
Behavioural Contracts for a Sound Assembly
of Components

Cyril Carrez1, Alessandro Fantechi2,3, and Elie Najm1

1 Ecole Nationale Supérieure des Télécommunications, Département INFRES,
46 rue Barrault, F-75013 Paris, France,
{cyril.carrez, elie.najm}@enst.fr

2 Universitá di Firenze, Dipartimento di Sistemi e Informatica,
Via S. Marta 3, I-50139 Firenze, Italy,

fantechi@dsi.unifi.it
3 ISTI – CNR,

Via G. Moruzzi 1, I-56124 Pisa, Italy

Abstract. Component based design is a new methodology for the con-
struction of distributed systems and applications. In this new setting, a
system is built by the assembly of (pre)-existing components. Remains
the problem of the compositional verification of such systems. We inves-
tigate methods and concepts for the provision of “sound” assemblies. We
define an abstract, dynamic, multi-threaded, component model, encom-
passing both client/server and peer to peer communication patterns. We
define a behavioural interface type language endowed with a (decidable)
set of interface compatibilty rules. Based on the notion of compliance
of components to their interfaces, we define the concepts of “contract”
and “contract satisfaction”. This leads to the notion of sound assemblies
of components, i.e., assemblies made of contracted components interact-
ing through compatible interfaces. Sound assemblies possess interesting
properties like “external deadlock freeness” and “message consumption”.

1 Introduction

Behavioural type systems have been defined in recent years with the aim to be
able to check the compatibility of communicating concurrent objects, not only
regarding data exchanged, but also regarding the matching of their respective be-
haviour [Nie95], [KPT99], [NNS99]. This check finds a natural application in the
verification of compatibility of components, as the recent advances in Software
Engineering are towards component-based design: a software system is developed
as a construction based on the use of components connected together either by
custom-made glue code, or by resorting to a standard platform supporting com-
position and communication, such as CORBA or .NET. The compatibility of a
component with its environment has to be guaranteed before it is deployed.

Formal verification techniques can therefore play a strategic role in the devel-
opment of high quality software: in the spirit of the so called lightweight formal
methods, the software engineer who connects components is not bothered by a

H. König, M. Heiner, and A. Wolisz (Eds.): FORTE 2003, LNCS 2767, pp. 111–126, 2003.
c© IFIP International Federation for Information Processing 2003

112 Cyril Carrez, Alessandro Fantechi, and Elie Najm

formal description of the software artifact he is building, but gets a guarantee
about the absence of mismatches between components from the underlying for-
mally verified components and from the formal verification algorithms that check
type compatibility. An even more demanding example is mobile code, where one
needs the guarantee that a migrating component does not undermine the cor-
rectness of the components that it reaches. This check has to be performed at
run-time, at the reception of the migrating component, and hence has to be
performed very efficiently. Typing of mobile agents has already been addressed
for example in [HR02], but we aim at a more abstract behaviour of the compo-
nent which is sufficient to efficiently prove that desired properties of the global
configuration of components are not endangered by the composition.

In this work we define a framework in which a component can exhibit several
interfaces through which it communicates with other components. Each interface
is associated a type, which is an abstraction of the behaviour of the component.
Our type language (for interfaces) introduces modalities on the sequences of
actions to be performed by interfaces. Using must and may prefixes, it allows
the distinction between required messages and possible ones. The complexity
of the interface typing language is kept deliberately low, in order to facilitate
compatibility verification among interfaces. We do not give a specific language for
components, but we rather give an abstract definition, which wants to be general
enough to accomodate different languages: indeed, components are abstracted
as a set of ports, by which they communicate, together with a set of internal
threads of execution, of which we observe only the effects on the ports. Under
given constraints on the use of ports inside components, it is shown that a
configuration made up of communicating components satisfies well-typedness
and liveness properties if the components honour the contracts given them by
their interfaces, and the communicating interfaces are compatible.

Our work is in part inspired by the work by De Alfaro and Henzinger [dAH01],
who associate interface automata to components and define compatibility rules
between interfaces. Our approach, which belongs instead to the streamline of
process algebraic type systems, brings in the picture also the compliance be-
tween components and interfaces: the interface is thought as a contract with
the environment, that the component should honour. We also aim at limiting
as much as possible the complexity of the interface compatibility check, which
can even be needed to be performed at run-time. The work on Modal Transition
Systems by Larsen, Steffen and Weise [LSW95] has inspired our definition of
modalities and the way interface compatibility is checked. The guarantee of the
satisfaction of well-typedness and liveness properties has been dealt by Najm,
Nimour and Stefani [NNS99], and we have inherited their approach in showing
how the satisfaction of compatibility rules guarantees more general properties.

