
J.-B. Stefani, I. Demeure, and D. Hagimont (Eds.): DAIS 2003, LNCS 2893, pp. 212–223, 2003.
© IFIP International Federation for Information Processing 2003

A-GATE: A System of Relay and Translation Gateways
for Communication among Heterogeneous Agents

in Ad Hoc Wireless Environments

Leelani Kumari Wickramasinghe1, Seng Wai Loke2,
Arkady Zaslavsky2, and Damminda Alahakoon1

1 School of Business Systems,
Monash University, VIC 3145, Australia

kumari.wickramasinghe@infotech.monash.edu.au
damminda.alahakoon@infotech.monash.edu.au
2 School of Computer Science and Software Engineering,

Monash University, VIC 3145, Australia
seng.loke@infotech.monash.edu.au

arkady.zaslavsky@csse.monash.edu.au

Abstract. The devices in an ad hoc network are expected to perform network
functionalities by themselves due to the absence of proper networking infra-
structure. Generally the routing is multi-hop as nodes may not be within the
wireless transmission range of each other. This paper describes a system named
A-GATE to support the high-level communication needs of agents in such a
network. Agents are used to support the interoperability among devices and the
system is capable of handling heterogeneity in agent platforms. A-GATE pro-
poses a novel routing mechanism for locating the intended recipient of a mes-
sage. The system aims to be self-organizing and self-configuring to suit the dy-
namic nature of ad hoc networks.

1 Introduction

There is a surge of interest in mobile computing mainly due to the continued minia-
turization of mobile devices and their ability to enable mobility. At the same time,
wireless ad hoc networks are becoming quite popular due to their inherent feature of
“the network” at user disposal. People wish to download a roadmap on their way so
that they know what is available in close proximity to them or they wish to receive
driving suggestions on the global positioning system (GPS) of their car [1].

A mobile ad hoc network is formed by a collection of mobile nodes. There is no
established networking infrastructure for the mobile devices to rely on. As a result, all
the networking functionalities have to be performed by the nodes themselves. Mobile
devices take an active role in creating a network infrastructure and routing of data.
Cooperation among nodes is an essential requirement: for example, if two nodes need
to communicate, intermediate nodes are expected to forward the messages [1, 2].

When developing an application for ad hoc environments, there are challenges to
be addressed [3]. The topology of the ad hoc network is dynamic and nodes join and
leave the network spontaneously. There is no central server that knows the nodes’

A-GATE: A System of Relay and Translation Gateways 213

current locations and the networks to which the devices shifted. The cost of commu-
nication is high as the devices have a limited battery power.

Due to the distributed and dynamic nature of mobile ad hoc networks and the po-
tential need for proactive, spontaneous and intelligent interaction, agent technology
has been considered promising for building applications in such ad hoc wireless envi-
ronments [3]. With the spread of distributed systems, a large number of agent systems
has been developed. Each agent system has a different agent platform and it is really
difficult to get agents on heterogeneous systems to work together. Most agent systems
require homogeneity in agent systems for agents to communicate and migrate. When
it comes to agents on ad hoc networks, they should be capable of interacting with
agents on any other device no matter what the communication language or agent plat-
form of the other agent.

Agent interactions are handled by standardizing the language of communication.
KQML [4] and FIPA [5] are two such specifications. Before communication starts
agents should have priori knowledge of where the other agents reside. It is an extra
overhead if the communication initiation agent has to locate the target agent. Infra-
structure support should be capable of locating the target agent, keeping the source
agent away from network level issues.

The aim of this paper is to make it possible for agents running on devices intercon-
nected ad hoc and wirelessly to communicate without concern for underlying network
level issues or heterogeneity of agent platforms. The proposed system, A-GATE, will
take responsibility for locating the target agent and delivering the message success-
fully, regardless of the above heterogeneity.

One possible scenario would be the exchange of business cards among the partici-
pants in a conference room using agents residing on mobile devices. Another scenario
would be an infrastructure-less office environment composed of mobile devices.
Communication among devices can be handled by agents residing in each device.

