Middleware Support
for Non-repudiable Transactional Information
Sharing between Enterprises

Nick Cook!, Santosh Shrivastava'!, and Stuart Wheater?

1 School of Computing Science
University of Newcastle, UK
{nick.cook,santosh.shrivastava}@ncl.ac.uk
2 Arjuna Technolgies, Newcastle, UK
stuart.wheater@arjuna.com

Abstract. Enterprises increasingly use the Internet to offer their own
services and to utilise the services of others. An extension of this trend is
Internet-based collaboration to form virtual enterprises for the delivery
of goods or services. Effective formation of a virtual enterprise will re-
quire information sharing across organisational boundaries. Despite the
requirement to share information, the autonomy and privacy require-
ments of enterprises must not be compromised. This demands strict
policing of inter-enterprise interactions, including non-repudiable access
to shared information. For a member of a virtual enterprise, a typical
requirement is the ability to inspect/modify shared information together
with private information within a single ACID transaction. At the same
time, inspection/modification of the shared information should both gen-
erate non-repudiation evidence and be consistent with inter-enterprise
agreements. The paper describes how information sharing middleware
can be enhanced with distributed transaction support to perform regu-
lated transactional information sharing. Design and implementation of a
prototype Java middleware is presented.

Keywords: middleware; inter-enterprise interaction; transactions; secu-
rity

1 Introduction

As noted above, the formation of and continued interaction within a virtual en-
terprise (VE) demands regulated information sharing. In this context, each party
to a multi-party interaction requires: (i) that their own actions on shared infor-
mation meet locally determined, evaluated and enforced policy, and that their
legitimate actions are acknowledged and accepted by the other parties; and (ii)
that the actions of the other parties comply with agreed rules and are irrefutably
attributable to those parties. These requirements imply the collection, and ver-
ification, of non-repudiable evidence of the actions of parties who share and
update information. We have implemented distributed object middleware called

J.-B. Stefani, I. Demeure, and D. Hagimont (Eds.): DAIS 2003, LNCS 2893, pp. 125-[[32] 2003.
© IFIP International Federation for Information Processing 2003

126 Nick Cook, Santosh Shrivastava, and Stuart Wheater

B2BObjects [] that both presents the abstraction of shared state and meets
these requirements by regulating, and recording, access and update to shared
state. It is assumed that each enterprise has a local set of policies for informa-
tion sharing that is consistent with an overall information sharing agreement
(business contract) between the enterprises. Multi-party coordination protocols
ensure that the local policies of an enterprise are not compromised despite fail-
ures and/or misbehaviour by other parties; and that, if no party misbehaves,
agreed interactions will take place despite a bounded number of temporary net-
work and computer related failures. Each party validates any proposed update
to shared information and the update is only accepted if all parties agree to it.

The shared information of a VE does not exist in isolation. There are de-
pendencies between private information held by each member of a VE and the
shared information that is held in common. A given enterprise is also likely to
be involved in more than one VE, resulting in dependencies between information
that is shared in the context of different VEs. To manage these dependencies,
support is required to make updates to shared information contingent on suc-
cessful completion of updates to related private information (and vice versa).
From the viewpoint of each member, their Business-To-Business (B2B) appli-
cation state can be seen as the combination of any private information that is
related to the B2B interaction and the information that is shared with the other
members. The requirement then is to maintain the integrity and consistency
of B2B application state by ensuring that updates to shared information are
consistent with updates to private information and that such updates can be
completed transactionally (atomically).

The paper presents a novel distributed middleware for updating B2B appli-
cation state while meeting the above regulatory and consistency requirements.
The main contribution of this work is the development of middleware with the
ability to manage transactions that span private and shared resources at the
same time as observing inter-enterprise agreements that govern update to the
shared resources. The middleware is designed to provide local autonomy for each
enterprise, within the constraints imposed by the need to share information, and
interoperability between and within enterprises. The shared resources partici-
pate in transactions using the same mechanism as for private (transactional)
resources (such as enterprise databases). Update to shared resources is subject
to independent validation by the members of the VE who together own the
resources.

Section [2 provides an overview of B2BObjects. Section [J presents the exten-
sion to support distributed transactions over B2B application state. A related
technical report provides a more detailed description of the middleware with
an example application scenario.