This paper is structured as follows: in Sect. 2 we show the reference compo-
nent model on which we base the definition (Sect. 3) of our interface language
and the related compatibility rules. In Sect. 4 we give the concept of component
honouring a contract. Sect. 5 describes the properties that can be guaranteed by
sound assemblies of components.

Behavioural Contracts for a Sound Assembly of Components 113

s
s*

x y
x y

2C

x y
yx

C3

u v w c s*

C1

c s*
vu

uv
*

R1 = {u, v, w, c, s∗} P1 = {(u � v), (v � u), (c � s∗)}
R2 = {s∗, x, y} P2 = {(s∗ � ⊥), (x � y)} R3 = {x, y} P3 = {(y � x)}

Fig. 1. An example of a configuration

2 Component Model

2.1 Informal Presentation

Our computational model describes a system as a configuration of communi-
cating components. Each component owns a set of ports, and communication
is by asynchronous message passing between ports. Sending from a port can
only occur if this port is bound to another “partner” port; then, any message
sent from it is routed to this partner port. An unbound port can only perform
receptions (this is the typical case for server ports). We consider dynamic con-
figuations: a component may create new ports and may also dynamically bind
a partner reference to any of his owned ports. In our setting, both peer to peer
and client/server communications can be modelled: when two ports are mutually
bound, they are peers; when the binding is asymmetrical, the bound port is a
client and the unbound port is its server. Figure 1 shows a configuration made
of three components. Note how port c (in C1) is asymmetrically bound to s (in
C2; flag * is used to indicate that reference s is a server), and the peer to peer
binding between ports x and y (in C2, C3), and between u and v (both in C1).

Components are also multi-threaded. We consider here an abstract thread
model, focusing only on external, port based, manifestations of threads. Thus,
an active thread is a chain made of a head port (the active port), and a tail
(the ordered sequence of suspended ports). The thread chain may dynamically
grow or decrease: this happens respectively when the head port is suspended
and the activity is passed to another port, and when the head port is removed
from the chain (because it terminated or became idle) and the port next to the
head becomes active.

Since in this paper we focus on the interface typing issues, we do not provide
a fully-fledged syntax for components. Rather, we define an abstract behavioral
model of components in terms of their observable transitions and their multi-
threaded, port-located, activities. The abstract model defined in this section is
general and independent of any concrete behavioral notation for components.

2.2 Notations for Components

A component is a state, a set of ports, a set of references, and a collection of
threads.

The set of references is noted R, and is ranged over by u, v, w, c, s. Classical
set notation is used for the operations on R; however, we use the unorthodox
R ∪ u notation for the insertion of an element.

114 Cyril Carrez, Alessandro Fantechi, and Elie Najm

The set of ports is noted P. We will, in fact, consider P as a set of mappings
from port references to partner references. We note (u � v) the mapping of port
u to partner v – a port which has no partner is written (u � ⊥). The following
notations will be useful for the manipulation of port mappings:

P[u � ⊥] port u is added to P.
P[u � v] attach the partner v to port u. Overrides the previous partner.
P\u remove the port u from P.
(u � v) ∈ P port u is in P, and is attached to v. We’ll write also u ∈ P to

check only the membership of u to P.
The set of threads, T, reflects the state of the ports of the component and

the dependencies between them. The state of a port present in P is abstracted
to one of : activated or suspended or idle, and one of : sending or receiving or
no action. We formally denote the activity state, uρσ, of a port u, as follows:

ρ =


! u is in a sending state
? u is in a receiving state
0 u has no action

and σ =


a u is active
s u is suspended (by a port)
i u is idle

We do not allow the combination u?s, reflecting that a port waiting for an input
is always active. u?a is an active port waiting for a message. The behavior of
u!a is that it can either send a message or become suspended by another port.
The only allowed behavior for u0a is to give back the thread of control, become
u0i and vanish. We let x, y range over port activity states. We use the notation
x � y which denotes x is suspended by y; this means that the activation of x is
pending until y terminates (y has no action) or passivates (y becomes idle).

T = t1| · · · |tn is a set of parallel threads where a thread t is a sequence
x1 � x2 � · · · � xn. This sequence has the following constraints:

xi = ui!
s iff i < n (all the ports but the last one are suspended)

n > 1 ⇒ xn = unρa
n (a sequence of more than one port ends with an active

port)

The following operations on T are defined (with x = uρσ occuring only once in
T):

T | x add a port with its own thread of execution (i.e. no dependency).
T\u this operation is defined only if u is the head of some thread t ∈ T.

Remove u from t and puts the port next the head in active state.
T[u � v] this operation is defined only if u is the head of some thread t1 ∈ T

and v is in a singleton thread t2 = vρi ∈ T. It changes the state
of u to suspended, adds the new head vρa to t1, and removes t2.
Note that a port can be head of only one thread at a time.

T[uρ′/uρ] modifies the state of a port in P: only ρ changes to ρ′.
T[uρσ→σ′

] changes the activity of a port.
T(u) returns ρσ if uρσ ∈ T.