The approach is explained in the following sections: Section 2 describes some ex-
isting systems that handle heterogenous agent platforms and applicability of mobile
agents for the communication needs of ad hoc networks. The proposed system, A-
GATE is described in detail in Section 3. Experiments done to evaluate the applicabil-
ity of A-GATE as a generic communication system for an ad hoc wireless network
are presented in Section 4. Section 5 discusses the conclusion and future work.

2 Related Work

In most agent systems, agents require a homogeneous platform to migrate. In [6] is
described an approach where migration of agents in a heterogeneous network is pos-
sible by way of a blueprint. The blueprint consists of the agent’s functionality and its
state. The receiving platform regenerates a mobile agent as it migrates to its new loca-
tion. In the A-GATE system only agents on heterogeneous systems are needed to
communicate. The recreation of agents consumes time and resources whereas com-
munication between agents should be faster and simple.

A model based on middleware or an interface between agents and platforms is pro-
posed in [7]. This layer is visible to an application programmer on one side and on the
other side there is a platform dependent layer.

There are guest interfaces of one per platform. According to the platform, the re-
quired java classes have to be downloaded. Our approach is quite similar to this one

214 Leelani Kumari Wickramasinghe et al.

gw
gw

but the required agent platforms are loaded at configuration time as it is much faster
with real time communication. Our goal is to provide a fast and secure communica-
tion support for agents in mobile devices.

A network protocol called Agent Platform Protocol (APP) is designed for agent in-
teractions among heterogeneous platforms [8]. In this approach, agents are free from
the management of network level issues. It uses peer-to-peer communication. But
when agents are deployed in a mobile network, direct peer-to-peer communication
among any two peers is not possible due to the short range coverage of the underlying
wireless protocols. Peers need to forward messages via other peers as A-GATE facili-
tates.

The advantages of using mobile agents for the communication needs of an ad hoc
networks is described in [9]. Mobile agents can function as “wrappers” on messages,
which enable the messages to propagate themselves to the intended destinations. But
the transmission overhead associated with mobility is high. Mobile devices need in-
teroperability with minimum pay load in scenarios such as exchange of business cards
in a conference or infrastructure-less office environments. The system proposed in
this paper has a store and forward concept with a minimal transmission overhead.

3 Proposed System

A-GATE is based on the concept of a gateway (gw), as illustrated in Fig. 1, where
agents on mobile devices interact with a gateway which is located within the reach-
able area of the device, to communicate with any other agent. The importance of this
concept is that both the gateways and
agents reside on mobile devices and
gateways come into existence only
when they are required, as will be
described in Section 3.5.1

The block diagram of a gateway is
shown in Fig 2. It consists of 5 com-
ponents: Message Accepting Relay
Agents, Message Extractor, Message
Translator, Message Re-builder and
Message Dispatching Relay Agents.
The gateway application itself spawns
relay agent platforms depending on the number of agent platforms the system needs to
support while there is only one generic process known as METR consisting of Mes-
sage Extractor, Message Translator, and Message Re-builder units.

A gateway provides two main functionalities to the agents on mobile devices: a
message translation service and a message relaying service. When an agent sends
messages in its own language without considering the language of the target agent,
message translation service takes care of the translation to a language understood by
the destination agent. The message relaying service consists of Message Accepting
Relay Agents and Message Dispatching Relay Agents (see left and right hand corners
of Fig 2). The Message Accepting Relay Agent accepts messages from a source agent
or an intermediate message routing gateway while the Message Dispatching Relay
Agent dispatches the message to the intended recipient.

Fig. 1. A-GATE System Architecture

A-GATE: A System of Relay and Translation Gateways 215

Each gateway maintains two registers: agent registry and gateway registry. Agent

registry maintains information related to the agents reachable from the gateway while
the gateway registry maintains information related to other gateways. The agent regis-
try stores reachable agents’ identifications, their platforms and communication lan-
guages while the gateway registry stores reachable gateways’ identifications. The
process to identify reachable agents and gateways is described in Section 3.4. The
main units of the application are described in Sections 3.1 and 3.2.

