterized by these
context information. Thus the context provider may offer two separate functions
to distinguish between them. The modification of the F-Logic query would be
as easy as deleting the variable “E” in the FORALL part and any partial term
containing the “E”.

8 Conclusion and Outlook

In the previous sections we introduced the ASC model as a base model to express
how some context information can be used to characterize the state of an entity
concerning a specific aspect. A high degree of formality has been reached by
using ontologies as a fundament for the model, which guarantees good automatic
interpretation capabilities of an implementation of the model. We showed, how
the ASC model fits into a general purpose service model where we made a
context extension, making any service interaction based on that model context-
aware. In our proposed system architecture the ontology reasoner is employed to
determine interrelationship dependencies and relevance conditions, which may



CoOL: A Context Ontology Language to Enable Contextual Interoperability 247

affect a service interaction at any stage. It became very clear that we consider
relevance to be more than just spatial and temporal proximity. Finally we showed
how our model can be used as transfer model by means of a specific example,
and how it is related to DAML-S. Further work has to be done to complete the
latter one when the DAML-S specification itself is officially released and stable.

References

1. Satyanarayanan, M.: Pervasive computing: Vision and challenges. IEEE Personal
Communications (2001) 10–17

2. Strang, T.: Towards autonomous context-aware services for smart mobile devices.
In Chen, M.S., Chrysanthis, P.K., Sloman, M., Zaslavsky, A., eds.: LNCS 2574:
Proceedings of the 4th International Conference on Mobile Data Management
(MDM2003). Lecture Notes in Computer Science (LNCS), Melbourne/Australia,
Springer (2003) 279–293

3. Henricksen, K., Indulska, J., Rakotonirainy, A.: Generating context management
infrastructure from high-level context models. In: Industrial Track Proceedings
of the 4th International Conference on Mobile Data Management (MDM2003),
Melbourne/Australia (2003) 1–6

4. Uschold, M., Grüninger, M.: Ontologies: Principles, methods, and applications.
Knowledge Engineering Review 11 (1996) 93–155

5. Strang, T., Linnhoff-Popien, C.: Service interoperability on context level in ubiq-
uitous computing environments. In: Proceedings of International Conference on
Advances in Infrastructure for Electronic Business, Education, Science, Medicine,
and Mobile Technologies on the Internet (SSGRR2003w), L’Aquila/Italy (2003)

6. Dey, A.K.: Understanding and using context. Personal and Ubiquitous Computing,
Special issue on Situated Interaction and Ubiquitous Computing 5 (2001)

7. Schmidt, A., Laerhoven, K.V.: How to build smart appliances. IEEE Personal
Communications (2001)

8. Schilit, W.N.: A System Architecture for Context-Aware Mobile Computing. PhD
thesis, Columbia University (1995)

9. Gruber, T.G.: A translation approach to portable ontologies. Knowledge Acquisi-
tion 5 (1993) 199–220

10. Decker, S., Erdmann, M., Fensel, D., Studer, R.: Ontobroker: Ontology based
access to distributed and semi-structured information. In et al., R.M., ed.: Semantic
Issues in Multimedia Systems, Boston/USA, Kluwer Academic Publisher (1999)
351–369

11. Barners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American
284 (2001) 34–43

12. Kifer, M., Lausen, G., Wu, J.: Logical foundations of object-oriented and frame-
based languages. ACM 42 (1995) 741–834

13. Borgida, A.: On the relative expressiveness of description logics and predicate
logics. Artificial Intelligence 82 (1996) 353–367

14. Ankolekar, A., Burstein, M., Hobbs, J.R., Lassila, O., Martin, D.L., McIlraith,
S.A., Narayanan, S., Paolucci, M., Payne, T., Sycara, K., Zeng, H.: Daml-s: Se-
mantic markup for web services. In: Proceedings of the International Semantic
Web Workshop. (2001)

15. Garschhammer, M., Hauck, R., Kempter, B., Radisic, I., Roelle, H., Schmidt, H.:
The MNM Service Model — Refined Views on Generic Service Management. Jour-
nal of Communications and Networks 3 (2001) 297–306


	1 Introduction
	2 Model
	2.1 Ontologies and the Context Ontology Language
	2.2 Our ASC Model

	3 Transfer Model
	4 Relation to DAML-S
	5 MNM Service Model and the Context Extension
	6 System Architecture
	7 Relevance
	8 Conclusion and Outlook
	References