Behavioural Contracts for a Sound Assembly of Components 115

2.3 Communication Medium

As indicated in the introduction, communication between components is by asyn-
chronous message passing. Thus, a message is first deposited by its sender into a
communication medium and, in a later stage, removed from this medium by its
receiver. The delivery discipline that we adopt is first in first out. We define Com
as a communication abstraction containing a collection of fifo queues, one for
each reference in the component: messages are written to and read from Com.
We define the following notation on Com:

Com[�u] inserts a new queue for reference u.
Com.u the queue for reference u. It is an ordered set of messages

of the form v :M(w̃) where v is the reference of the sending
port, M is the name of the message, and w̃ its arguments.

Com\u the u queue is removed.
Com[u�] remove from the queue associated with u the next mes-

sage.
Com[u � v :M(w̃)] put message v :M(w̃) in the queue associated with u.
Com.u� yields the next message (in queue u) to be treated.

2.4 Component Semantics

A component is defined by: C = B(P,R,T), where:
B is the state of the component.
P,R,T are the ports, references and threads as defined previously.

The rules in Tab. 1 describe the semantics for the components, showing
the transitions a component may perform in a given communication abstrac-
tion. A transition may change the state of the component itself and/or that
of the communication abstraction. The first two rules describe the relation be-
tween the component and Com, for what concerns sending and receiving of
messages: the message is put in, or removed from, the proper queue. CCREAT
and CREMV rules describe the creation and deletion of a port (which imply the
creation/removal of the corresponding queue in Com). CBIND and CUNBIND
are used to respectively attach and detach a partner reference to a port, thus
linking a partner port to a local one. Finally, CACTV and CACTV2 describe
how a port v is activated, respectively when u is suspended by v, or v has its own
thread of execution. DEACTV deactivates a port (i.e. makes it become idle).

2.5 Configuration of Components

When we take into account a configuration made up of several components, we
consider the communication medium Com as shared among the components.
This way, queues are shared and components can communicate through them.

We give in Tab. 2 the communication rule for a configuration with two com-
ponents, in which it is evident that the communication is not synchronous, but
through the Com medium abstraction. Extension to configurations with more
components is straightforward.

116 Cyril Carrez, Alessandro Fantechi, and Elie Najm

Table 1. Rules for component semantics

CSEND
R′ ⊆ R T′ = T[u!/uρ] Com′ = Com[u′ � u : M(ṽ)]

B(P, R, T), Com
u:u′!M(ṽ)−−−−−−→ B′(P, R′, T′), Com′

�

CRECV

P′ = P[u � u′] R′ ⊆ R ∪ {ṽ, u′} T′ = T[u?/uρ]
Com′ = Com[u�]

B(P, R, T), Com
u:u′?M(ṽ)−−−−−−−→ B′(P′, R′, T′), Com′

�

CCREAT

P′ = P[u � ⊥] R′ = R ∪ u
T′ = T | uρi Com′ = Com[�u]

B(P, R, T), Com → B′(P′, R′, T′), Com′ u �∈ P ∧ Com.u = ⊥

CREMV
P′ = P\u R′ = R\u T′ = T\u Com′ = Com\u

B(P, R, T), Com → B′(P′, R′, T′), Com′ �

CBIND
P′ = P[u � v]

B(P, R, T), Com → B′(P′, R, T), Com
v ∈ R ∧ (u � ⊥)

CUNBIND
P′ = P[u � ⊥]

B(P, R, T), Com → B′(P′, R, T), Com
(u � v) ∧ T (u) = ρi

CACTV
T′ = T[u � v]

B(P, R, T), Com → B′(P, R, T′), Com
♦

CACTV2
T′ = T[uρi→a]

B(P, R, T), Com → B′(P, R, T′), Com
T(u) = ρi

CDEACT
T′ = (T\u) | uρi

B(P, R, T), Com → B′(P, R, T′), Com
T(u) = ρa ∧ ρ �= ?

� � (u � u′) ∈ P ∧ T(u) = !a ∧ ṽ ⊆ R ∧ (∀v ∈ ṽ ∩ P : T(v) = ?a) ∧ u′ ∈ Com

� � u ∈ P ∧ Com.u� = u′ :M(ṽ) ∧ T(u) = ?a

� � Com.u = ∅ ∧ T(u) = ρi for some ρ

♦ � T(u) = !a ∧ T(v) = ρi ∧ (v �� ⊥)

Table 2. Rules for Configurations of Components

CPAR
B1(P1, R1, T1), Com

α−→ B′
1(P′

1, R
′
1, T

′
1), Com′

B1(P1, R1, T1) | B2(P2, R2, T2), Com
α−→ B′

1(P′
1, R

′
1, T

′
1) | B2(P2, R2, T2), Com′

Behavioural Contracts for a Sound Assembly of Components 117

3 Interface Types

In this section we describe the language used to define the interfaces. A typed
component is a component whereby every initial reference has an associated type
and every reference creation or reference reception has a declared type. We adopt
a behavioral type language ([Nie95], [KPT99], [NNS99]). In this setting, the type
of a reference prescribes its possible states, and for each state, the actions allowed
and/or required through that reference, and its state after the performance of
an action. The BNF table below defines the syntax of types. Among the salient
feature of this type language is the use of may and must modalities.