3.1 Message Accepting and Dispatching Relay Agents

Generally, agent platforms have an inbuilt messaging system to interact with agents
from homogeneous systems. What is needed is a system in which heterogeneous
agent systems communicate. To accomplish this task, the Gateway application
spawns relay agent platforms to match the agent platforms used by the two communi-
cating mobile devices. Relay agents are there to accept messages or deliver messages
to the source and destination agent respectively. The Message Accepting Relay agent
accepts the message from the source agent and forwards it to the Message Extractor.
Once the message is rebuilt, the Message Dispatching Relay Agent forwards the mes-
sage to the destination agent. The advantage of having platform specific relay agents
is that, when a new agent platform is introduced to the system it is just a matter of
deploying an agent of that platform as a relay agent without needing any modifica-
tions to the generic gateway application.

3.2 Message Extractor, Translator and Re-builder (METR)

Once a message is accepted by a Message Accepting Relay Agent, it is forwarded to
the Message Extractor unit. This unit extracts the message and gets the recipient ad-
dress. Then it checks whether the recipient is a reachable agent by going through its
routing table (information about the routing table can be found in Section 3.4.2). If the
recipient is a reachable agent, it checks for the agent platform of the recipient. If the
agent platform of the sender is different from that of the receiver, the message is sent
to the Translator unit. Otherwise, the message is directly sent to the Dispatching Re-
lay Agent. Message Translator takes the content of the message and translates it to a
format understood by the recipient agent considering the agent platform of the recipi-
ent. Once this is done, the message is forwarded to the Re-builder unit which attaches
the appropriate headers to the message and forwards it to the Message dispatching
relay agent. If the recipient is not reachable, the message is forwarded to a gateway

Fig. 2. Block Diagram of the Gateway Application

Message Accepting
Relay Agent Message Dispatching

Relay Agent

Message
Extractor

Message
Translator

Message Re-
builder

METR

 R
 R

Same?
heterogeneous

homogeneous

216 Leelani Kumari Wickramasinghe et al.

which is capable of delivering the message. Identification of such a gateway is done
by going through the contents in the routing table. But in this case, before forwarding
the message, the Message Extractor unit adds another optional field called “sender’s
agent platform” to the original message, which is needed by any other gateway to
deliver the message in a format understood by the receiving agent. The complete
algorithm of METR is listed below:

extract the sender address
extract the recipient address
check for the recipient address in the agent registry
if an entry found

check for the optional field “sender’s agent platform”
if field found
 extract the senders platform (P1)
else

check whether sender got any entry in the agent registry
 if an entry found
 get the senders platform (P1) from the list entry
 else
 drop the message

 check for the agent platform of the recipient (P2)
 if (P1 != P2)
 translate the message to the P2 platform
 dispatch the message to the Message re-builder
 dispatch the message to the Message Dispatching Relay Agent
if an entry is not found
 go through the routing table
 check for a gateway which can route the message to the recipient
 if a gateway found
 sends the message to that gateway
 else
 drop the message

A somewhat similar algorithm is proposed in [10], where mobile hosts actively
modify their trajectories to transmit messages. It involves trajectory modification of
each host to approach the immediate host within the transmission range of the host,
which is applicable for devices which have automated moving capabilities (for exam-
ple moving cars and robots).

3.3 Address Schema

A unique way of identifying an agent on a mobile device is required. Each agent on a
mobile device is given a unique identity according to the concepts in cellular phones,
where each phone is assigned a unique identity referred to as Numeric Assignment
Module (NAM) [11]. There can be number of agents acting on a single device. There-
fore, an identifier for an agent would be:

Identifier for the mobile device + some identifier for the agent (x)
The ID stored in a digital certificate [12] could be considered as an identifier for

the mobile device as security can also be built upon it.