2 Overview of B2BObjects Middleware

This section provides an overview of the B2BObjects middleware, including a
brief introduction to the Java API of the experimental implementation. The mid-

Middleware Support for Non-repudiable Transactional Information 127

(a) Logical view (b) Physical realisation
[] Enterprise @ B2BObject <--|nvocation

i} Virtual space © Application client < Object coordination

Fig. 1. B2BObjects-based interaction

dleware addresses the requirement for dependable information sharing between
enterprise. The abstraction of shared objects is used to represent the information
that enterprises wish to share (or “jointly own”). Coordination protocols pro-
vide multi-party agreement on access to and update of object state. As shown
in Fig. [, the logical view of shared objects in a virtual space is realised by
the regulated coordination of actions on object replicas held at each enterprise.
Application-level invocations on local copies of B2BObjects are intercepted by
the middleware and state changes coordinated with remote enterprises. A non-
repudiable two-phase commit protocol is used to coordinate object state as fol-
lows: the proposer of a new state dispatches a state change proposal, comprising
the new state and the proposer’s signature on that state, to all other parties
for local (application-level) validation. Each recipient produces a response com-
prising a signed receipt and a signed decision on the (local) validity of the state
change. All parties receive the collected responses and a new state is valid if the
collective decision represents unanimous agreement to the change. The signing
of evidence generated during state validation binds the evidence to the relevant
key-holder. The actions of honest parties cannot be misrepresented by dishon-
est parties and invalid state cannot be imposed on local object replicas. The
evidence generated is stored systematically in local non-repudiation logs. Sys-
tematic check-pointing of object state provides recovery, in the event of failure,
and rollback, in the event of invalidation by one or more parties. Certificate
management and non-repudiation services provide: authentication of access to
objects; verification of signatures to actions on objects; and logging of evidence
of each enterprise’s actions.

2.1 B2BObjects API

This brief introduction to the B2BObjects API concentrates on the aspects that
provide hooks for transactional update to B2BObjects. The relevant classes of
the API are: B2BObject — the augmentation of an application object to en-
sure access is mediated by the middleware; and B2BObjectController — the
local interface to configuration, initiation and control of information sharing.
A B2BCoordinator executes the coordination protocols between objects. The

128 Nick Cook, Santosh Shrivastava, and Stuart Wheater

B2BObject interface is a wrapper for application objects that allows the con-
troller to obtain object state, to initiate local validation of proposed state changes
and to install newly validated object state following successful state coordina-
tion. The relevant part of the controller interface is:

public interface B2BObjectController {

void enter(); // start of scope of access to state
void examine(); // read in this scope

void overwrite(); // completely overwrite in this scope
void update(); // partial update in this scope

void leave(); // end of scope of access to state

-

Given an application object (appObject) with a typical update operation:
setAttribute(SomeType attr), the corresponding B2BObject wrapper code is:

setAttribute(SomeType attr) {

controller.enter(); // start of scope
controller.overwrite(); // will overwrite object state
appObject.setAttribute(attr); // set the appObject attribute
controller.leave(); // end of scope, trigger coordination

}

This code can be auto-generated if the application object’s read/write methods
are identified. From the application viewpoint, the B2BObject setAttribute
method is invoked in the same way as for appObject.

The controller enter and leave operations are used to demarcate the scope
of access to object state. These calls may be nested to allow the “rolling-up” of
a series of state changes into a single (atomic) coordination event. If overwrite
has been called within the current state change scope, then invocation of the
final leave triggers execution of the state coordination protocol. If a proposed
change is invalidated, the proposer’s local object state is rolled-back. A similar
process applies to update of a part of object state (indicated by the update
operation) as opposed to overwrite of the whole state. The examine operation
indicates that object state will be read but not written in the current scope. The
controller operations shown provide transactional access to all copies of a single
B2BObject and, as described in Section B.2, are the hooks for transactional
update across multiple B2BObjects.

3 Support for Distributed Transactions

Transactions have long been used to ensure the consistency of shared informa-
tion despite concurrent accesses and system failures — delivering the well-known
ACID properties of Atomicity, Consistency, Isolation and Durability. The Java
Transaction API (JTA) [B] is a standard interface to Java-based transaction
management that includes the XAResource mapping of the XA standard [4]
for participation in distributed transactions. In this section we describe a JTA-
compliant transaction adapter that presents B2BObjects as transactional re-
sources to a Transaction Manager via an XAResource interface. In this way, dis-

Middleware Support for Non-repudiable Transactional Information 129

tributed transactions can be combined with multi-party coordination of shared
state. First we outline the principles of the state transitions that underly B2B-
Object support for distributed transactions and then we provide an overview of
the Java-based transactional infrastructure.