3.1 Syntax of the Interface Language

The interface language has the following syntax:

type ::= server name = mod receive*
| peer name = (mod send | mod receive)

send ::= ! [
∑

i

Mi; Ii]

receive ::= ? [
∑

i

Mi; Ii]

I ::= 0 | peer name | mod send | mod receive
mod ::= may | must

M ::= name (ãrgs)

args ::= peer name | server name*

The ! and ? keywords are the usual sending and receiving actions. The modal-
ities may and must distinguish between permissions and obligations for the
performance of the actions. The choice operator + allows to choose one mes-
sage among the list, and the ; is used to sequence behaviors. The meaning of
modalities is:

may ? ΣMi means “the port does not impose any sending constraint on
the partner, but if the partner sends any message Mi, then the
port guarantees to be ready to receive it”.

must ? ΣMi means “the port does impose a sending constraint on the part-
ner, and if the partner sends any message Mi, then the port
guarantees to be ready to receive it”.

may ! ΣMi means “the port may send to the partner any of the messages
Mi, and the partner must be ready to receive it”

must ! ΣMi means “the port guarantees to send one of the Mi messages to
its partner, and the partner must be ready to receive it”.

Messages contain arguments. Thus, references to ports, be it peer name or
server name, can be passed in messages. Our type language does not cater for
basic type values (as integers, floats, . . .), but their addition is straightforward.

118 Cyril Carrez, Alessandro Fantechi, and Elie Najm

Sending or receiving references implies some restrictions that are enforced on
the behavior of the involved components:

! m(I) means “the port is sending to its partner a reference to a port whose
behavior is described by the type I. Moreover, the first action of this
referenced port must be ?.”1

? m(I) means “the port is receiving a reference to another port whose be-
havior is conform to the type I. Moreover, the first action of this
referenced port is a ?.”

Finally, the *-construct allows specification of a server: it spawns to answer a
request, so the server immediately reconfigures to honour other potential clients:

I = mod ? [m(); I ′]* after the reception of m, a port whose behavior is I ′

is created while the server is regenerated as I. The
new port will interact with the sender of the request.

For example the interface definition: ex = must ! [m1(); I1 + m2(I2); ex]
means that the interface will send either a message m1 or a message m2. In the
first case the interface becomes another interface (type) I1, while in the other a
reference of type I2 is sent, and the control goes back to the interface itself.

An HTTP server can be written using the spawning syntax:
http serv = may ? [BasicRequest (string); must ! [Response (string); 0]

+ CGIRequest (string); HandleCGI]*
Upon reception of a simple request, the server creates a port which will send

the response back to the client; while upon reception of a CGI request the server
will create a port whose behavior is described by HandleCGI. In both cases, the
server will become http serv after receiving the requests.

The introduction of modalities leads to an underlying model which is a kind
of modal LT S, in which states can be either may or must [LSW95] . This has a
strong impact on the type compatibility rules, which are discussed in Sect. 3.2

The interface language we defined above has several limitations. First of all,
it is not possible to send and receive messages on a port at the same time.
However, a work-around we can propose is to instantiate two ports: one which
will deal with receptions, and one for the sendings.

A second limitation is the fact that we cannot mix may and must modalities,
for example I = (must ? M)+(may ! N). Mixing modalities rises a problem of
fairness: in this example, the associated component may never consume M , just
because it is still busy with sending N . To avoid this, we should insert some
QoS constraints, stating for example that “must ? M” has to be honoued in a
5-time delay. The time constraint can be either related to a time domain (as in
Arnaud Bailly’s timed constraint π-calculus [Bai02]), or based on the number
of reductions as in [Kob02]. Future work on this topic should take into account
the need to maintain as low as possible the complexity of interface compatibility
verification: this is the principle that has suggested the limitations themselves.

1 This constraint is inevitable: if the first action of I is !, then a message may be sent
to a third port, and will lead to incompatible behaviours between components.

Behavioural Contracts for a Sound Assembly of Components 119

3.2 Compatibility Rules

In this section we define the symmetric predicate Comp(I, J) as “I and J are
compatible with each other”. Compatibility between interfaces I and J is infor-
mally defined as follows (supposing that if one is sending, the other is receiving):

I = must ? m implies J = must ! m
I = may ? m implies J = must ! m or J = may ! m or J = 0
I = must ! m implies J = must ? m or J = may ? m
I = may ! m implies J = may ? m

The compatibility rules are actually defined using several elementary compat-
ibility relations: compatibility between modalities, messages, and finally types.
We first define the compatibility between modalities, as the symmetric boolean
relation Compmod(modI [!|?],modJ [!|?]). Its truth table is reproduced hereafter:

I
J must ? may ? must ! may ! 0
must ?