A-GATE: A System of Relay and Translation Gateways 217

The agent unique identifier could be matched to IP:port relationship in networking.
There are well known port addresses [13] such as 80 for web 21 for ftp and so on.
Value of x could be based on this well known port address technique in networking.
“Well known agents” are required by relating agents to the services they perform such
as information retrieval, database accesses and exchanging information: for example,
if the mobile user has a digital certificate for his email address user1@company.com
and the well known agent for information exchange is 20, then the unique identifier of
the information exchanging agent on user1’s mobile device would be
user1@company.com:20

3.4 Communication Process

Communication is achieved through agents and gateways residing on mobile devices.
Agents are originators and consumers, while gateways are intermediate processes to
transfer messages from originators to consumers. For the system to function properly,
agents should have an understanding about which gateways they can directly commu-
nicate, while gateways should know about other reachable gateways. Facilitating this,
agents send periodic network broadcasts in a neighbour to neighbour fashion on a pre-
identified port address that the gateways and other agents monitor. Similarly, gate-
ways send periodic broadcast messages on another pre-identified port address that
only the gateways monitor.

3.4.1 Agent-Gateway Communication. A broadcast sent by an agent is considered
as a notification of the existence of the agent. It consists of agent identification, agent
platform and communication language. Once the broadcast is received by the gate-
ways, they reply with their identifications. Agent stores this gateway identification to
be used in future communication needs. If the agent receives replies from more than
one gateway, it can either store the address of only one gateway or store all the gate-
way addresses so that, if one gateway goes down or changes its location, it can use the
next gateway to accomplish its communication needs. In the latter case, deciding
factors would be the basis of service such as First Come First Served (FIFS) or the
signal strength of each gateway. Consequently, agents reply to the chosen gateway or
gateways so that gateways can insert
or update the entries in their agent
registries.

3.4.2 Gateway-Gateway Communi-
cation. The broadcasts sent by gate-
ways consist of the gateway identifica-
tion and information about the
reachable agents and gateways. This
broadcast is considered to be a tech-
nique of exchanging routing tables
among gateways. A routing protocol
for ad hoc networks based on routing
tables is presented in [14]. All the
gateways which receive this message update their routing tables accordingly, which
means each gateway on the ad hoc network has a complete picture of how the agents

G
w
1

G
w
3

G
w
2

A

B

C

D

E

F

G

H

I
J

K

L

M

N
O

P

Fig. 3. Agents and Gateways in a Network

218 Leelani Kumari Wickramasinghe et al.

reside on the network at a given time. Gateways are proactive, meaning when a
sender needs to send a message the next hop to the intended recipient is already
known by the gateways. Maintaining the complete routing table is a reasonable ap-
proach as there are a limited number of devices on the ad hoc network.

Fig. 3 outlines the concept of routing tables. If it is assumed that the agents C and
D are reachable by gateways 1 and 2, agent G is reachable by gateways 1 and 3, agent
H is reachable by gateways 2 and 3 and agent F is reachable by all three gateways. In
addition, gw1 and gw2 are reachable and gw2 and gw3 are reachable by each other.

Routing tables of gateways Gw1, Gw2 and Gw3 are presented in Tables 1, 2 and 3
respectively. As shown in Table 1, Gateway 1 (gw1) is within the reachable area of
agents A, C, D, E, F and G, listed under “Direct agents”. Gateway gw2 is located
within the reachable area of Gw1; therefore it is listed under the “Direct gateways”.
Agents B, F, I, H, J and P can reach gw2 while agents M, N, O, L and K can reach
gw3. They have two separate entries as “Via gw2 agents” and “Via gw3 agents”.
Gateway gw3 is contactable via gw2; so gw3 is listed in “Via gw2 gateways”. The
other two routing tables are also based on this concept.

Due to the dynamic nature of the ad hoc network, gateways and agents can appear
and disappear with time and they can move to new locations. Gateways exchange
their routing tables periodically so that each receiving gateway can update their rout-
ing tables to suit the current state of the ad hoc network.

3.4.3 End to End Message Delivery. When an agent needs to send a message, it
sends a delivery request message to the gateway it is registered with, or to one of the
gateways it got registered with. The message consists of the sender, intended recipient
and the content to be delivered. As with any other device in an ad hoc network, gate-
ways may appear and disappear. Therefore, when a gateway receives a delivery re-
quest, it sends an acknowledgement back to the sender to indicate it has received the
delivery request. But the acknowledgement does not guarantee an end-to-end delivery
of the message. The delivery of the message is handled as described in the Sec-
tions 3.1 and 3.2.