3.1 OQutline of Transactional Support

To support transactions, the notion of B2BObject state, .S, is extended to include
both the prospective new state of the object (prospState) and the retrospective
agreed state of the object (retroState). That is, for state coordination purposes,
B2BObject state is described by the tuple: S = (s, s;), where s; is the prosp-
State and s; is the retroState. Given this description of object state, we can
say that: an object is in a committed state, if j = i (the prospState is the
retroState); and an object is in a prepared state, if prospState has been coor-
dinated (and validated) and j # i (the prospState and retroState are different).
The following state transitions are then permitted:

1 committed to committed : (s;, $;) — (Six1, Sit1)

(
2 committed to prepared : (siy 8i) = (Sit1, Si)
3 prepared to prepared : (Sit1, Si) = (Siva, Si)
4 prepared to committed : (Sit1, Si) = (si, Si) (abort)
5 prepared to committed : (Si+1, 8i) = (Sit+1, Sit1) (commit)

Transition 1 describes the behaviour of B2BObjects in [I] — transition from one
committed state to the next with no intermediate prepared state. Transitions 2
and 3 to prepared states can be mapped to the prepare phase of a distributed
transaction. In both cases, the retroState is unchanged and represents the state
to which the object will ultimately return if the prospState is subsequently re-
voked. A prospState may be revoked because a transaction coordinator requests
rollback of resources participating in a transaction or because a subsequent new
state proposal is invalidated. Transitions 4 and 5 can be mapped to completion
of a transaction: abort (or rollback) to the previously committed state (s;, $;);
and commit of a new committed state (s;y1, S;+1), respectively. The difference
between a prepared state and a committed state is that the former is revocable.
If a prepared state is revoked, the object returns to the most recently committed
state (identified by the retroState). If a prepared state is committed, the new
retroState is the current prospState.

The following pseudo-code illustrates how the above transitions, demarcated
by enter/leave blocks, can be combined to perform a distributed transaction
across two B2BObjects: objS and objT. At the start of the transaction the
objects are in states (s;, s;) and (t;, t;), respectively. The code is annotated
with intermediate (prepared) states and the successful commit of final states.

// start transaction tzId

enter(objs, txId)

enter (objT, txId)

// perform state changes

130 Nick Cook, Santosh Shrivastava, and Stuart Wheater

enter (objSs)

overwrite(objS) // locally change objS to prospState: S;41

leave (objS) // trigger coordination to prepared state: (S;i11, S;)
enter (objT)

overwrite(objT) // locally change objT to prospState: tji
leave (objT) // trigger coordination to prepared state: <tj+1, tj>

// Perform further state changes. For each enter/leave block,
// state is coordinated so that, if all changes succeed,
// 0bjS is in state: <Si+’ma 8;) and objT is in state: <tj+n, tj>

// commit transaction tzId
leave(objS, txId, TX_SUCCESS)

// trigger coordination to committed state: <51‘+m7 5i+m>
leave(objT, txId, TX_SUCCESS);

// trigger coordination to committed state: (tjin, tjin)

The prepare phase of the transaction corresponds to the following transitions:

obj S : (si, 8i) = (Six1, Si) = =+ = (Sitm, Si)
objT : (tj, tj) — (tjv1, tj) = -+ = (Ljsn, b))

The final transitions to states (Siym, Si+m) and (tj4n, tj4n) correspond to the
successful commit phase. In contrast, any failure or invalidation of a transition
to a prepared state for an individual object would result in transaction abort
and the return of each object to the committed states: (s;, s;) and (t;, t;).
Any party’s agreement to a transition to a prepared state, for example
(84, 8i) — (Si+1, Si), implies: (i) application-level validation of prospState s;41
and, therefore, of committed state (s;11, s;+1); and (ii) their commitment to be
able to subsequently install either of the related committed states: (s;, s;) or
(8i+1, Si+1)- That is, to have made persistent the new prospState, s; 11, and to
be able to rollback the prospState to s;. Thus transitions 4 and 5, from prepared
to committed states, do not require application-level validation. Nor is it nec-
essary to transfer the physical state of the object being coordinated for these
transitions (since each party has already committed to local persistence of the
relevant state). The only state that is physically transfered to remote parties is
the new prospState for transitions 1, 2 or 3. Unique state transition identifiers
are used to reference the retroState for each transition and the prospState for
transitions 4 and 5. Coordination from a prepared to a committed state is re-
quired to ensure that all parties maintain a consistent view of object state and to
generate evidence that the committed state is the currently agreed object state.

3.2 B2BObjects as Transactional Resources

This section describes the infrastructure to facilitate the participation of B2B-
Objects as JTA-compliant, transactional resources in distributed transactions.
The essential requirements are: (i) that a JTA transaction manager can control

Middleware Support for Non-repudiable Transactional Information 131

Transactional B2B .
Application Transaction
Manager
B2B Application AppObject] XAResource
- B2BObject
AppObject B2BObi
bject B2BObjectTXAdaper
B2BObjectController B2BObjectController
B2BCoordinator B2BCoordinator

(a) B2BObject-enabled application (b) Transactional B2BObject-enabled application

Fig. 2. B2BObjects transaction layer

the participation of B2BObjects in transactions through a transaction adapter
that exports the XAResource interface; and (ii) that the underlying B2BObject
state management and coordination mechanisms can be instrumented to support
this participation. The approach is to provide a transactional layer between the
underlying layers of the middleware and the transactional application; and to
parameterize the B2BObjectController operations described in Section to
effect the state transitions described above.