√

may ?
√ √ √

must !
√ √

may !
√

0
√ √

We define also Compmsg, a relation over message types. Two message types
are compatible iff they have the same name and their arguments are pairwise
syntactically equal with each other2. This is formally defined:

Compmsg(M, M ′) �= Compmsg(M(I1, . . . , In), M ′(J1, . . . , Jm))
�= M = M ′ ∧ n = m ∧ ∀i, Ii = Ji

We can then define the compatibility Comp(I, J) between two interfaces as
compatibility between modalities and messages, and transitions must lead to
compatible interfaces. This is formally defined recursively as (with ρ ∈ {?, !},
and where [*] means that the *-construct may be present or not):

Comp(I, J) � Comp(J, I)

Comp(0, 0) �= true

Comp(0,modJ ρJ [Σl M ′
l ; Jl] [*]) �= Compmod(0,modJ ρJ)

Comp(modI ! [Σk Mk; Ik] ,
modJ ? [Σl M ′

l ; Jl] [*])
�= Compmod(modI !,modJ ?)

∧
(
∀k,∃l : Compmsg(Mk, M ′

l)

∧Comp(Ik, Jl)
)

For example, an HTTP client which is compatible with http serv :
2 We could use a subtype relation, which for the lack of space we do not include here.

120 Cyril Carrez, Alessandro Fantechi, and Elie Najm

client = must ! [BasicRequest (string); must ? [Response (string); 0]]

The recursive definition indicates that the compatibility of a pair of inter-
faces is a boolean function of a finite set of pairs of interfaces. This definition also
closely resembles the definition of simulation or equivalence relations over finite
state transition systems. Hence, the verification of compatibility always termi-
nates, and can be performed with standard techniques in a quadratic complexity
with the number of interfaces (intended as different states of the interfaces). Due
to the abstraction used in the definition of interfaces, such number is small with
respect to the complexity of the component behaviour. Moreover, the wide range
of techniques introduced for the efficient verification of finite state systems can
be studied in search of the ones that best fit this specific verification problem.

4 Contract Satisfaction

The interface language presented in the previous section imposes constraints on
the remote interface, which will imply constraints also on the components. In
this section, we present typing relation between components and the interface
language, so the component will respect a contract described by this language.
The definitions of Sect. 2 are extended with the notion of contract. A component
has a set of contracts, one for each port. We use the notation:

u : T reference u has the contract behaviour T , which is a type (Sect. 3).
(B, Ũ) B has the contracts Ũ , a set of (u : T), such that each reference

(ports and partners) has a contract associated. Addition or update
of a reference is denoted Ũ ⇐ (u′ : T ′), and removal Ũ\u.

In the following, for the sake of readability, we abbreviate: MΣ = [ΣkMk(T̃ ′
k);

Tk], MΣ* = [ΣkMk(T̃ ′
k); Tk]*, and mk = Mk(ṽk). We also write Must(T) a

predicate stating that any reference u of the thread T which is typed must ! is
not suspended by a reference v which is typed may ?. This is formally written:

Must(T) � ∀u ∈ T, (u :must !MΣ) ⇒ ∀v, u �∗ v,¬(v :may ?MΣ)

The rules are based on the ones of Sect. 2, whereby Com is abstracted from the
state structure.

4.1 Creation and Termination of a Port

The creation of a port means a new reference and its contract are added to Ũ .

CREAT
u : T B(P,R,T) → B′(P[u � ⊥],R′,T′)

(B(P,R,T), Ũ) → (B′(P[u � ⊥],R′,T′), Ũ ⇐ u : T)
Must(T′)

The termination of a port (i.e. its removal from the component) is allowed
when the contract reaches 0 or may !.

Behavioural Contracts for a Sound Assembly of Components 121

REMV
u : T B(P,R,T) → B′(P\u, R′,T′)

(B(P,R,T), Ũ) → (B′(P\u, R′,T′), Ũ\u)
(T ≡ 0 or T ≡ may ! MΣ)

∧Must(T′)

REMV-ERR
u : T B(P,R,T) → B′(P\u, R′,T′)

(B(P,R,T), Ũ) → Error
T �≡ 0 and T �≡ may ! MΣ

4.2 Binding of a Partner Reference to a Port

When bound, the type of the partner reference has to be compatible with the
port it is bound to:

BIND
u : T u′ : T ′ B(P,R,T) → B′(P[u � u′],R,T)

(B(P,R,T), Ũ) → (B′(P[u � u′],R,T), Ũ)
Comp(T, T ′)

BIND-ERR
u : T u′ : T ′ B(P,R,T) → B′(P[u � u′],R,T)

(B(P,R,T), Ũ) → Error
¬Comp(T, T ′)

The unbinding of a partner is allowed at any time (the only constraint is
contained in the predicates of the rule CUNBIND).