Table 1. Routing Table of Gw1 Table 2. Routing Table of Gw2

Direct agents A, C, D, E, F, G
Direct gateways gw2
Via gw2 agents B, F, I, H, J, P
Via gw3 agents M, N, O, L, K
Via gw2 gateways gw3

Table 3. Routing Table of Gw3

Direct agents G, M, N, O, L, K, H, F
Direct gateways gw2
Via gw1 agents A, C, E
Via gw2 agents B, D, P, C, I, J
Via gw2 gateways gw1

Direct agents B, D, P, C, F, I, H, J
Direct gateways gw1, gw3
Via gw1 agents A, E, G
Via gw3 agents G, M, N, O, L, K

A-GATE: A System of Relay and Translation Gateways 219

3.5 Gateways

Gateway is the main application which handles the communication process. It resides
on the mobile device and come into existence only when needed as described in Sec-
tion 3.5.1. Once a gateway comes into existence, how to retain it for further commu-
nication needs is explained in Section 3.5.2 and deciding factors for a gateway to shut
down is explained in Section 3.5.3. Gateways can be used for load balancing as de-
tailed in Section 3.5.4.

3.5.1 Creation of Gateways. When an agent needs to communicate, it usually
generates the message and sends it to a gateway it is registered with. But if the agent
has not received a reply from any of the gateways for its initial broadcast, it will retry
with the same broadcast in random time delays. After three such consecutive
attempts, if there is no reply and if there is any mobile device within the reachable
area, the device itself can voluntarily become a gateway.

Using an arbitrary node ‘X’ intending to communicate with the node ‘Y’, if the
node X has not registered with a gateway at time t1, it sends a network broadcast
informing it of its existence. Then it waits for some time to receive a reply from the
gateway. After waiting for a random time period, if it does not get any reply it will do
another broadcast for the second time at time t4. If still no reply, then a third broad-
cast is done at time t8. If the same condition remains, it will listen to check whether
there is any notification of existence messages from other devices in the network. If
there are any such devices, X would voluntarily become a gateway and send a net-
work broadcast informing its existence as a gateway.

Also if a node detects there exist two gateways which do not know about each
other then that node should become a gateway. This is needed in order to facilitate the
communication between the nodes which have got registered with one of the two
gateways. To determine whether one gateway knows about other one, the node can try
to send a message to one gateway via other one. If the first gateway drops the mes-
sage, then that means there is no route from that gateway to the second one and vice
versa and the node itself can become a gateway.

3.5.2 Retention of Gateways. Once a gateway is formed it is better to retain it for
some time as a gateway for the other devices on the network to communicate with.
But in an ad hoc network where all the nodes do not belong to the same authority,
each node tries to maximise the benefits it receives from the network. Perhaps nodes
are not willing to provide gateway functionalities to the other nodes. Nodes might
become selfish to save limited resources such as battery power, memory and CPU
cycles. But, considering the network as a whole, gateway functionality is essential.

The nuglet counter concept described in [15] can be considered as a technique for
retaining gateways. If a device voluntarily becomes a gateway it will earn 3 nuglets.
That means it can send 3 of its own messages without acting as a gateway to other
agents. As long as the gateway has enough nuglets it can send its own messages.
Whenever it sends its own message the nuglet counter gets decreased. But it can earn
more nuglets by acting as a gateway to other messages. This would become useful if
the device acting as a gateway knew that it may want to send more of its own mes-
sages in the near future. In that case, till the time comes, it can collect nuglets by be-
ing a gateway to the neighbouring devices.