Fig. [@(a) shows the B2BObject interface as a wrapper for an application
object. The B2B application uses the AppObject interface for operations on
the object. The B2BObjects middleware provides the regulated state coordina-
tion described in Section 2] Fig.[2(b) shows the insertion of a transaction layer
to support transactional applications. The application uses the same AppOb-
ject interface to the underlying object. The B2BObjectTX Adapter exports an
XAResource interface to a Transaction Manager and instruments the controller
to ensure the coordinator executes appropriate state transitions.

The B2BObject TXAdapter generates a proxy for the application object be-
ing coordinated to ensure that, in transactional context, all operations on the
object are mediated by the adapter. It maintains the association of the current
transaction with the object and propagates this association to the controller.
To meet transactional requirements, the adapter maps operations at the XARe-
source interface to controller operations. The transaction-aware controller guar-
antees the persistence of B2BObject state to facilitate recovery and rollback;
and the persistence of transaction state information.

To ensure that application-level operations on an instance of a B2BObject
are mediated by a transaction adapter, a B2BObject TXAdapterFactory instan-
tiates a single B2BObject TXAdapter for a given B2BObject. The B2BObject-
TXAdapter interface provides operations for the application to obtain an in-
stance of the object proxy and for the Transaction Manager to obtain the
adapter’s XAResource instance.

To provide transaction-awareness, the B2BObjectController interface shown
in Section[2.1]is extended to include parameterised versions of enter and leave
to associate a transaction identifier with these operations. The extension also
includes methods for explicit object locking and, for example, to support XARe-
source operations to manage heuristically completed transactions and recovery
of prepared transactions. The XAResource interface provided by the B2BObject-

132 Nick Cook, Santosh Shrivastava, and Stuart Wheater

TXAdapter includes start and end operations to demarcate work on behalf of
a given transaction; and prepare, commit and rollback operations for partici-
pation in the transaction two-phase commit protocol.

4 Concluding Remarks

We are not aware of other work that integrates distributed transactions with
regulated information sharing between enterprises. The work of Wichert et al [5]
is close to our approach to systematic generation of non-repudiation evidence.
They provide non-repudiable RPC but do not address validation of state changes
for information sharing. The work of Minsky et al on Law Governed Interaction
(LGI) [6] supports interaction between organisations governed by global pol-
icy. It represents one of the earliest attempts to provide coordination between
autonomous organisations. However, support for transactions is not available.
Another approach to the automated control of interactions through agreements
between enterprises is IBM’s tpaML language for B2B integration [7]. Their
model of long-running conversations, the state of which is maintained at each
party, is similar to our notion of shared interaction state.

Acknowledgements

This work is part-funded by the UK EPSRC under grant GR/N35953/01 on
“Information Co-ordination and Sharing in Virtual Environments”; by the EU
under project IST-2001-34069: “TAPAS (Trusted and QoS-Aware Provision of
Application Services)”; and by the UK e-Science project “GridMist”.

References

1. Cook, N., Shrivastava, S., Wheater, S.: Distributed Object Middleware to Support
Dependable Information Sharing between Organisations. In: Proc. IEEE Int. Conf.
on Dependable Syst. and Networks (DSN), Washington DC (2002)

2. Cook, N., Shrivastava, S., Wheater, S.: Middleware Support for Non-repudiable
Transactional Information Sharing between Enterprises. Technical Report 814,
School of Computing Science, Univ. Newcastle (2003)

3. Cheung, S., Matena, V.: Java Transaction API (JTA version 1.0.1B). Java Speci-
fication (2002)

4. The Open Group: Distributed Transaction Processing: The XA Specification.
X/Open CAE Specification XO/CAE/91/300, X/Open Company Ltd. (1991)

5. Wichert, M., Ingham, D., Caughey, S.: Non-repudiation Evidence Generation for
CORBA using XML. In: Proc. IEEE Annual Comput. Security Applications Conf.,
Phoenix, Arizona (1999)

6. Minsky, N., Ungureanu, V.: Law-Governed Interaction: A Coordination and Con-
trol Mechanism for Heterogeneous Distributed Systems. ACM Trans. Softw. Eng.
and Methodology 9 (2000) 273-305

7. Dan, A., Dias, D., Kearney, R., Lau, T., Nguyen, T., Sachs, M., Shaikh, H.:
Business-to-business integration with tpaML and a business-to-business protocol
framework. IBM Syst. J. 30 (2001) 68-90

	1 Introduction
	2 Overview of B2BObjects Middleware
	2.1 B2BObjects API

	3 Support for Distributed Transactions
	3.1 Outline of Transactional Support
	3.2 B2BObjects as Transactional Resources

	4 Concluding Remarks
	References