4.3 Emitting and Consuming a Message

Message are emitted to a known partner reference. Modalities are expressed via
compatibilities. A peer reference that is sent in the message must not be attached
to a partner, and must be removed from R; this ensures the uniqueness of the
peer role.

SEND
u : T ≡ mod ! MΣ B(P,R,T) u:u′!mk−−−−−→ B′(P,R′,T′)

(B(P,R,T), Ũ) u:u′!mk−−−−−→ (B′(P,R′,T′), Ũ ⇐ u : Tk)
�

SEND-ERR
u : T ≡ mod ρ MΣ [*] B(P,R,T) u:u′!m′

−−−−−→ B′(P,R′,T′)

(B(P,R,T), Ũ) → Error
¬m′

: MΣ ∨ ρ = ?

�� ṽk : T̃ ′
k ∧

(
∀v∈ṽk, peer(v) ⇒ (v/∈CoDom(P) ∧ v/∈R′)

)
∧ Must(T′) ∧ u′ /∈P

The first rule is the normal behavior of a component sending a message from
port u; by the type constraints, the first action of the sent references must be !,
and all the peer references must be removed (peer(v) means v is a reference of
a peer) . The next rule stands for a message that is not allowed to be sent: in
the case where sending is allowed, but the message is not in the list (¬m′ : MΣ

stands for: m′ = M ′(ṽ′) and ∀k, M ′ �= Mk ∨ ¬ṽk : T̃ ′
k), and in the case where

sending is not allowed. Note that the *-construct is syntactically allowed only if
ρ = ?.

122 Cyril Carrez, Alessandro Fantechi, and Elie Najm

When consuming a message, the modality constrains only the partner; how-
ever, the component has to be able to receive any message described by the
corresponding typed interface.

RECV
u : T ≡ mod ? MΣ B(P,R,T) u:u′?mk−−−−−→ B′(P′,R′,T′)

(B(P,R,T), Ũ) u:u′?mk−−−−−→ (B′(P′,R′,T′), Ũ ⇐ u : Tk,⇐ ṽ′ : T̃ ′
k)

�

RECV*
u : T ≡ mod ?MΣ* B(P,R,T) u:u′?mk−−−−−→ B′(P′,R′,T|u′′)

(B(P,R,T), Ũ) u:u′?mk−−−−−→ (B′(P′,R′,T|u′′), Ũ ⇐ u′′ : Tk,⇐ ṽ′ : T̃ ′
k)

�

� � len(ṽ′) = len(T̃ ′
k) ∧ Must(T′) ∧ u′ �∈ P

� � len(ṽ′) = len(T̃ ′
k) ∧ Must(T′) ∧ u′ �∈ P

The first two rules describe the normal behavior when receiving a message
(with correct number of arguments). We do not check the type of the arguments
because if the message is sent, it was done according to the type of the sender; as
the sender has to be compatible with the receiver, we are sure the arguments are
well-typed. The only difference between the two rules is the spawning effect due
to the *-construct: the component creates a new port u′′ to answer the request.

Rules for sending and receiving given here correspond to external interaction.
For interactions between ports of the same component, different rules should be
used, which involve collapsing two steps transition (a ! and the corresponding
?) into one transition. Those rules are not given here, for space limitations.

4.4 A must Is Not Honoured

This rule stands for all the error cases where a transition leads to a T’ such that
Must(T′) is false:

MUST-ERR
B(P,R,T) → B′(P′,R′,T′)

B(P,R,T) → Error
¬Must(T′)

4.5 Component Honouring a Contract

A component honouring a contract, noted B(P,R,T)|� Ũ , is such that the re-
duction process will never lead to Error :

B(P,R,T)|� Ũ iff ∀B′, Ũ ′ such that (B, Ũ) →∗ (B′, Ũ ′) : (B′, Ũ ′) � Error

5 Properties Guaranteed by the Compatibility Rules

So far, we defined compatibilities between a component and its interface types,
and between interfaces. In this section, we investigate properties on an assembly
of components, and prove safety property (no error occurs, and no deadlock be-
tween ports will occur), and liveness properties (all messages sent are eventually
consumed).

Behavioural Contracts for a Sound Assembly of Components 123

5.1 Assembly of Components

We define an assembly of components as a configuration of components with
their contract, and ready to interact via a communication medium. It has the
properties:

– the configuration is reference-closed: any partner reference designates a port
of a component of the configuration,

– the only port bindings are peer to server bindings,
– and all the ports are active on independent threads.