220 Leelani Kumari Wickramasinghe et al.

3.5.3 Shut down of Gateways. Two situations have been identified for shutting down
a) Isolated gateways: In an ad hoc network, as each device can move, gateways can

get isolated. If a gateway does not receive any notifica-
tion of existence broadcasts it is an indication as to no
neighbouring devices within the reachable area of that
gateway. Once a gateway identifies itself as an isolated
device it can terminate its functionality and shut down.

b) Redundant gateways: There can be situations
where more than one device is acting as a gateway to
the same set of nodes as shown in Fig 4. As all the
agents are within the reachable area of each gateway, it
is enough to have one gateway rather than two. Gate-
ways themselves can identify this issue by going
through their routing tables. In that case, they can
negotiate with each other and come to a conclusion as to which gateway to shut down.
Metrics to consideration could be the available resources, the processing power and
memory.

3.5.4 Load Balancing Using Gateways. If it is assumed that, after the negotiation,
gw2 went down, but later gw1 finds that there is a huge traffic between agents A and
E which is difficult to be handled alone by gw1, it can send a disaster message indi-
cating it is overloaded. In that case gw2 or some other device can come into existence
to balance the load.

4 Experiments

To evaluate A-GATE as a generic agent interaction system, the gateway application
was implemented for the process of exchanging business cards in an ad hoc network.
Heterogeneous agent systems, Grasshopper [16] and Kaariboga [17] were used as the
test agent platforms. Grasshopper is a commercial agent platform while Kaariboga is
an open source agent platform.

4.1 Implementation

The system consists of a Message class which needs to be used by the agent systems
to send messages. This Message class is portable to many programming languages. At
the initial implementation level, message class contains three main attributes: sender,
receiver and content.

The communication between platform-specific relay agents and gateway applica-
tion is handled via TCP/IP sockets. The system is implemented on java platform using
java socket programming [18] for communication. Relay agents and gateway applica-
tion listen on specific ports so that whenever a relay agent receives a message, it can
forward it to METR. Similarly once the address resolution for routing and translations
are done at METR, it can forward the message to the correct platform specific agent
on the receiving side. Fig 5 is a simplified diagram of the Grasshopper and Kaariboga
test system.

G
w
1

G
w
2

A

B

C

D

E

Fig. 4. Redundant Gateways

A-GATE: A System of Relay and Translation Gateways 221

For testing, a generic message class was imported to both agent platforms. Using

the agent creation concepts in Grasshopper platform, a dynamic client agent and a
dynamic server agent were created to act as the message sender and the corresponding
message accepting relay agent respectively. Changes had to be made to IDynam-
icServerAgent.java and IDynamicServerAgentP.java to use the generic message class.
Similarly a message receiver and message sender agents were created in the Kaari-
boga platform. KaaribogaMessage.java class was configured to handle the messages
of our generic message class. Fig 6 illustrates Gateway application, where a Grass-
hopper agent on one device sends the business card details to a Kaariboga agent in
another device.

4.2 Performance Testing

To evaluate the performance of A-GATE, it was tested with the traditional client
server architecture as it can support agent communication. The result was encourag-
ing as both the systems take the same amount of time to send a message from a source
agent to destination agents. In addition, the byte overhead of the generic message
class is limited to the two address fields: senders and receivers, which is acceptable
with any communication system. Currently the system is being tested in a network
with around 50 nodes (some of which are mobile) and the performance has to be
evaluated as to what happens when the number of gateways is increased. There
should be a threshold number of gateways after which the performance of the system
would not be significant.

5 Conclusion and Future Work

The A-GATE system, as presented in this paper can be used for the agents on an ad
hoc network to communicate without concern for the underlying network level issues
or heterogeneity of agent platforms. The technique used for creating, retaining and
shutting down gateways provides a novel solution to the infrastructure-less ad hoc
networks where the devices on the network have to handle all the required networking
functionalities. We believe our work complements existing work on low level ad hoc
networking, as our work is at the application or agent level, where more sophisticating
reasoning concerning when and how to relay and high level semantics of translations
can be considered.

Message Extractor, Trans-
lator, Re-builder (METR)

Sender:
Grasshopper

Agent
Relay agent on Grasshopper

platform – listens on port
7070

Listens on port
5050

Relay agent on Kaariboga
platform – listens on port

6060

Socket
communication

Receiver:
Kaariboga Agent

Fig. 5. Test System with Grasshopper and Kaariboga Agents

222 Leelani Kumari Wickramasinghe et al.

Fig. 6. Screen Output of Gateway Application

The immediate target is to evaluate the performance of the system in a large net-

work of mobile devices connected via short-range wireless networks. The amount of
flooding in the network when there is large number of devices in the network needs to
be measured.

Future work will include building a Semantic Translator Engine and a Content
Translator Engine to the Message Translator unit of the Gateway. Semantic Translator
Engine is to handle multilingual messages where both the performative and content
need to be translated. Once it is done agents can communicate in their native lan-
guage, be they English, Chinese or Japanese. Content Translator is to handle the con-
tents of the message, for example to translate the “Prolog facts” in a message to “KIF
facts”.

References

1. Perkins, C.E., Ad hoc networking. 2001, Boston: Addison-Wesley. xii, 370.
2. Corson, S., J. Freebersyser, and A. Sastry, Mobile Networks and Applications (MONET).

Special Issue on Mobile Ad Hoc Networking, 1999.
3. "Agents in Ad Hoc Environments", http://www.fipa.org/docs/input/f-in-00068/ f-in-

00068A.htm

A-GATE: A System of Relay and Translation Gateways 223

4. Finin, T., Y. Labrou, and J. Mayfield, KQML as an agent communication language, in
Software Agents, J. Bradshaw, Editor. 1997, MIT Press: Cambridge. p. 291-316.

5. "Foundation for Intelligent Physical Agent Specification", http://www.fipa.org,
6. Brazier, F.M.T., et al. Agents, interactions, mobility and systems: Agent factory: genera-

tive migration of mobile agents in heterogeneous environments. in 2002 ACM symposium
on Applied computing. 2002. Madrid, Spain: ACM Press New York, NY, USA.

7. Magnin, L., et al. Our guest agents are welcome to your agent platforms. in 2002 ACM
symposium on Applied computing. 2002. Madrid, Spain: ACM Press New York, USA.

8. Takahashi, K.i., G. Zhong, and D. Matsuno. Interoperability between KODAMA and
JADE using Agent Platform Protocol. in The First International Joint Conference on
Autonomous Agents and Multi agent systems. 2002. Italy.

9. Kotz, D., et al., AGENT TCL: targeting the needs of mobile computers. Internet Comput-
ing, IEEE, 1997. 1(4): p. 58-67.

10. Qun Li and D. Rus. Message relay in disconnected ad-hoc networks. in Mobility and
Wireless Access Workshop, 2002. MobiWac 2002. International. 2002.

11. Bates, R., Cellular Communications, in Wireless networked communications: concepts,
technology, and implementation. 1995. p. 73-95.

12. Feghhi, J., J. Feghhi, and P. Williams, Digital Certificates:Applied Internet Security. 1999:
Addison-Wesley.

13. "Port Numbers", http://www.iana.org/assignments/port-numbers,
14. Basagni, S., et al. A distance routing effect algorithm for mobility (DREAM). in Fourth

Annual ACM/IEEE International Conference in Mobile Computing and Networking (Mo-
biCom). 1998. Dellas,TX.

15. Buttyan, L. and J.-P. Hubaux, Stimulating cooperation in self-organizing mobile ad hoc
networks. MONET Journal of Mobile Networks, 2002.

16. "Grasshopper - The Agent Platform", http://www.grasshopper.de./,
17. "Kaariboga Mobile Agents", http://www.projectory.de/kaariboga/,
18. Heaton, J., Programming Spiders, Bots, and Aggregators in Java. 2002: Richard Mills.

	1 Introduction
	2 Related Work
	3 Proposed System
	3.1 Message Accepting and Dispatching Relay Agents
	3.2 Message Extractor, Translator and Re-builder (METR)
	3.3 Address Schema
	3.4 Communication Process
	3.5 Gateways

	4 Experiments
	4.1 Implementation
	4.2 Performance Testing

	5 Conclusion and Future Work
	References