A = {(B1(P1,R1,T1), Ũ1), . . . , (Bn(Pn,Rn,Tn), Ũn), Com}

with


∀i, u : u ∈ Ri ⇒ ∃j such that u ∈ Pj

∀u, v, i : (u � v) ∈ Pi ⇒ peer(u) ∧ server(v)
∀u ∈ ∪Pi : T(u) = ρa

An assembly, in its initial configuration, encompasses only client/server bind-
ings. However, as it evolves, new peer-to-peer bindings may appear.

A sound assembly is an assembly where each component satisfies its interface
contracts, and linked ports have their interfaces mutually compatible:

A is sound iff

{
∀i : Bi|� Ũi,

∀u :Tu, v :Tv, i : (u � v) ∈ Pi ⇒ Comp(Tu, Tv)

5.2 Subject Reduction and Message Consumption Properties

The first property, Psr, of a sound assembly states simply that soundness is main-
tained throughout the evolution. This kind of properties is called also subject
reduction. Psr, states that “a configuration of component never leads to Error”:

Psr � ∀C : A →∗ C, C � Error .

Theorem 1 (Subject reduction). If A is sound, then A � Psr

Proof. The proof is by structural induction on the transition rules. The property
is satisfied by observing that the only way a configuration can lead to Error is
by violating compatibility rules. ��

We define also Pmc, which stands for “all messages sent will eventually be
consumed”:

Pmc � ∀u, v, i, M : (u � v) ∈ Pi,

C u:v!M−−−−→ C′ ⇒ ∃C′′, C′′′ such that C′ →∗ C′′ v:u?M−−−−→ C′′′

Corollary 1 (Message consumption). If A is sound, then A � Pmc, modulo
fairness.

This corollary is a consequence of theorem 1 and the use of fifo queues.
However, since the rules for consuming a message may be competing with others,
we have to assume fairness in this competition.

124 Cyril Carrez, Alessandro Fantechi, and Elie Najm

5.3 External Deadlock Freeness

External deadlock represents the situation where a set of ports are inter-blocked
because of a dependency cycle. The simplest from of external deadlock is written:

(u � u′) ∧ (v � v′) ∧ (u!s � v?a) ∧ (v′!s � u′?a)

u sending is blocked by v which is waiting for v′ to send which, in turn, is blocked
by u′, which is waiting for u to send.

But the general case is more complex and is formalized:
Ext deadlock(C) � ∃(tk)1..n ∈ threads(C),∃(uk)1..n, (vk)1..n such that

tk = · · · � vk � · · · � uk?
a

∧
(
∀1 � k < n, (vk+1 � uk)

)
∧ (v1 � un)

Pedf � ∀C,A →∗ C ⇒ ¬Ext deadlock(C)

Theorem 2 (External deadlock freeness). If A is sound, then A � Pedf

Proof of theorem 2 is tedious. Even if interfaces are mutually compatible, it
is not straightforward that a deadlock will not arise between components (ports
in a component may be suspended by another port, which leads to potential
dependencies between threads added to dependencies between ports).

The deadlock-free problem has received attention recently. A work on this
issue which is very close to ours is the one by Naoki Kobayashi [Kob02], where the
author does have may and must actions (in terms of capabilities and obligations),
but communications are synchronous, and where the proof of the verification is
not shown to be compositional.

Proof (External deadlock freeness). The sketch of the proof of theorem 2 is the
following.

We define a new dependency relation between ports, namely, external de-
pendency, denoted by 			
, related to communications among remote ports. For
example: u?a			
v!s

We use dependency trees to visualize the dependency relations. A dependency
tree is an oriented tree in which nodes are of the form uρσ, and links correspond
to both dependency relations � and 			
, directed from the leafs to the root
(we do not consider idle references in those trees; it is straightforward from the
rules on the components that those references will never have dependencies).
Hence, the dependency trees correspond to the graphs representing the relation
obtained by merging the two dependency relations. An example of such trees:

?a			

!s � ?a 			

!s � !s � !s � !a

!s � ?a 			

Dependency trees evolve along with the behavior of the components. Some
evolutions are for example the merge of two trees, others may change the state
of some node...

Behavioural Contracts for a Sound Assembly of Components 125

We then show by structural induction that cycle freeness in dependency
trees is an invariant property. Since by definition this property is satisfied in the
initial state (A starts with a set of independent threads), then external deadlock
freeness is preserved throughout the derivations. ��

5.4 Liveness Properties under Assumptions

The assembly of components may have still a livelock problem: a port can be
forever suspended because of a divergence of some internal computation or an
endless dialogue between two ports. Thus it is not possible to prove a liveness
property that states “each port reaching a must ?(or must !) state will eventually
receive (or send) a message”:

Pmust � ∀ C, u, i : A →∗ C, (u :must ρMΣ) ∈ Ũi with ρ ∈ {?, !} ⇒

∃C′, C′′, v such that C →∗ C′ u:vρMk−−−−−→ C′′

However, we believe this liveness property is verified with the assumptions:

– a computation in a component always ends;
– a suspended port which becomes active must send its message before sus-

pending again;
– a port which has a loop behavior will become idle in the future.

Anyhow, these properties can only be checked provided the source code of
the component is available.

6 Conclusion and Future Work

We have presented a concept of behavioural contracts that we applied on a com-
ponent model featuring multiple threads, reference passing, peer-to-peer and
client/server communication patterns. Our contracts serve for the early verifi-
cation of compatibility between components, in order to guarantee safety and
liveness properties. Compatibility is formally described in this framework, as a
composition of internal compliance of components to their interfaces, and con-
formance between interfaces.

In the context of component based design, the verification that a component
is honouring a contract given by its interfaces is in charge of the component
producer, which performs it once for all. A certification of this fact may be
produced by some certification authority, in order for example to guarantee any
recipient of a publicly available or migrating component that the component
does not anything different that what is described in its interfaces.

The verification of interface compatibility should instead be performed at
the moment in which the component is bound to another (e.g. at run-time when
dealing with migrating code, that is when a migrating component reaches its fi-
nal destination). We have shown that this check can be performed very efficiently

126 Cyril Carrez, Alessandro Fantechi, and Elie Najm

by means of standard finite state space verification techniques. The higher com-
plexity of checking conformance of components to their declared interface is left
to an off-line verification activity, which may even need the use of infinite-state
space verification techniques.

We have only applied our approach to some toy examples; we need to verify
the usability of the approach in practice, especially with respect to the expres-
siveness of the interface language we have proposed. The conformance of the
component model we have assumed with concrete notations (e.g. Java) should
be studied: varying the component model to suite a concrete notation may actu-
ally affect the classes of properties that can be guaranteed. Also, we can observe
that the compatibility rules can be expressed in terms of temporal logic formu-
lae: this would make it possible to prove in a logical framework a richer set of
properties.

Acknowledgements

The authors from ENST have been partially supported by the RTNL ACCORD
project and by the IST MIKADO project. The author from the University of
Florence has been partially funded by the 5% SP4 project of the Italian Ministry
of University and Research. The third author has been partially supported by a
grant from ISTI of the Italian National Research Council.

Special thanks to Arnaud Bailly for his helpful advices.

References

[Bai02] A. Bailly. Assume / Guarantee Contracts for Timed Mobile Objects. PhD
thesis, ENST, December 2002.

[dAH01] L. de Alfaro and T. A. Henzinger. Interface automata. In ESEC/FSE-01,
volume 26, 5 of SOFTWARE ENGINEERING NOTES. ACM Press, 2001.

[HR02] M. Hennessy and J. Riely. Resource access control in systems of mobile
agents. INFCTRL: Information and Computation (formerly Information
and Control), 173, 2002.

[Kob02] N. Kobayashi. A type system for lock-free processes. INFCTRL: Informa-
tion and Computation (formerly Information and Control), 177, 2002.

[KPT99] N. Kobayashi, B. C. Pierce, and D. N. Turner. Linearity and the Pi-
Calculus. ACM Transactions on Programming Languages and Systems,
21(5), 1999.

[LSW95] K.G. Larsen, B. Steffen, and C. Weise. A constraint oriented proof method-
ology based on modal transition sytems. In Tools and Algorithms for Con-
struction and Analysis of Systems, TACAS’95, volume 1019 of LNCS, 1995.

[Nie95] O. Nierstrasz. Regular types for active objects. In Object-Oriented Software
Composition, pages 99–121. Prentice-Hall, 1995.

[NNS99] E. Najm, A. Nimour, and J.-B. Stefani. Guaranteeing liveness in an object
calculus through behavioral typing. In Proc. of FORTE/PSTV’99, Oct.
1999.

	Behavioural Contracts for a Sound Assembly of Components
	1 Introduction
	2 Component Model
	2.1 Informal Presentation
	2.2 Notations for Components
	2.3 Communication Medium
	2.4 Component Semantics
	2.5 Configuration of Components

	3 Interface Types
	3.1 Syntax of the Interface Language
	3.2 Compatibility Rules

	4 Contract Satisfaction
	4.1 Creation and Termination of a Port
	4.2 Binding of a Partner Reference to a Port
	4.3 Emitting and Consuming a Message
	4.4 A must Is Not Honoured
	4.5 Component Honouring a Contract

	5 Properties Guaranteed by the Compatibility Rules
	5.1 Assembly of Components
	5.2 Subject Reduction and Message Consumption Properties
	5.3 External Deadlock Freeness
	5.4 Liveness Properties under Assumptions

	6 Conclusion and Future Work
	References

